Effect of Danofloxacin Treatment on the Development of Fluoroquinolone Resistance in Campylobacter jejuni in Calves
Abstract
:1. Introduction
2. Results
2.1. Natural Campylobacter Colonization Is Common in Calves
2.2. Bovine Respiratory Disease Induction
2.3. Experimental Inoculation of Calves with FQ-Susceptible C. jejuni Transiently Displaced Preexisting Natural FQ-Resistant C. jejuni Populations
2.4. Danofloxacin Treatment Conferred a Transient Fitness Advantage on FQ-Resistant C. jejuni in the Intestines of Calves
2.5. Antimicrobial Resistance Profiles of C. jejuni Isolates from Calves
2.6. Danofloxacin Treatment Enriched Preexisting FQ-Resistant C. jejuni Rather Than Inducing De Novo Resistance Development
3. Discussion
4. Materials and Methods
4.1. Animals and Study Design
4.2. Oral Inoculation with Fluoroquinolone-Susceptible C. jejuni
4.3. Inoculation with Mannheimia haemolytica
4.4. Danofloxacin Injection
4.5. Fecal Sample Collection
4.6. Bacterial Isolation and Identification
4.7. Pulsed-Field Gel Electrophoresis
4.8. Multilocus Sequence Typing
4.9. Minimum Inhibitory Concentration
4.10. Necropsy
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Authority, E.F.S.; Control, E.C.D.P. The European Union summary report on antimicrobial resistance in zoonotic and indicatr bacteria from humans, animals and food in 2018/2019. EFSA J. 2021, 19, e06490. [Google Scholar] [CrossRef]
- Kirk, M.D.; Pires, S.M.; Black, R.E.; Caipo, M.; Crump, J.A.; Devleesschauwer, B.; Döpfer, D.; Fazil, A.; Fischer-Walker, C.L.; Hald, T.; et al. World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: A data synthesis. PLoS Med. 2015, 12, e1001921. [Google Scholar] [CrossRef] [Green Version]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.-A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States-Major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef]
- Sheppard, S.K.; Dallas, J.F.; Strachan, N.J.C.; MacRae, M.; McCarthy, N.D.; Wilson, D.; Gormley, F.J.; Falush, D.; Ogden, I.D.; Maiden, M.C.J.; et al. Campylobacter genotyping to determine the source of human infection. Clin. Infect. Dis. 2009, 48, 1072–1078. [Google Scholar] [CrossRef] [Green Version]
- Skarp, C.P.A.; Hänninen, M.L.; Rautelin, H.I.K. Campylobacteriosis: The role of poultry meat. Clin. Microbiol. Infect. 2016, 22, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Blaser, M.J.; Engberg, J. Clinical aspects of Campylobacter jejuni and Campylobacter coli infections. In Campylobacter, 3rd ed.; Nachamkin, I., Szymanski, C.M., Blaser, M.J., Eds.; ASM Press: Washington, DC, USA, 2008; pp. 99–121. [Google Scholar] [CrossRef]
- Acheson, D.; Allos, B.M. Campylobacter jejuni infections: Update on emerging issues and trends. Clin. Infect. Dis. 2001, 32, 1201–1206. [Google Scholar] [CrossRef]
- Dai, L.; Sahin, O.; Grover, M.; Zhang, Q. New and alternative strategies for the prevention, control, and treatment of antibiotic-resistant Campylobacter. Transl. Res. 2020, 223, 76–88. [Google Scholar] [CrossRef]
- Eiland, L.S.; Jenkins, L.S. Optimal treatment of Campylobacter dysentery. J. Pediatr. Pharmacol. Ther. 2008, 13, 170–174. [Google Scholar] [CrossRef]
- Sproston, E.L.; Wimalarathna, H.M.L.; Sheppard, S.K. Trends in fluoroquinolone resistance in Campylobacter. Microb. Genom. 2018, 4, e000198. [Google Scholar] [CrossRef]
