Phenotypic and Molecular Characterization of Carbapenem-Heteroresistant Bacteroides fragilis Strains
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Characterization and PAP Experiments
2.2. PAP Curves, Assessment and Correlation of the Phenotypic Heteroresistance Parameters
2.3. Imipenem Induction of HR and Correlating the Molecular Characteristics of HR
2.4. Time–Kill Curves
B. fragilis | Ref. | Phenotypic Parameters a | Molecular Parameters | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
cfiA and IS | qRT-PCR b | Lrp c | |||||||||||||||||||
x0 PBS | x0 BHIS | bS PBS | bS HIS | d PBS | d BHIS | AUC PBS | AUC BHIS | MIC B | MIC WC | IP HRI | Ipase | cfiA | cfiA-IS | cfiA | ‘GNAT’ | ‘XAT’ | ‘GNAT/XAT’ | K no. | K% | ||
Susceptible controls | |||||||||||||||||||||
NCTC 9343 | - | −4.8142 | −4.3392 | −0.2092 | −0.3902 | 2 | 2 | 1 | 1 | 0.125 | 0.064 | 0 | 0 | - | n.a. | 0 | 0 | 0 | n.a. | n.a. | n.a. |
638R | - | −4.4449 | −4.9148 | −0.2721 | −1.0111 | 2 | 2 | 1.4757 | 1.4046 | 0.125 | 0.064 | 0 | 0 | - | n.a. | 0 | 0 | 0 | n.a. | n.a. | n.a. |
D39 | [22] | −4.4350 | −5.7965 | −0.1012 | −0.2192 | 2 | 2 | 1.4886 | 0.7642 | 0.5 | 0.064 | 0 | 0 | - | n.a. | 0 | 0 | 0 | n.a. | n.a. | n.a. |
Silent/HR d | |||||||||||||||||||||
7979 | This study | −3.0103 | −3.5941 | −0.4000 | −0.8885 | 3 | 4 | 1.8045 | 1.5884 | 0.125 | 0.032 | 0 | 5.1 | + | - | 16.35 | 6.91 | 5.56 | 1.2428 | 7 | 26.9 |
3130 | This study | −2.7685 | −3.0168 | −0.6269 | −0.0451 | 3 | 6 | 1.8785 | 1.5532 | 8 | 8 | 0 | 2.6 | + | - | 1 | 1 | 1 | 1 | 5 | 13.5 |
3035 | [7] | −2.8450 | −2.7613 | −0.3141 | −0.3887 | 3 | 3 | 1.7810 | 1.4387 | 1 | 2 | 5 | 9.7 | + | - | 166.3 | 0.02 | 0.993 | 0.0201 | 9 | 25.0 |
SY69 | [22] | −2.2774 | −3.4300 | −0.2062 | −1.5269 | 5 | 6 | 2.0114 | 1.7008 | 4 | 4 | 5 | 10.1 | + | - | 92.0 | 17.7 | 32.6 | 0.5429 | 5 | 13.5 |
CZE65 | [10] | −2.6235 | 0.9301 | −0.9546 | −1.1148 | 5 | 5 | 2.6027 | 2.3992 | 16 | 8 | 2 | 25.5 | + | - | 2.46 | 1.93 | 0.16 | 12.0625 | 7 | 26.9 |
CZE60 | [10] | 0.0886 | −0.7637 | −1.4586 | −0.6320 | 3 | 4 | 2.7013 | 1.8329 | 16 | 16 | 5 | 33.3 | + | - | 12.91 | 7.78 | 0.49 | 15.8775 | 7 | 26.9 |
SLO8 | [9] | 1.8171 | −4.0275 | −0.6387 | −1.1367 | 3 | 8 | 2.7294 | 2.2562 | 128 | 128 | 3 | 133 | + | - | 76.06 | 182.94 | 255.47 | 0.7161 | 8 | 25.0 |
HR-ind d | |||||||||||||||||||||
3130i5 | This study | −0.3129 | −2.1373 | −1.2807 | −0.5161 | 4 | 8 | 2.9720 | 2.4650 | 4 | 4 | 5 | 28 | + | - | 5.91 | 52.18 | 18.67 | 2.80 | 5 | 13.5 |
CZE60i2 | This study | 3.1618 | −2.7092 | −0.4220 | −2.0045 | 3 | 5 | 3.0608 | 2.4110 | 128 | 64 | 6 | 36.8 | + | - | 22.93 | 8.78 | 0.33 | 26.6061 | 7 | 26.9 |
With IS d | |||||||||||||||||||||
De248514/19 | This study | 0.2977 | −0.5716 | −3.9655 | 3 | 4 | 2.4364 | 2.1085 | 16 | 64 | 3 | 134 | + | IS614B | 509.8 | 460.1 | 3.7 | 124.3514 | 8 | 25.0 | |
1672 | [8] | 2.1815 | −7.1023 | −0.8173 | 2 | 3 | 2.6174 | 2.5047 | 256 | 256 | 4 | 189 | + | IS1168 | 2.02 | 10.49 | 185.59 | 0.0565 | 7 | 26.9 | |
