Antibiotic Resistance Patterns of Listeria Species Isolated from Broiler Abattoirs in Lusaka, Zambia
Abstract
:1. Introduction
2. Results
2.1. Prevalence of Listeria spp.
2.2. Description and BLAST Analysis of Listeria spp.
2.3. Specific Listeria spp. Isolation across Different Abattoirs
2.4. Isolation of Listeria spp. According to Surface Swabbed
2.5. Distribution of Antimicrobial Resistance Listeria spp. among Abattoirs
3. Discussion
4. Materials and Methods
4.1. Study Design and Site
4.2. Sample Size and Sampling
4.3. Sample Collection and Processing
4.4. Isolation and Identification of Listeria spp.
4.5. Phenotypic Detection of Antimicrobial Resistance in Listeria spp. Isolates
4.6. PCR Identification of Listeria
4.7. Purification of PCR Products and Cycle Sequencing
4.8. Sequence Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.; Knabel, S.J.; Microbiology, E. Multiplex PCR for simultaneous detection of bacteria of the genus Listeria, Listeria monocytogenes, and major serotypes and epidemic clones of L. monocytogenes. J. Appl. Environ. Microbiol. 2007, 73, 6299–6304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orsi, R.H.; Wiedmann, M. Characteristics and distribution of Listeria spp., including Listeria species newly described since 2009. Appl. Microbiol. Biotechnol. 2016, 100, 5273–5287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Troxler, R.; Von Graevenitz, A.; Funke, G.; Wiedemann, B.; Stock, I. Natural antibiotic susceptibility of Listeria species: L. grayi, L. innocua, L. ivanovii, L. monocytogenes, L. seeligeri and L. welshimeri strains. J. Clin. Microbiol. 2000, 6, 525–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaszoni-Rückerl, I.; Mustedanagic, A.; Muri-Klinger, S.; Brugger, K.; Wagner, K.-H.; Wagner, M.; Stessl, B.J.M. Predominance of distinct Listeria innocua and Listeria monocytogenes in recurrent contamination events at dairy processing facilities. J. Microorg. 2020, 8, 234. [Google Scholar] [CrossRef]
- Vitas, A. Occurrence of Listeria monocytogenes in fresh and processed foods in Navarra (Spain). Int. J. Food Microbiol. 2004, 90, 349–356. [Google Scholar] [CrossRef]
- Gouin, E.; Mengaud, J.; Cossart, P. The virulence gene cluster of Listeria monocytogenes is also present in Listeria ivanovii, an animal pathogen, and Listeria seeligeri, a nonpathogenic species. Infect. Immun. 1994, 62, 3550–3553. [Google Scholar] [CrossRef] [Green Version]
- Aalto-Araneda, M.; Lundén, J.; Markkula, A.; Hakola, S.; Korkeala, H. Processing plant and machinery sanitation and hygiene practices associate with Listeria monocytogenes occurrence in ready-to-eat fish products. J. Food Microbiol. 2019, 82, 455–464. [Google Scholar] [CrossRef]
- Skowron, K.; Wałecka-Zacharska, E.; Grudlewska, K.; Gajewski, P.; Wiktorczyk, N.; Wietlicka-Piszcz, M.; Dudek, A.; Skowron, K.J.; Gospodarek-Komkowska, E. Disinfectant susceptibility of biofilm formed by Listeria monocytogenes under selected environmental conditions. J. Microorg. 2019, 7, 280. [Google Scholar] [CrossRef] [Green Version]
- Paudyal, N.; Anihouvi, V.; Hounhouigan, J.; Matsheka, M.I.; Sekwati-Monang, B.; Amoa-Awua, W.; Atter, A.; Ackah, N.B.; Mbugua, S.; Asagbra, A. Prevalence of foodborne pathogens in food from selected African countries—A meta-analysis. Int. J. Food Microbiol. 2017, 249, 35–43. [Google Scholar] [CrossRef]