- Luangtongkum, T.; Jeon, B.; Han, J.; Plummer, P.; Logue, C.M.; Zhang, Q. Antibiotic resistance in Campylobacter: Emergence, transmission and persistence. Futur. Microbiol. 2009, 4, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 3, 318–327. [Google Scholar] [CrossRef]
- Stanley, K.; Jones, K. Cattle and sheep farms as reservoirs of Campylobacter. J. Appl. Microbiol. 2003, 94, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Sahin, O.; Pavlovic, N.; Lejeune, J.; Carlson, J.; Wu, Z.; Dai, L.; Zhang, Q. Rising fluoroquinolone resistance in Campylobacter isolated from feedlot cattle in the United States. Sci. Rep. 2017, 7, 494. [Google Scholar] [CrossRef] [PubMed]
- Englen, M.D.; Hill, A.E.; Dargatz, D.A.; Ladely, S.R.; Fedorka-Cray, P.J. Prevalence and antimicrobial resistance of Campylobacter in U.S. dairy cattle. J. Appl. Microbiol. 2007, 102, 1570–1577. [Google Scholar] [CrossRef]
- Cernicchiaro, N.; White, B.J.; Renter, D.G.; Babcock, A.H.; Kelly, L.; Slattery, R. Associations between the distance traveled from sale barns to commercial feedlots in the United States and overall performance, risk of respiratory disease, and cumulative mortality in feeder cattle during 1997 to 2009. J. Anim. Sci. 2012, 90, 1929–1939. [Google Scholar] [CrossRef]
- Johnson, K.K.; Pendell, D.L. Market impacts of reducing the prevalence of bovine respiratory disease in United States beef cattle feedlots. Front. Vet. Sci. 2017, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Snowder, G.; Van Vleck, L.; Cundiff, L.; Bennett, G. Bovine respiratory disease in feedlot cattle: Environmental, genetic, and economic factors. J. Anim. Sci. 2006, 84, 1999–2008. [Google Scholar] [CrossRef] [Green Version]
- Klima, C.; Alexander, T.; Hendrick, S.; McAllister, T. Characterization of Mannheimia haemolytica isolated from feedlot cattle that were healthy or treated for bovine respiratory disease. Can. J. Vet. Res. 2014, 78, 38–45. [Google Scholar]
- Giguère, S.; Dowling, P.M. Fluoroquinolones. In Antimicrobial Therapy in Veterinary Medicine, 5th ed.; Giguere, S., Prescott, J.F., Baggot, J.D., Walker, R.D., Dowling, P.M., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 295–314. [Google Scholar] [CrossRef]
- Ives, S.E.; Richeson, J.T. Use of antimicrobial metaphylaxis for the control of bovine respiratory disease in high-risk cattle. Vet. Clin. North Am. Food Anim. Pr. 2015, 31, 341–350. [Google Scholar] [CrossRef]
- FDA. Extralabel Use and Antimicrobials. 2021. Available online: https://www.fda.gov/animal-veterinary/antimicrobial-resistance/extralabel-use-and-antimicrobials (accessed on 10 October 2021).
- McKellar, Q.; Gibson, I.; Monteiro, A.; Bregante, M. Pharmacokinetics of enrofloxacin and danofloxacin in plasma, inflammatory exudate, and bronchial secretions of calves following subcutaneous administration. Antimicrob. Agents Chemother. 1999, 43, 1988–1992. [Google Scholar] [CrossRef] [Green Version]
- Katsuda, K.; Kohmoto, M.; Mikami, O.; Uchida, I. Antimicrobial resistance and genetic characterization of fluoroquinolone-resistant Mannheimia haemolytica isolates from cattle with bovine pneumonia. Vet. Microbiol. 2009, 139, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, C.A.; Laudert, S.B.; Zimmermann, A.G. Metaphylactic treatment in undifferentiated bovine respiratory disease. Large Anim. Rev. 2002, 8, 37–44. [Google Scholar] [CrossRef]
- Zoetics United States. With a 4-Day Withdrawal, ADVOCIN® Treats and Controls BRD Late in the Feeding Period. 2021. Available online: https://www.zoetisus.com/products/beef/advocin/index.aspx (accessed on 3 October 2021).