TAL3636 | [23] | 3.5263 | 3.3190 | −0.6621 | −0.4304 | 2 | 4 | 2.8433 | 2.7366 | 128 | 256 | 0 | 354 | + | IS942 | 97.5 | 0.024 | 0.697 | 0.0343 | 8 | 25.0 |
Trait | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Grouping Category | x0 PBS | x0 BHIS | bS PBS a | bS BHIS | d PBS | d BHIS | AUC PBS | AUC BHIS | MIC B | MIC WC | IP HRI | Ipase | cfiA | ‘GNAT’ | ‘XAT’ |
Dilution change in PBS (p) b | 0.003 | 0.018 | 0.031 | n.s. c | p.d. d (0.004) | 0.015 | 0.005 | 0.002 | 0.017 | 0.017 | n.s. | 0.007 | 0.033 | 0.029 | 0.031 |
Differences between groups e | 1–2, 1–3 | 1–3 | 1–3 | 1–2 | 1–2, 1–3 | 1–2, 1–3, 2–3 | 1–3 | 1–3 | 1–3 | 1–2 | 1–2 | ||||
Dilution change in BHIS (p) | 0.01 | 0.03 | 0.021 | n.s. | 0.02 | p.d. (0.011) | 0.002 | 0.002 | 0.019 | 0.029 | 0.031 | 0.009 | 0.009 | 0.009 | 0.009 |
HRI (p) | 0.001 | n.s. | n.s. | n.s. | n.s. | n.s. | <0.001 | <0.001 | 0.019 | 0.017 | p.d (<0.001) | 0.005 | 0.028 | 0.024 | n.s |
Differences between groups | 1–2, 1–3 | 1–2, 1–3 | 1–2, 1–3 | 1–2, 2–3 | 1–3, 1–2 | 1–2 |
X0 BHIS | bS PBS | bS BHIS | d PBS | d BHIS | AUC PBS | AUC BHIS | MIC B | MIC WC | HRI | IPase | cfiA | ’GNAT’ | ’XAT’ | ’GNAT/XAT’ | n K | % K a | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X0 PBS | 0.477 | −0.613 b | −0.477 | 0.29 | 0.594 | 0.916 | 0.873 | 0.932 | 0.924 | 0.519 | 0.96 | 0.669 | 0.695 | 0.457 | 0.227 | 0.256 | 0.366 |
0.0809 | 0.0188 | 0.0809 | 0.301 | 0.0235 | 0.0000002 | 0.0000002 | 0.0000002 | 0.0000002 | 0.0537 | 0.0000002 | 0.00813 | 0.00507 | 0.0977 | 0.484 | 0.433 | 0.257 | |
X0 BHIS | −0.725 | 0.125 | 0.177 | 0.281 | 0.625 | 0.721 | 0.578 | 0.523 | 0.345 | 0.538 | 0.143 | 0.108 | 0.183 | −0.238 | −0.081 | −0.0931 | |
0.0018 | 0.648 | 0.514 | 0.3 | 0.0123 | 0.00196 | 0.0231 | 0.0429 | 0.199 | 0.0367 | 0.602 | 0.695 | 0.506 | 0.442 | 0.783 | 0.766 | ||
bS PBS | 0.0679 | −0.173 | −0.396 | −0.707 | −0.779 | −0.699 | −0.685 | −0.283 | −0.699 | −0.118 | −0.47 | −0.391 | −0.126 | 0.11 | 0.0596 | ||
0.802 | 0.532 | 0.138 | 0.00278 | 0.0000944 | 0.00326 | 0.00439 | 0.3 | 0.00326 | 0.667 | 0.0757 | 0.146 | 0.683 | 0.716 | 0.834 | |||
bS BHIS | −0.392 | −0.327 | −0.368 | −0.382 | −0.338 | −0.308 | −0.401 | −0.437 | −0.434 | −0.652 | −0.28 | −0.545 | −0.0663 | −0.134 | |||
0.142 | 0.23 | 0.171 | 0.154 | 0.209 | 0.257 | 0.134 | 0.101 | 0.104 | 0.00785 | 0.306 | 0.0623 | 0.834 | 0.667 | ||||
d PBS | 0.768 | 0.346 | 0.235 | 0.0807 | 0.00194 | 0.535 | 0.11 | 0.398 | 0.558 | 0.384 | 0.329 | −0.487 | −0.511 | ||||
0.0003 | 0.199 | 0.388 | 0.763 | 0.985 | 0.0382 | 0.686 | 0.138 | 0.0299 | 0.15 | 0.284 | 0.0998 | 0.0843 | |||||
d BHIS | 0.668 | 0.519 | 0.419 | 0.378 | 0.408 | 0.386 | 0.379 | 0.7 | 0.608 | 0.237 | −0.528 | −0.474 | |||||
0.00614 | 0.0463 | 0.117 | 0.158 | 0.127 | 0.15 | 0.158 | 0.00326 | 0.0158 | 0.442 | 0.0705 | 0.111 | ||||||
AUC PBS | 0.9 | 0.804 | 0.759 | 0.57 | 0.824 | 0.437 | 0.663 | 0.43 | 0.294 | −0.0663 | 0.0112 | ||||||
0.0000002 | 0.0000002 | 0.00048 | 0.0252 | 0.0000002 | 0.101 | 0.00654 | 0.107 | 0.34 | 0.834 | 0.956 | |||||||