- Jay, J.M. Prevalence of Listeria spp. in meat and poultry products. J. Food Control. 1996, 7, 209–214. [Google Scholar] [CrossRef]
- Miettinen, M.K.; Palmu, L.; Björkroth, K.J.; Korkeala, H. Prevalence of Listeria monocytogenes in broilers at the abattoir, processing plant, and retail level. J. Food Prot. 2001, 64, 994–999. [Google Scholar] [CrossRef]
- Schäfer, D.F.; Steffens, J.; Barbosa, J.; Zeni, J.; Paroul, N.; Valduga, E.; Junges, A.; Backes, G.T.; Cansian, R.L. Monitoring of contamination sources of Listeria monocytogenes in a poultry slaughterhouse. J. Food Sci. Technol. 2017, 86, 393–398. [Google Scholar] [CrossRef]
- Antunes, P.; Réu, C.; Sousa, J.C.; Pestana, N.; Peixe, L. Incidence and susceptibility to antimicrobial agents of Listeria spp. and Listeria monocytogenes isolated from poultry carcasses in Porto, Portugal. J. Food Prot. 2002, 65, 1888–1893. [Google Scholar] [CrossRef]
- Jalali, M.; Abedi, D. Prevalence of Listeria species in food products in Isfahan, Iran. Int. J. Food Microbiol. 2008, 122, 336–340. [Google Scholar] [CrossRef]
- Chen, J.; Luo, X.; Jiang, L.; Jin, P.; Wei, W.; Liu, D.; Fang, W. Molecular characteristics and virulence potential of Listeria monocytogenes isolates from Chinese food systems. J. Food Microbiol. 2009, 26, 103–111. [Google Scholar] [CrossRef]
- Osaili, T.M.; Alaboudi, A.R.; Nesiar, E.A. Prevalence of Listeria spp. and antibiotic susceptibility of Listeria monocytogenes isolated from raw chicken and ready-to-eat chicken products in Jordan. Food Control. 2011, 22, 586–590. [Google Scholar] [CrossRef]
- Elmali, M.; Can, H.Y.; Yaman, H. Technology. Prevalence of Listeria monocytogenes in poultry meat. J. Food Sci. 2015, 35, 672–675. [Google Scholar]
- Van Nierop, W.; Duse, A.; Marais, E.; Aithma, N.; Thothobolo, N.; Kassel, M.; Stewart, R.; Potgieter, A.; Fernandes, B.; Galpin, J. Contamination of chicken carcasses in Gauteng, South Africa, by Salmonella, Listeria monocytogenes and Campylobacter. Int. J. Food Microbiol. 2005, 99, 1–6. [Google Scholar] [CrossRef]
- Matle, I.; Mbatha, K.R.; Lentsoane, O.; Magwedere, K.; Morey, L.; Madoroba, E. Occurrence, serotypes, and characteristics of Listeria monocytogenes in meat and meat products in South Africa between 2014 and 2016. J. Food Saf. 2019, 39, e12629. [Google Scholar] [CrossRef]
- Nguz, K.; Shindano, J.; Samapundo, S.; Huyghebaert, A. Microbiological evaluation of fresh-cut organic vegetables produced in Zambia. J. Food Control. 2005, 16, 623–628. [Google Scholar] [CrossRef]
- Adzitey, F.; Huda, N. Listeria monocytogenes in foods: Incidences and possible control measures. Afr. J. Microbiol. Res. 2010, 4, 2848–2855. [Google Scholar]
- Nightingale, K.; Windham, K.; Martin, K.; Yeung, M.; Wiedmann, M.J.A.; Microbiology, E. Select Listeria monocytogenes subtypes commonly found in foods carry distinct nonsense mutations in inlA, leading to expression of truncated and secreted internalin A, and are associated with a reduced invasion phenotype for human intestinal epithelial cells. Appl. Environ. Microbiol. 2005, 71, 8764–8772. [Google Scholar] [PubMed] [Green Version]