- TerHune, T.N.; Skogerboe, T.L.; Shostrom, V.K.; Weigel, D.J. Comparison of pharmacokinetics of danofloxacin and enrofloxacin in calves challenged with Mannheimia haemolytica. Am. J. Vet. Res. 2005, 66, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Bayer HealthCare LLC Animal Health Division. BAYTRIL-Enrofloxacin Injection, Solution. 2021. Available online: https://dailymed.nlm.nih.gov/dailymed/fda/fdaDrugXsl.cfm?setid=401d2b8c-872b-4ffc-b100-22663b0f6bbb (accessed on 5 October 2021).
- Bae, W.; Kaya, K.N.; Hancock, D.D.; Call, D.R.; Park, Y.H.; Besser, T.E. Prevalence and antimicrobial resistance of thermophilic Campylobacter spp. from cattle farms in Washington State. Appl. Environ. Microbiol. 2005, 71, 169–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halbert, L.; Kaneene, J.B.; Ruegg, P.L.; Warnick, L.D.; Wells, S.J.; Mansfield, L.S.; Fossler, C.P.; Campbell, A.M.; Geiger-Zwald, A.M. Evaluation of antimicrobial susceptibility patterns in Campylobacter spp isolated from dairy cattle and farms managed organically and conventionally in the midwestern and northeastern United States. J. Am. Vet Med. Assoc. 2006, 228, 1074–1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanad, Y.M.; Kassem, I.I.; Abley, M.; Gebreyes, W.; LeJeune, J.T.; Rajashekara, G. Genotypic and phenotypic properties of cattle-associated Campylobacter and their implications to public health in the USA. PLoS ONE 2011, 6, e25778. [Google Scholar] [CrossRef] [Green Version]
- Love, W.J.; Lehenbauer, T.W.; Kass, P.H.; Van Eenennaam, A.L.; Aly, S.S. Development of a novel clinical scoring system for on-farmdiagnosis of bovine respiratory disease in pre-weaned dairy calves. PeerJ 2014, 2, e238. [Google Scholar] [CrossRef] [Green Version]
- Lhermie, G.; Ferran, A.A.; Assié, S.; Cassard, H.; El Garch, F.; Schneider, M.; Woerhlé, F.; Pacalin, D.; Delverdier, M.; Bousquet-Mélou, A.; et al. Impact of timing and dosage of a fluoroquinolone treatment on the microbiological, pathological, and clinical outcomes of calves challenged with Mannheimia haemolytica. Front. Microbiol. 2016, 7, 237. [Google Scholar] [CrossRef] [Green Version]
- Economou, V.; Gousia, P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. IInfect. Drug Resist. 2015, 8, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Wesley, I.V.; Wells, S.J.; Harmon, K.M.; Green, A.; Schroeder-Tucker, L.; Glover, M.; Siddique, I. Fecal shedding of Campylobacter and Arcobacter spp. in dairy cattle. Appl. Environ. Microbiol. 2000, 66, 1994–2000. [Google Scholar] [CrossRef] [Green Version]
- Besser, T.E.; LeJeune, J.T.; Rice, D.H.; Berg, J.; Stilborn, R.P.; Kaya, K.; Bae, W.; Hancock, D.D. Increasing prevalence of Campylobacter jejuni in feedlot cattle through the feeding period. Appl. Environ. Microbiol. 2005, 71, 5752–5758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milnes, A.S.; Stewart, I.; Clifton-Hadley, F.A.; Davies, R.H.; Newell, D.G.; Sayers, A.R.; Cheasty, T.; Cassar, C.; Ridley, A.; Cook, A.J.C.; et al. Intestinal carriage of verocytotoxigenic Escherichia coli O157, Salmonella, thermophilic Campylobacter and Yersinia enterocolitica, in cattle, sheep and pigs at slaughter in Great Britain during 2003. Epidemiol. Infect. 2008, 136, 739–751. [Google Scholar] [CrossRef] [PubMed]
- Abley, M.; Wittum, T.; Zerby, H.; Funk, J. Quantification of Campylobacter and Salmonella in cattle before, during, and after the slaughter process. Foodborne Pathog. Dis. 2012, 9, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Bywater, R.; Deluyker, H.; Deroover, E.; De Jong, A.; Marion, H.; McConville, M.; Rowan, T.; Shryock, T.; Shuster, D.; Thomas, V.; et al. A European survey of antimicrobial susceptibility among zoonotic and commensal bacteria isolated from food-producing animals. J. Antimicrob. Chemother. 2004, 54, 744–754. [Google Scholar] [CrossRef]