AUC BHIS | 0.82 | 0.799 | 0.412 | 0.896 | 0.419 | 0.616 | 0.484 | 0.0559 | 0.0221 | 0.104 | |||||||
0.0000002 | 0.0000002 | 0.124 | 0.0000002 | 0.117 | 0.0136 | 0.0662 | 0.852 | 0.939 | 0.733 | ||||||||
MIC B | 0.975 | 0.411 | 0.892 | 0.386 | 0.56 | 0.412 | 0.0497 | 0.247 | 0.329 | ||||||||
0.0000002 | 0.124 | 0.0000002 | 0.15 | 0.0287 | 0.124 | 0.869 | 0.429 | 0.284 | |||||||||
MIC WC | 0.341 | 0.908 | 0.422 | 0.543 | 0.412 | −0.00352 | 0.319 | 0.413 | |||||||||
0.209 | 0.0000002 | 0.113 | 0.0353 | 0.124 | 0.974 | 0.295 | 0.173 | ||||||||||
HRI | 0.443 | 0.477 | 0.591 | 0.369 | 0.172 | −0.106 | −0.166 | ||||||||||
0.0946 | 0.0685 | 0.0192 | 0.171 | 0.572 | 0.733 | 0.588 | |||||||||||
IPase | 0.626 | 0.68 | 0.532 | 0.035 | 0.434 | 0.521 | |||||||||||
0.0123 | 0.00504 | 0.0397 | 0.904 | 0.15 | 0.0749 | ||||||||||||
cfiA | 0.547 | 0.493 | −0.112 | 0.67 | 0.667 | ||||||||||||
0.0339 | 0.0597 | 0.716 | 0.0154 | 0.0169 | |||||||||||||
’GNAT’ | 0.788 | 0.441 | −0.155 | −0.0745 | |||||||||||||
2 × 10−7 | 0.143 | 0.619 | 0.8 | ||||||||||||||
’XAT’ | −0.364 | −0.125 | −0.0968 | ||||||||||||||
0.233 | 0.683 | 0.749 | |||||||||||||||
’GNAT/XAT’ | −0.214 | −0.156 | |||||||||||||||
0.484 | 0.619 | ||||||||||||||||
n K | 0.988 | ||||||||||||||||
0.0000002 |
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Cultivation
4.2. MIC Determinations, Recording of Population Analysis Profiles and Time–Kill Curves
4.3. Imipenemase Activity Measurement and Induction of HR by Imipenem Treatment
4.4. Conventional PCR, Nucleotide Sequencing and qRT-PCR Experiments
4.5. Curve Plotting, Curve Parameter Calculation, Statistical Evaluation and Bioinformatics
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wexler, H.M. Bacteroides: The good, the bad and the nitty-gritty. Clin. Microbiol. Rev. 2007, 20, 593–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sóki, J.; Wybo, I.; Wirth, R.; Hajdú, E.; Matuz, M.; Burián, K. A comparison of the antimicrobial resistance of fecal Bacteroides isolates and assessment of the composition of the intestinal microbiotas of carbapenem-treated and non-treated persons from Belgium and Hungary. Anaerobe 2021, 73, 102480. [Google Scholar] [CrossRef] [PubMed]
- Mazmanian, S.K.; Liu, C.H.; Tzianabos, A.O.; Kasper, D.L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 2005, 122, 107–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalka-Moll, W.M.; Wang, Y.; Comstock, L.E.; Gonzalez, S.E.; Tzianabos, A.O.; Kasper, D.L. Immunochemical and biological characterization of three capsular polysaccharides from a single Bacteroides fragilis strain. Infect. Immun. 2001, 69, 2339–2344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakoff-Nahoum, S.; Foster, K.R.; Comstock, L.E. The evolution of cooperation within the gut microbiota. Nature 2016, 533, 255–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sóki, J. Extended role for insertion sequence elements in the antibiotic resistance of Bacteroides. World J. Clin. Infect. Dis. 2013, 3, 1–12. [Google Scholar] [CrossRef]