- Kim, J.S.; Lee, G.G.; Park, J.S.; Jung, Y.H.; Kwak, H.S.; Kim, S.B.; Nam, Y.S.; Kwon, S.-T. A novel multiplex PCR assay for rapid and simultaneous detection of five pathogenic bacteria: Escherichia coli O157: H7, Salmonella, Staphylococcus aureus, Listeria monocytogenes, and Vibrio parahaemolyticus. J. Food Prot. 2007, 70, 1656–1662. [Google Scholar] [CrossRef] [PubMed]
- Kérouanton, A.; Marault, M.; Petit, L.; Grout, J.; Dao, T.T.; Brisabois, A. Evaluation of a multiplex PCR assay as an alternative method for Listeria monocytogenes serotyping. J. Microbiol. Methods 2010, 80, 134–137. [Google Scholar] [CrossRef]
- Touron, A.; Berthe, T.; Pawlak, B.; Petit, F. Detection of Salmonella in environmental water and sediment by a nested-multiplex polymerase chain reaction assay. Res. Microbiol. 2005, 156, 541–553. [Google Scholar] [CrossRef]
- Jadhav, S.; Bhave, M.; Palombo, E.A. Methods used for the detection and subtyping of Listeria monocytogenes. J. Microbiol. Methods 2012, 88, 327–341. [Google Scholar] [CrossRef]
- Gasanov, U.; Hughes, D.; Hansbro, P.M. Methods for the isolation and identification of Listeria spp. and Listeria monocytogenes: A review. FEMS Microbiol. Rev. 2005, 29, 851–875. [Google Scholar] [CrossRef] [Green Version]
- Doumith, M.; Buchrieser, C.; Glaser, P.; Jacquet, C.; Martin, P. Differentiation of the major Listeria monocytogenes serovars by multiplex PCR. J. Clin. Microbiol. 2004, 42, 3819–3822. [Google Scholar] [CrossRef] [Green Version]
- Byrne, V.D.V.; Hofer, E.; Vallim, D.C.; Almeida, R. Occurrence and antimicrobial resistance patterns of Listeria monocytogenes isolated from vegetables. Braz. J. Microbiol. 2016, 47, 438–443. [Google Scholar] [CrossRef] [Green Version]
- Cervantes, H.M. Antibiotic-free poultry production: Is it sustainable? J. Appl. Poult. Res. 2015, 24, 91–97. [Google Scholar] [CrossRef]
- Noll, M.; Kleta, S.; Al Dahouk, S.; Health, P. Antibiotic susceptibility of 259 Listeria monocytogenes strains isolated from food, food-processing plants and human samples in Germany. J. Infect. Public Health 2018, 11, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Sader, H.; Jones, R. Infection. Impact of EUCAST, CLSI and USCAST ceftaroline breakpoint changes on the susceptibility of methicillin-resistant Staphylococcus aureus isolates collected from US medical centres (2015–2018). J. Clin. Microbiol. 2020, 26, 658–659. [Google Scholar]
- O’neill, J. Review on Antimicrobial Resistance: Tackling a Global Health Crisis; Review on Antimicrobial Resistance, Wellcom Trust: London, UK, 2015; Available online: https://amr-review.org/sites/default/files/Report-52.15.pdf (accessed on 12 February 2022).
- Schwartz, T.; Kohnen, W.; Jansen, B.; Obst, U. Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. J. FEMS Microbiol. Ecol. 2003, 43, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Jamali, H.; Chai, L.C.; Thong, K.L. Detection and isolation of Listeria spp. and Listeria monocytogenes in ready-to-eat foods with various selective culture media. J. Food Control. 2013, 32, 19–24. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M. Meat and dairy production. J. Our World Data 2017. Available online: https://ourworldindata.org/environmental-impacts-of-food (accessed on 4 February 2022).
