Use of Novel Antibiograms to Determine the Need for Earlier Susceptibility Testing and Administration for New β-Lactam/β-Lactamase Inhibitors in the United States
Abstract
:1. Introduction
2. Current Challenges with Susceptibility Testing of New Antibacterial Agents
3. Antibiograms
4. Novel Antibiograms to Determine Earlier Susceptibility Testing for New β-Lactam/β-Lactamase Inhibitors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States. 2019. Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf (accessed on 9 March 2022).
- Kadri, S.S.; Adjemian, J.; Lai, Y.L.; Spaulding, A.B.; Ricotta, E.; Prevots, D.R.; Palmore, T.N.; Rhee, C.; Klompas, M.; Dekker, J.P.; et al. For the National Institutes of Health Antimicrobial Resistance Outcomes Research Initiative (NIH–ARORI). Difficult-to-treat resistance in gram-negative bacteremia at 173 US hospitals: Retrospective cohort analysis of prevalence, predictors, and outcome of resistance to all first-line agents. Clin. Infect. Dis. 2018, 67, 1803–1814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Ellis, P.; Arabi, Y.; Roberts, D.; Light, B.; Parrillo, J.E.; Dodek, P.; Wood, G.; Kumar, A.; Simon, D.; et al. Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest 2009, 136, 1237–1248. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, E.H.; Sherman, G.; Ward, S.; Fraser, V.J.; Kollef, M.H. The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest 2000, 118, 146–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Roberts, D.; Wood, K.E.; Light, B.; Parrillo, J.E.; Sharma, S.; Suppes, R.; Feinstein, D.; Zanotti, S.; Taiberg, L.; et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit. Care Med. 2006, 34, 1589–1596. [Google Scholar] [CrossRef]
- Bonine, N.G.; Berger, A.; Altincatal, A.; Wang, R.; Bhagnani, T.; Gillard, P.; Lodise, T. Impact of delayed appropriate antibiotic therapy on patient outcomes by antibiotic resistance status from serious gram-negative bacterial infections. Am. J. Med. Sci. 2019, 357, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Wenzler, E.; Timbrook, T.T.; Wong, J.R.; Hurst, J.M.; MacVane, S.H. Implementation and optimization of molecular rapid diagnostic tests for bloodstream infections. Am. J. Health Syst. Pharm. 2018, 75, 1191–1202. [Google Scholar] [CrossRef]
- Bleibtreu, A.; Dortet, L.; Bonnin, R.A.; Wyplosz, B.; Sacleux, S.C.; Mihaila, L.; Dupont, H.; Junot, H.; Bunel, V.; Grall, N.; et al. Susceptibility testing is key for the success of cefiderocol treatment: A retrospective cohort study. Microorganisms 2021, 9, 282. [Google Scholar] [CrossRef]
- Butler, D.A.; Biagi, M.; Gupta, V.; Wieczorkiewicz, S.; Young, L.; Patel, U.; Naegele, S.; Santarossa, M.; Harrington, A.; Postelnick, M.; et al. Development of a 51-hospital Chicagoland regional antibiogram and comparison to local hospital and national surveillance data. Infect. Control Hosp. Epidemiol. 2020, 41, 1409–1418. [Google Scholar] [CrossRef]
- Klinker, K.P.; Hidayat, L.K.; de Ryke, C.A.; de Pestel, D.D.; Motyl, M.; Bauer, K.A. Antimicrobial stewardship and antibiograms: Importance of moving beyond traditional antibiograms. Ther. Adv. Infect. Dis. 2021, 8, 20499361211011373. [Google Scholar] [CrossRef]
- Yusuf, E.; Bax, H.I.; Verkaik, N.J.; van Westreenen, M. An update on eight “new” antibiotics against multidrug-resistant gram-negative bacteria. J. Clin. Med. 2021, 10, 1068. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Kim, J.; Bradley, N. Access to antimicrobial susceptibility testing for novel gram-negative antibiotics. Open Forum Infect. Dis. 2021, 8, S159. [Google Scholar] [CrossRef]
- Jorgensen, J.H.; Ferraro, M.J. Antimicrobial susceptibility testing: A review of general principles and contemporary practices. Clin. Infect. Dis. 2009, 49, 1749–1755. [Google Scholar] [CrossRef] [PubMed]
- Wojewoda, C.M.; Anderson, N.W.; Humphries, R.M.; Martin, I.W.; Mathison, B.A.; McMullen, A.R.; Nolte, F.S.; Peaper, D.R.; Pillai, D.R.; Rauch, C.A.; et al. College of American Pathologists (CAP) Microbiology Committee perspective: The need for verification studies. J. Clin. Microbiol. 2020, 58, e02105-19. [Google Scholar] [CrossRef] [PubMed]
- Morency-Potvin, P.; Schwartz, D.N.; Weinstein, R.A. Antimicrobial stewardship: How the microbiology laboratory can right the ship. Clin. Microbiol. Rev. 2017, 30, 381–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical and Laboratory Standards Institute. Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data, 5th ed.; CLSI guideline M39; 2022. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4729434/ (accessed on 9 March 2022).