- Sóki, J.; Edwards, R.; Urbán, E.; Fodor, E.; Beer, Z.; Nagy, E. Screening of isolates from faeces for carbapenem-resistant Bacteroides strains; existence of strains with novel types of resistance mechanisms. Int. J. Antimicrob. Agents 2004, 24, 450–454. [Google Scholar] [CrossRef]
- Sóki, J.; Fodor, E.; Hecht, D.W.; Edwards, R.; Rotimi, V.O.; Kerekes, I.; Urbán, E.; Nagy, E. Molecular characterization of imipenem-resistant, cfiA-positive Bacteroides fragilis isolates from the USA, Hungary and Kuwait. J. Med. Microbiol. 2004, 53, 413–419. [Google Scholar] [CrossRef] [Green Version]
- Jeverica, S.; Sóki, J.; Premru, M.M.; Nagy, E.; Papst, L. High prevalence of division II (cfiA positive) isolates among blood stream Bacteroides fragilis in Slovenia as determined by MALDI-TOF MS. Anaerobe 2019, 58, 30–34. [Google Scholar] [CrossRef]
- Sóki, J.; Edwards, R.; Hedberg, M.; Fang, H.; Nagy, E.; Nord, C.E. Examination of cfiA-mediated carbapenem resistance in Bacteroides fragilis strains from a European antibiotic susceptibility survey. Int. J. Antimicrob. Agents 2006, 28, 497–502. [Google Scholar] [CrossRef]
- Sóki, J.; Eitel, Z.; Urbán, E.; Nagy, E. Molecular analysis of the carbapenem and metronidazole resistance mechanisms of Bacteroides strains reported in a Europe-wide antibiotic resistance survey. Int. J. Antimicrob. Agents 2013, 41, 122–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wickramage, I.; Spigaglia, P.; Sun, X. Mechanisms of antibiotic resistance of Clostridioides difficile. J. Antimicrob. Chemother. 2021, 76, 3077–3090. [Google Scholar] [CrossRef] [PubMed]
- El-Halfawy, O.M.; Valvano, M.A. Antimicrobial heteroresistance: An emerging field in need of clarity. Clin. Microbiol. Rev. 2015, 28, 191–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, A.S.; de Lencastre, H.; Garau, J.; Kluytmans, J.; Malhotra-Kumar, S.; Peschel, A.; Harbarth, S. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Primers 2018, 4, 18033. [Google Scholar] [CrossRef]
- Ryffel, C.; Strässle, A.; Kayser, F.H.; Berger-Bächi, B. Mechanisms of heteroresistance in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 1994, 38, 724–728. [Google Scholar] [CrossRef] [Green Version]
- Andersson, D.I.; Nicoloff, H.; Hjort, K. Mechanisms and clinical relevance of bacterial heteroresistance. Nat. Rev. Microbiol. 2019, 17, 479–496. [Google Scholar] [CrossRef]
- Sóki, J.; Hedberg, M.; Patrick, S.; Bálint, B.; Herczeg, R.; Nagy, I.; Hecht, D.W.; Nagy, E.; Urbán, E. Emergence and evolution of an international cluster of MDR Bacteroides fragilis isolates. J. Antimicrob. Chemother. 2016, 71, 2441–2448. [Google Scholar] [CrossRef] [Green Version]
- Unterholzner, S.J.; Poppenberger, B.; Rozhon, W. Toxin-antitoxin systems: Biology, identification, and application. Mob. Genet. Elem. 2013, 3, e26219. [Google Scholar] [CrossRef] [Green Version]