- Amoako, D.G.; Somboro, A.M.; Abia, A.L.; Molechan, C.; Perrett, K.; Bester, L.A.; Essack, S.Y. Antibiotic resistance in Staphylococcus aureus from poultry and poultry products in uMgungundlovu District, South Africa, using the “Farm to Fork” approach. J. Microb. Drug Resist. 2020, 26, 402–411. [Google Scholar] [CrossRef]
- Scanes, C. The global importance of poultry. J. Poult. Sci. 2007, 86, 1057. [Google Scholar] [CrossRef] [PubMed]
- Samboko, P.C.; Zulu-Mbata, O.; Chapoto, A. Analysis of the animal feed to poultry value chain in Zambia. J. Dev. South Afr. 2018, 35, 351–368. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Fletcher, S.M.; Rimal, A. Identifying factors influencing beef, poultry, and seafood consumption. J. Food Distrib. Res. 2003, 34, 50–55. [Google Scholar]
- Central Statistics Office. The 2017/2018 Livestock and Aquaculture Census; Summary Report: Lusaka, Zambia, 2019; Available online: https://www.zamstats (accessed on 25 January 2022).
- Alonso-Hernando, A.; Prieto, M.; García-Fernández, C.; Alonso-Calleja, C.; Capita, R. Increase over time in the prevalence of multiple antibiotic resistance among isolates of Listeria monocytogenes from poultry in Spain. J. Food Control. 2012, 23, 37–41. [Google Scholar] [CrossRef]
- González, D.; Vitas, A.I.; Díez-Leturia, M.; García-Jalón, I. Listeria monocytogenes and ready-to-eat seafood in Spain: Study of prevalence and temperatures at retail. J. Food Microb. 2013, 36, 374–378. [Google Scholar] [CrossRef] [PubMed]
- Archer, D.L. The evolution of FDA’s policy on Listeria monocytogenes in ready-to-eat foods in the United States. J. Curr. Opin. Food Sci. 2018, 20, 64–68. [Google Scholar] [CrossRef]
- Siriken, B.; Ayaz, N.D.; Erol, I. Listeria monocytogenes in retailed raw chicken meat in Turkey. J. Berl. Munch. Tierarztl. Wochenschr. 2014, 127, 43–49. [Google Scholar]
- Saludes, M.; Troncoso, M.; Figueroa, G. Presence of Listeria monocytogenes in Chilean food matrices. J. Food Control. 2015, 50, 331–335. [Google Scholar] [CrossRef]
- Ristori, C.A.; Rowlands, R.E.G.; Martins, C.G.; Barbosa, M.L.; Yoshida, J.T.; de Melo Franco, B.D. Prevalence and populations of Listeria monocytogenes in meat products retailed in Sao Paulo, Brazil. J. Foodborne Pathog. 2014, 11, 969–973. [Google Scholar] [CrossRef]
- Zhu, L.; Feng, X.; Zhang, L.; Zhu, R.; Luo, X. Prevalence and serotypes of Listeria monocytogenes contamination in Chinese beef processing plants. Foodborne Pathog. 2012, 9, 556–560. [Google Scholar] [CrossRef]
- Jinneman, K.; Wekell, M.; Eklund, M.; Dekker, N.Y. Incidence and behaviour of L. monocytogenes in fish and seafood products. Food Saf. Dekker N. Y. 1999, 631–655. Available online: https://cir.nii.ac.jp/crid/1570572699741187584 (accessed on 12 January 2022).