- Stanley, K.N.; Wallace, J.S.; Currie, J.E.; Diggle, P.J.; Jones, K. The seasonal variation of thermophilic Campylobacters in beef cattle, dairy cattle and calves. J. Appl. Microbiol. 1998, 85, 472–480. [Google Scholar] [CrossRef]
- Rapp, D.; Ross, C.; Hea, S.Y.; Brightwell, G. Importance of the farm environment and wildlife for transmission of Campylobacter jejuni in a pasture-based dairy herd. Microorganisms 2020, 8, 1877. [Google Scholar] [CrossRef]
- Nielsen, E.M. Occurrence and strain diversity of thermophilic Campylobacters in cattle of different age groups in dairy herds. Lett. Appl. Microbiol. 2002, 35, 85–89. [Google Scholar] [CrossRef] [Green Version]
- Sahin, O.; Kassem, I.I.; Shen, Z.; Lin, J.; Rajashekara, G.; Zhang, Q. Campylobacter in poultry: Ecology and potential interventions. Avian Dis. 2015, 59, 185–200. [Google Scholar] [CrossRef]
- Lhermie, G.; Dupouy-Guiraute, V.; El Garch, F.; Ravinet, N.; Toutain, P.-L.; Bousquet-Melou, A.; Seegers, H.; Assie, S. Impact of low and high doses of marbofloxacin on the selection of resistant Enterobacteriaceae in the commensal gut flora of young cattle: Discussion of data from 2 study populations. Foodborne Pathog. Dis. 2017, 14, 152–159. [Google Scholar] [CrossRef]
- Quintana-Hayashi, M.P.; Thakur, S. Longitudinal study of the persistence of antimicrobial-resistant Campylobacter strains in distinct swine production systems on farms, at slaughter, and in the environment. Appl. Environ. Microbiol. 2012, 78, 2698–2705. [Google Scholar] [CrossRef] [Green Version]
- Humphrey, T.J.; Jørgensen, F.; Frost, J.A.; Wadda, H.; Domingue, G.; Elviss, N.C.; Griggs, D.; Piddock, L.J.V. Prevalence and subtypes of ciprofloxacin-resistant Campylobacter spp. in commercial poultry flocks before, during, and after treatment with fluoroquinolones. Antimicrob. Agents Chemother. 2005, 49, 690–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, L.B.; Johnson, E.; Vailes, R.; Silbergeld, E. Fluoroquinolone-resistant Campylobacter isolates from conventional and antibiotic-free chicken products. Environ. Heal. Perspect. 2005, 113, 557–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asai, T.; Harada, K.; Ishihara, K.; Kojima, A.; Sameshima, T.; Tamura, Y.; Takahashi, T. Association of antimicrobial resistance in Campylobacter isolated from food-producing animals with antimicrobial use on farm. Jpn. J. Infect. Dis. 2007, 60, 290–294. [Google Scholar] [PubMed]
- Smith, A.B.; Renter, D.G.; Cernicchiaro, N.; Shi, X.; Nickell, J.S.; Keil, D.J.; Nagaraja, T. A randomized trial to assess the effect of fluoroquinolone metaphylaxis on the fecal prevalence and quinolone susceptibilities of Salmonella and Campylobacter in feedlot cattle. Foodborne Pathog. Dis. 2017, 14, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Châtre, P.; Haenni, M.; Meunier, D.; Botrel, M.-A.; Calavas, D.; Madec, J.-Y. Prevalence and antimicrobial resistance of Campylobacter jejuni and Campylobacter coli isolated from cattle between 2002 and 2006 in France. J. Food Prot. 2010, 73, 825–831. [Google Scholar] [CrossRef] [PubMed]
- Luo, N.; Sahin, O.; Lin, J.; Michel, L.O.; Zhang, Q. In vivo selection of Campylobacter isolates with high levels of fluoroquinolone resistance associated with gyrA mutations and the function of the CmeABC efflux pump. Antimicrob. Agents Chemother. 2003, 47, 390–394. [Google Scholar] [CrossRef] [Green Version]