- Stilger, K.L.; Sullivan, W.J., Jr. Elongator protein 3 (Elp3) lysine acetyltransferase is a tail-anchored mitochondrial protein in Toxoplasma gondii. J. Biol. Chem. 2013, 288, 25318–25329. [Google Scholar] [CrossRef] [Green Version]
- Jurėnas, D.; Garcia-Pino, A.; Van Melderen, L. Novel toxins from type II toxin-antitoxin systems with acetyltransferase activity. Plasmid 2017, 93, 30–35. [Google Scholar] [CrossRef]
- Brauner, A.; Fridman, O.; Gefen, O.; Balaban, N.Q. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat. Rev. Microbiol. 2016, 14, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Sárvári, K.P.; Sóki, J.; Kristóf, K.; Juhász, E.; Miszti, C.; Latkóczy, K.; Melegh, S.Z.; Urbán, E. A multicentre survey of the antibiotic susceptibility of clinical Bacteroides species from Hungary. Infect. Dis. 2018, 50, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, B.A.; Gluzman, Y.; Tally, F.P. Cloning and sequencing of the class B beta-lactamase gene (ccrA) from Bacteroides fragilis TAL3636. Antimicrob. Agents Chemother. 1990, 34, 1590–1592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, T.R.; Bolmström, A.; Qwärnström, A.; Ho, P.; Wootton, M.; Howe, R.A.; MacGowan, A.P.; Diekema, D. Evaluation of current methods for detection of staphylococci with reduced susceptibility to glycopeptides. J. Clin. Microbiol. 2001, 39, 2439–2444. [Google Scholar] [CrossRef] [Green Version]
- Brauner, A.; Balaban, N.Q. Quantitative biology of survival under antibiotic treatments. Curr. Opin. Microbiol. 2021, 64, 139–145. [Google Scholar] [CrossRef]
- Van den Bergh, B.; Fauvart, M.; Michiels, J. Formation, physiology, ecology, evolution and clinical importance of bacterial persisters. FEMS Microbiol. Rev. 2017, 41, 219–251. [Google Scholar] [CrossRef]
- Píriz Durán, S.; Kayser, F.H.; Berger-Bächi, B. Impact of sar and agr on methicillin resistance in Staphylococcus aureus. FEMS Microbiol. Lett. 1996, 141, 255–260. [Google Scholar] [CrossRef]
- Knobloch, J.K.; Jäger, S.; Huck, J.; Horstkotte, M.A.; Mack, D. mecA is not involved in the sigmaB-dependent switch of the expression phenotype of methicillin resistance in Staphylococcus epidermidis. Antimicrob. Agents Chemother. 2005, 49, 1216–1219. [Google Scholar] [CrossRef] [Green Version]
- Cuirolo, A.; Plata, K.; Rosato, A.E. Development of homogeneous expression of resistance in methicillin-resistant Staphylococcus aureus clinical strains is functionally associated with a beta-lactam-mediated SOS response. J. Antimicrob. Chemother. 2009, 64, 37–45. [Google Scholar] [CrossRef]
- Medeiros, A.A. Relapsing infection due to Enterobacter species: Lessons of heterogeneity. Clin. Infect. Dis. 1997, 25, 341–342. [Google Scholar] [CrossRef] [Green Version]
- Katayama, Y.; Murakami-Kuroda, H.; Cui, L.; Hiramatsu, K. Selection of heterogeneous vancomycin-intermediate Staphylococcus aureus by imipenem. Antimicrob. Agents Chemother. 2009, 53, 3190–3196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, S.E.; Sherman, E.X.; Weiss, D.S.; Rather, P.N. Aminoglycoside Heteroresistance in Acinetobacter baumannii AB5075. mSphere 2018, 3, e00271-18. [Google Scholar] [CrossRef] [Green Version]