- Zitz, U.; Zunabovic, M.; Domig, K.J.; Wilrich, P.-T.; Kneifel, W. Reduced detectability of Listeria monocytogenes in the presence of Listeria innocua. J. Food Prot. 2011, 74, 1282–1287. [Google Scholar] [CrossRef]
- Effimia, E. Prevalence of Listeria monocytogenes and Salmonella spp. J. Bacteriol. Parasitol. 2015, 6, 2. [Google Scholar]
- Wu, S.; Wu, Q.; Zhang, J.; Chen, M.; Yan, Z.A.; Hu, H. Listeria monocytogenes prevalence and characteristics in retail raw foods in China. PLoS ONE 2015, 10, e0136682. [Google Scholar] [CrossRef]
- Smith, A.M.; Tau, N.P.; Smouse, S.L.; Allam, M.; Ismail, A.; Ramalwa, N.R.; Disenyeng, B.; Ngomane, M.; Thomas, J. Outbreak of Listeria monocytogenes in South Africa, 2017–2018: Laboratory activities and experiences associated with whole-genome sequencing analysis of isolates. Foodborne Pathog. Dis. 2019, 16, 524–530. [Google Scholar] [CrossRef] [Green Version]
- Tian, F. A supply chain traceability system for food safety based on HACCP, blockchain & Internet of things. In Proceedings of the 2017 International Conference on Service Systems and Service Management, Dalian, China, 16–18 June 2017; pp. 1–6. [Google Scholar]
- Kurpas, M.; Wieczorek, K.; Osek, J. Ready-to-eat meat products as a source of Listeria monocytogenes. J. Vet. Res. 2018, 62, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Bailey, J.; Fletcher, D.; Cox, N. Listeria monocytogenes colonization of broiler chickens. Poult. Sci. J. 1990, 69, 457–461. [Google Scholar] [CrossRef]
- Mpundu, P.; Mbewe, A.R.; Muma, J.B.; Zgambo, J.; Munyeme, M. Evaluation of bacterial contamination in dressed chickens in Lusaka Abattoirs. J. Public Health Front. 2019, 7, 19. [Google Scholar] [CrossRef]
- Prendergast, D.; Daly, D.; Sheridan, J.; McDowell, D.; Blair, I. The effect of abattoir design on aerial contamination levels and the relationship between aerial and carcass contamination levels in two Irish beef abattoirs. J. Food Microbiol. 2004, 21, 589–596. [Google Scholar] [CrossRef]
- Pritchard, T.J.; Flanders, K.; Donnelly, C. Comparison of the incidence of Listeria on equipment versus environmental sites within dairy processing plants. Int. J. Food Microbiol. 1995, 26, 375–384. [Google Scholar] [CrossRef]
- Okonko, I.O.; Adejoye, O.D.; Ogunnusi, T.A.; Fajobi, E.A.; Shittu, O.B. Microbiological and physicochemical analysis of different water samples used for domestic purposes in Abeokuta and Ojota, Lagos State, Nigeria. Afr. J. Biotechnol. 2008, 7, 617–621. [Google Scholar]
- Omoruyi, I.M.; Wogu, M.D.; Eraga, E.M. Bacteriological quality of beef-contact surfaces, air microflora and wastewaters from major abattoirs located in Benin City, Southern Nigeria. Int. J. Biosci. 2011, 1, 57–62. [Google Scholar]
- Cox, N.; Bailey, J.; Berrang, M. The presence of Listeria monocytogenes in the integrated poultry industry. J. Appl. Poult. Res. 1997, 6, 116–119. [Google Scholar] [CrossRef]
- Ishola, O.; Mosugu, J.; Adesokan, H. Prevalence and antibiotic susceptibility profiles of Listeria monocytogenes contamination of chicken flocks and meat in Oyo State, south-western Nigeria: Public health implications. J. Prev. Med. Hyg. 2016, 57, E157. [Google Scholar]
- Gravani, R.; Safety, F. Incidence and control of Listeria in food-processing facilities. J. Food Saf. 1999, 59, 657–709. [Google Scholar]
- Schlech, W.F., III; Lavigne, P.M.; Bortolussi, R.A.; Allen, A.C.; Haldane, E.V.; Wort, A.J.; Hightower, A.W.; Johnson, S.E.; King, S.H.; Nicholls, E.S. Epidemic listeriosis—Evidence for transmission by food. Engl. J. Med. 1983, 308, 203–206. [Google Scholar] [CrossRef]
- Bockserman, R. Listeria monocytogenes: Recognized threat to food safety. J. Food Qual. 2000. Available online: http://www.fqmagazine (accessed on 6 January 2022).