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratalà, J.; et al. Executive summary: Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 2016, 63, 575–582. [Google Scholar] [CrossRef]
- Christoff, J.; Tolentino, J.; Mawdsley, E.; Matushek, S.; Pitrak, D.; Weber, S.G. Optimizing empirical antimicrobial therapy for infection due to gram-negative pathogens in the intensive care unit: Utility of a combination antibiogram. Infect. Control Hosp. Epidemiol. 2010, 31, 256–261. [Google Scholar] [CrossRef]
- Puzniak, L.; de Pestel, D.D.; Srinivasan, A.; Ye, G.; Murray, J.; Merchant, S.; DeRyke, C.A.; Gupta, V. A combination antibiogram evaluation for Pseudomonas aeruginosa in respiratory and blood sources from intensive care unit (ICU) and non-ICU settings in U.S. hospitals. Antimicrob. Agents Chemother. 2019, 63, e02564-18. [Google Scholar] [CrossRef] [Green Version]
- Ridgway, J.P.; Robicsek, A.; Shah, N.; Smith, B.A.; Singh, K.; Semel, J.; Acree, M.E.; Grant, J.; Ravichandran, U.; Peterson, L.R. A randomized controlled trial of an electronic clinical decision support tool for inpatient antimicrobial stewardship. Clin. Infect. Dis. 2021, 72, e265–e271. [Google Scholar] [CrossRef]
- Klinker, K.P.; Hidayat, L.K.; de Ryke, C.A.; Motyl, M.; Bauer, K.A. Simplifying empiric antimicrobial therapy selection for lower respiratory tract infections in intensive care unit patients: Using resistance frequency to guide decision making. Open Forum Infect. Dis. 2021, 8, S91. [Google Scholar] [CrossRef]
- Bauer, K.A.; Hidayat, L.K.; Klinker, K.P.; Motyl, M.; de Ryke, C.A. Living on the edge: The impact of MIC distributions on empiric antibiotic selection. Open Forum Infect. Dis. 2021, 8, S176–S177. [Google Scholar] [CrossRef]
Group | FEP | TZP | MEM | C/T | IMR |
---|---|---|---|---|---|
1: CRPA and ESBL-E ≤ 15% | 94.5 | 90.8 | 97.8 | 97.6 | 99.2 |
2: CRPA ≤ 15% and ESBL-E > 15% | 83.3 | 86.7 | 95.9 | 94.5 | 99.2 |
3: CRPA > 15% and ESBL-E ≤ 15% | 88.4 | 83.4 | 88.0 | 96.0 | 95.9 |
4: CRPA and ESBL-E > 15% | 77.3 | 79.3 | 86.2 | 93.0 | 95.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klinker, K.P.; Hidayat, L.K.; Wenzler, E.; Balada-Llasat, J.-M.; Motyl, M.; DeRyke, C.A.; Bauer, K.A. Use of Novel Antibiograms to Determine the Need for Earlier Susceptibility Testing and Administration for New β-Lactam/β-Lactamase Inhibitors in the United States. Antibiotics 2022, 11, 660. https://doi.org/10.3390/antibiotics11050660
Klinker KP, Hidayat LK, Wenzler E, Balada-Llasat J-M, Motyl M, DeRyke CA, Bauer KA. Use of Novel Antibiograms to Determine the Need for Earlier Susceptibility Testing and Administration for New β-Lactam/β-Lactamase Inhibitors in the United States. Antibiotics. 2022; 11(5):660. https://doi.org/10.3390/antibiotics11050660
Chicago/Turabian StyleKlinker, Kenneth P., Levita K. Hidayat, Eric Wenzler, Joan-Miquel Balada-Llasat, Mary Motyl, C. Andrew DeRyke, and Karri A. Bauer. 2022. "Use of Novel Antibiograms to Determine the Need for Earlier Susceptibility Testing and Administration for New β-Lactam/β-Lactamase Inhibitors in the United States" Antibiotics 11, no. 5: 660. https://doi.org/10.3390/antibiotics11050660
APA StyleKlinker, K. P., Hidayat, L. K., Wenzler, E., Balada-Llasat, J.-M., Motyl, M., DeRyke, C. A., & Bauer, K. A. (2022). Use of Novel Antibiograms to Determine the Need for Earlier Susceptibility Testing and Administration for New β-Lactam/β-Lactamase Inhibitors in the United States. Antibiotics, 11(5), 660. https://doi.org/10.3390/antibiotics11050660