- Schechter, L.M.; Creely, D.P.; Garner, C.D.; Shortridge, D.; Nguyen, H.; Chen, L.; Hanson, B.M.; Sodergren, E.; Weinstock, G.M.; Dunne, W.M., Jr.; et al. Extensive Gene Amplification as a Mechanism for Piperacillin-Tazobactam Resistance in Escherichia coli. mBio 2018, 9, e00583-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pournaras, S.; Kristo, I.; Vrioni, G.; Ikonomidis, A.; Poulou, A.; Petropoulou, D.; Tsakris, A. Characteristics of meropenem heteroresistance in Klebsiella pneumoniae carbapenemase (KPC)-producing clinical isolates of K. pneumoniae. J. Clin. Microbiol. 2010, 48, 2601–2604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikonomidis, A.; Tsakris, A.; Kantzanou, M.; Spanakis, N.; Maniatis, A.N.; Pournaras, S. Efflux system overexpression and decreased OprD contribute to the carbapenem heterogeneity in Pseudomonas aeruginosa. FEMS Microbiol. Lett. 2008, 279, 36–39. [Google Scholar] [CrossRef] [Green Version]
- Hjort, K.; Nicoloff, H.; Andersson, D.I. Unstable tandem gene amplification generates heteroresistance (variation in resistance within a population) to colistin in Salmonella enterica. Mol. Microbiol. 2016, 102, 274–289. [Google Scholar] [CrossRef]
- Engel, H.; Mika, M.; Denapaite, D.; Hakenbeck, R.; Mühlemann, K.; Heller, M.; Hathaway, L.J.; Hilty, M. A low-affinity penicillin-binding protein 2x variant is required for heteroresistance in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 2014, 58, 3934–3941. [Google Scholar] [CrossRef] [Green Version]
- Clinical Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-First Informational Supplement M100-S29; Clinical Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2018. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baaity, Z.; von Loewenich, F.D.; Nagy, E.; Orosz, L.; Burián, K.; Somogyvári, F.; Sóki, J. Phenotypic and Molecular Characterization of Carbapenem-Heteroresistant Bacteroides fragilis Strains. Antibiotics 2022, 11, 590. https://doi.org/10.3390/antibiotics11050590
Baaity Z, von Loewenich FD, Nagy E, Orosz L, Burián K, Somogyvári F, Sóki J. Phenotypic and Molecular Characterization of Carbapenem-Heteroresistant Bacteroides fragilis Strains. Antibiotics. 2022; 11(5):590. https://doi.org/10.3390/antibiotics11050590
Chicago/Turabian StyleBaaity, Zain, Friederike D. von Loewenich, Elisabeth Nagy, László Orosz, Katalin Burián, Ferenc Somogyvári, and József Sóki. 2022. "Phenotypic and Molecular Characterization of Carbapenem-Heteroresistant Bacteroides fragilis Strains" Antibiotics 11, no. 5: 590. https://doi.org/10.3390/antibiotics11050590
APA StyleBaaity, Z., von Loewenich, F. D., Nagy, E., Orosz, L., Burián, K., Somogyvári, F., & Sóki, J. (2022). Phenotypic and Molecular Characterization of Carbapenem-Heteroresistant Bacteroides fragilis Strains. Antibiotics, 11(5), 590. https://doi.org/10.3390/antibiotics11050590