- Skovgaard, N.; Morgen, C.-A. Detection of Listeria spp. in faeces from animals, in feeds, and in raw foods of animal origin. Int. J. Food Microbiol. 1988, 6, 229–242. [Google Scholar] [CrossRef]
- Bankole, H.; Semassa, A.; Anihouvi, V.; Dougnon, T.; Legonou, M.; Toukourou, F. Insulation test of Listeria in raw milk in Benin. Int. J. Curr. Microbiol. App. Sci. 2013, 2, 396–400. [Google Scholar]
- Kanarat, S.; Jitnupong, W.; Sukhapesna, J. Prevalence of Listeria monocytogenes in chicken production chain in Thailand. Thai J. Vet. Med. 2011, 41, 155. [Google Scholar]
- Poyart-Salmeron, C.; Carlier, C.; Trieu-Cuot, P.; Courvalin, P.; Courtieu, A. Transferable plasmid-mediated antibiotic resistance in Listeria monocytogenes. J. Lancet 1990, 335, 1422–1426. [Google Scholar] [CrossRef]
- OIE. OIE list of antimicrobial agents of veterinary importance. J. OIE Int. Commit. 2015, 33, 1–9. [Google Scholar]
- Escolar, C.; Gómez, D.; del Carmen Rota García, M.; Conchello, P.; Herrera, A. Antimicrobial resistance profiles of Listeria monocytogenes and Listeria innocua isolated from ready-to-eat products of animal origin in Spain. Foodborne Pathog. Dis. 2017, 14, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, V.; Nam, H.; Nguyen, L.; Tamilselvam, B.; Murinda, S.; Oliver, S. Prevalence of antimicrobial resistance genes in Listeria monocytogenes isolated from dairy farms. J. Foodborne Pathog. Dis. 2005, 2, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Fallah, A.A.; Saei-Dehkordi, S.S.; Rahnama, M.; Tahmasby, H.; Mahzounieh, M. Prevalence and antimicrobial resistance patterns of Listeria species isolated from poultry products marketed in Iran. J. Food Control. 2012, 28, 327–332. [Google Scholar] [CrossRef]
- Mpundu, P.; Mbewe, A.; Muma, J.; Mwasinga, W.; Mukumbuta, N.; Munyeme, M. A global perspective of antibiotic-resistant Listeria monocytogenes prevalence in assorted ready to eat foods: A systematic review. Veter. World 2021, 14, 2219–2229. [Google Scholar] [CrossRef] [PubMed]
- Charpentier, E.; Courvalin, P. Antibiotic resistance in Listeria spp. J. Antimicrob. Chemother. 1999, 43, 2103–2108. [Google Scholar] [CrossRef] [Green Version]
- Gómez, D.; Azón, E.; Marco, N.; Carramiñana, J.J.; Rota, C.; Ariño, A.; Yangüela, J. Antimicrobial resistance of Listeria monocytogenes and Listeria innocua from meat products and meat-processing environment. J. Food Microbiol. 2014, 42, 61–65. [Google Scholar] [CrossRef]
- Fakhri, Y.; Rahmani, J.; Oliveira, C.A.F.; Franco, L.T.; Corassin, C.H.; Saba, S.; Rafique, J.; Khaneghah, A.M. Aflatoxin M1 in human breast milk: A global systematic review, meta-analysis, and risk assessment study (Monte Carlo simulation). Trends Food Sci. Technol. 2019, 88, 333–342. [Google Scholar] [CrossRef]
- Mudenda, S.; Malama, S.; Munyeme, M.; Hang’ombe, B.M.; Mainda, G.; Kapona, O.; Mukosha, M.; Yamba, K.; Bumbangi, F.N.; Mfune, R.L. Awareness of Antimicrobial Resistance and Associated Factors among Layer Poultry Farmers in Zambia: Implications for Surveillance and Antimicrobial Stewardship Programs. J. Antib. 2022, 11, 383. [Google Scholar] [CrossRef]
- Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance. Wiley Online Library 2016, 481–511. [Google Scholar] [CrossRef] [Green Version]
- Stonsaovapak, S.; Boonyaratanakornkit, M. Prevalence and antimicrobial resistance of Listeria species in food products in Bangkok, Thailand. J. Food Saf. 2010, 30, 154–161. [Google Scholar] [CrossRef]
- Derra, F.A.; Karlsmose, S.; Monga, D.P.; Mache, A.; Svendsen, C.A.; Félix, B.; Granier, S.A.; Geyid, A.; Taye, G.; Hendriksen, R.S.; et al. Occurrence of Listeria spp. in retail meat and dairy products in the area of Addis Ababa, Ethiopia. J. Foodborne Pathog. 2013, 10, 577–579. [Google Scholar] [CrossRef] [Green Version]
- Alsheikh, A.; Mohammed, G.; Abdalla, M. Isolation and identification of Listeria monocytogenes from retail broiler chicken ready to eat meat products in Sudan. J. Int. J. Anim. Res. 2013, 5, 9–14. [Google Scholar] [CrossRef]
- Holah, J.; Bird, J.; Hall, K. The microbial ecology of high-risk, chilled food factories; evidence for persistent Listeria spp. and Escherichia coli strains. J. Appl. Microbiol. 2004, 97, 68–77. [Google Scholar] [CrossRef]
- Bright, J.-A.; Neville, S.; Curran, J.M.; Buckleton, J.S. Variability of mixed DNA profiles separated on a 3130 and 3500 capillary electrophoresis instrument. Aust. J. For. Sci. 2014, 46, 304–312. [Google Scholar] [CrossRef]
Variable | n | Frequency | Prevalence % | 95% CI | p-Value |
---|---|---|---|---|---|
Environmental swabs | 30 | 3 | 2 | 0.52–6.19 | <0.001 |
Carcass swabs | 120 | 20 | 13 | 8.53–20.08 | <0.001 |
Overall | 150 | 23 | 15 | 10.16–22.33 | <0.001 |
Site of Swabbing | Abattoir | Listeria spp. | Accession Number | Blast Analysis Similarity Score (%) | Reference Accession Number |
---|---|---|---|---|---|
Cloacal | A | L. welshimeri | LC700404 | 97 | LT906444.1 |
Cloacal | A | L. monocytogenes | LC700405 | 94 | MK883765.1 |
Cloacal | A | L. monocytogenes | LC700406 | 99.39 | MK883765.1 |
Cloacal | A | L. monocytogenes | LC700407 | 99.39 | MK883765.1 |
Cloacal | A | L. monocytogenes | LC700408 | 99.38 | MK883765.1 |
Exterior surface | A | L. monocytogenes | LC700410 | 99.39 | MK883765.1 |
Exterior surface | A | L. monocytogenes | LC700412 | 99.70 | MK883765.1 |
Exterior surface | A | L. monocytogenes | LC700413 | 98.79 | MK883765.1 |
Exterior surface | A | L. monocytogenes | LC700414 | 100.00 | MK883765.1 |
Exterior surface | A | L. monocytogenes | LC700415 | 98.79 | MK883765.1 |
Exterior surface | A | L. welshimeri | LC700411 | 99.39 | CP065605.1 |
Exterior surface | A | L. monocytogenes | LC700416 | 99.02 | CP054846.1 |
Exterior surface | A | L. monocytogenes | LC700418 | 98.79 | MK883765.1 |
Exterior surface | A | L. monocytogenes | LC700420 | 98.48 | CPO54846.1 |
Exterior surface | A | L. monocytogenes | LC700421 | 99.37 | MK883765.1 |
Exterior surface | A | L. monocytogenes | LC700422 | 100.00 | AY1135439.1 |
Exterior surface | A | L. monocytogenes | LC700423 | 94.24 | MK883763.1 |
Environmental swab | B | L. innocua | LC700409 | 99.70 | KC808562.1 |
Cloacal | B | L. welshimeri | LC700417 | 98.18 | CP065605.1 |
Exterior surface | B | L. welshimeri | LC700419 | 96.54 | CPO65605.1 |
Environmental swab | B | L. welshimeri | LC700424 | 99.39 | KC808562 |
Environmental swab | B | L. monocytogenes | LC700425 | 99.39 | CPO65605.1 |
Exterior surface | B | L. monocytogenes | LC700426 | 98.79 | CP065605.1 |
Abattoir Code | Listeria spp. (23) | Environmental Swabs | Carcass Swabs | Prevalence % |
---|---|---|---|---|
A | L. monocytogenes | - | 15 | 65 |
L. innocua | - | - | - | |
L. welshimeri | - | 2 | 9 | |
Totals | - | 17 | 73 | |
B | L. monocytogenes | 1 | 1 | 8 |
L. innocua | 1 | - | 4 | |
L. welshimeri | - | 3 | 13 | |
Totals | 2 | 4 | 26 | |
C | L. monocytogenes | - | - | - |
L. innocua | - | - | - | |
L. welshimeri | - | - | - | |
Totals | - | - | - |
Listeria spp. | Surfaces Swabbed | ||
---|---|---|---|
Cloacal % | Exterior Surface % | Environmental Swabs % | |
L. monocytogenes | 4 | 12 | 1 |
L. innocua | - | - | 1 |
L. welshimeri | 2 | 2 | 1 |
Totals | 6 (26) | 14 (61) | 3 (13) |
(Disc Diffusion) n = 23 | (Etest) n = 23 | |||||
---|---|---|---|---|---|---|
Antibiotics | R (%) | I (%) | S (%) | R (%) | I (%) | S (%) |
Penicillin G | 8 (35) | 14 (61) | 1 (4) | 1 (4) | 2 (9) | 20 (87) |
Imipenem | - | - | - | 0.0 | 14 (61) | 9 (39) |
Gentamicin | 2 (9) | 2 (9) | 19 (82) | 0 | 0 | 100 |
Levofloxacin | 3 (13) | - | 20 (87) | 0 | 0 | 100 |
Trimethoprim/sulfamethoxazole | 8 (33) | 0 | 15 (65) | 0.0 | 1 (4) | 22 (96) |
Clindamycin | 13 (57) | 2 (9) | 8 (35) | 14 (61) | 0 | 9 (39) |
Erythromycin | 5 (22) | 2 (9) | 16 (70) | 5 (22) | 10 (42) | 9 (38) |
Vancomycin | - | - | - | 0 | 0 | 100 |
Chloramphenicol | 3 (13) | 0 | 20 (87) | 0 | 0 | 100 |
Tetracycline | 13 (57) | 3 (13) | 7 (30) | 7 (30) | 1(4) | 15 (65) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mpundu, P.; Muma, J.B.; Mukubesa, A.N.; Kainga, H.; Mudenda, S.; Bumbangi, F.N.; Muleya, W.; Katemangwe, P.; Munyeme, M. Antibiotic Resistance Patterns of Listeria Species Isolated from Broiler Abattoirs in Lusaka, Zambia. Antibiotics 2022, 11, 591. https://doi.org/10.3390/antibiotics11050591
Mpundu P, Muma JB, Mukubesa AN, Kainga H, Mudenda S, Bumbangi FN, Muleya W, Katemangwe P, Munyeme M. Antibiotic Resistance Patterns of Listeria Species Isolated from Broiler Abattoirs in Lusaka, Zambia. Antibiotics. 2022; 11(5):591. https://doi.org/10.3390/antibiotics11050591
Chicago/Turabian StyleMpundu, Prudence, John Bwalya Muma, Andrew Nalishuwa Mukubesa, Henson Kainga, Steward Mudenda, Flavien Nsoni Bumbangi, Walter Muleya, Patrick Katemangwe, and Musso Munyeme. 2022. "Antibiotic Resistance Patterns of Listeria Species Isolated from Broiler Abattoirs in Lusaka, Zambia" Antibiotics 11, no. 5: 591. https://doi.org/10.3390/antibiotics11050591
APA StyleMpundu, P., Muma, J. B., Mukubesa, A. N., Kainga, H., Mudenda, S., Bumbangi, F. N., Muleya, W., Katemangwe, P., & Munyeme, M. (2022). Antibiotic Resistance Patterns of Listeria Species Isolated from Broiler Abattoirs in Lusaka, Zambia. Antibiotics, 11(5), 591. https://doi.org/10.3390/antibiotics11050591