- Beyi, A.F.; Mochel, J.P.; Magnin, G.; Hawbecker, T.; Slagel, C.; Dewell, G.; Dewell, R.; Sahin, O.; Coetzee, J.F.; Zhang, Q.; et al. Comparisons of plasma and fecal pharmacokinetics of danofloxacin and enrofloxacin in healthy and Mannheimia haemolytica calves. Sci. Rep. 2022, 12, 5107. [Google Scholar] [CrossRef]
- Van Boven, M.; Veldman, K.T.; De Jong, M.C.M.; Mevius, D.J. Rapid selection of quinolone resistance in Campylobacter jejuni but not in Escherichia coli in individually housed broilers. J. Antimicrob. Chemother. 2003, 52, 719–723. [Google Scholar] [CrossRef]
- McDermott, P.F.; Bodeis, S.M.; English, L.L.; White, D.G.; Walker, R.D.; Zhao, S.; Simjee, S.; Wagner, D.D. Ciprofloxacin resistance in Campylobacter jejuni evolves rapidly in chickens treated with fluoroquinolones. J. Infect. Dis. 2002, 185, 837–840. [Google Scholar] [CrossRef] [Green Version]
- Griggs, D.; Johnson, M.M.; Frost, J.A.; Humphrey, T.; Jørgensen, F.; Piddock, L.J.V. Incidence and mechanism of ciprofloxacin resistance in Campylobacter spp. isolated from commercial poultry flocks in the United Kingdom before, during, and after fluoroquinolone treatment. Antimicrob. Agents Chemother. 2005, 49, 699–707. [Google Scholar] [CrossRef] [Green Version]
- Usui, M.; Sakemi, Y.; Uchida, I.; Tamura, Y. Effects of fluoroquinolone treatment and group housing of pigs on the selection and spread of fluoroquinolone-resistant Campylobacter. Vet. Microbiol. 2014, 170, 438–441. [Google Scholar] [CrossRef] [PubMed]
- Litrup, E.; Torpdahl, M.; Nielsen, E.M. Multilocus sequence typing performed on Campylobacter coli isolates from humans, broilers, pigs and cattle originating in Denmark. J. Appl. Microbiol. 2007, 103, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Oporto, B.; Esteban, J.I.; Aduriz, G.; Juste, R.A.; Hurtado, A. Prevalence and strain diversity of thermophilic Campylobacters in cattle, sheep and swine farms. J. Appl. Microbiol. 2007, 103, 977–984. [Google Scholar] [CrossRef]
- Grove-White, D.H.; Leatherbarrow, A.J.H.; Cripps, P.J.; Diggle, P.J.; French, N.P. Molecular epidemiology and genetic diversity of Campylobacter jejuni in ruminants. Epidemiol. Infect. 2011, 139, 1661–1671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Haan, C.P.; Kivistö, R.I.; Hakkinen, M.; Corander, J.; Hänninen, M.L. Multilocus sequence types of Finnish bovine Campylobacter jejuni isolates and their attribution to human infections. BMC Microbiol. 2010, 10, 200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cha, W.; Mosci, R.E.; Wengert, S.L.; Vargas, C.V.; Rust, S.R.; Bartlett, P.C.; Grooms, D.L.; Manning, S.D. Comparing the genetic diversity and antimicrobial resistance profiles of Campylobacter jejuni recovered from cattle and humans. Front. Microbiol. 2017, 8, 818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, M.A.; Moore, D.L.; Baker, K.N.K.; French, N.P.; Patnode, M.; Hensley, J.; MacDonald, K.; Besser, T.E. Risk factors for campylobacteriosis in two Washington state counties with high numbers of dairy farms. J. Clin. Microbiol. 2013, 51, 3921–3927. [Google Scholar] [CrossRef] [Green Version]
- Kwan, P.S.L.; Birtles, A.; Bolton, F.J.; French, N.; Robinson, S.E.; Newbold, L.S.; Upton, M.; Fox, A.J. Longitudinal study of the molecular epidemiology of Campylobacter jejuni in cattle on dairy farms. Appl. Environ. Microbiol. 2008, 74, 3626–3633. [Google Scholar] [CrossRef] [Green Version]
- Kwan, P.S.L.; Barrigas, M.; Bolton, F.J.; French, N.P.; Gowland, P.; Kemp, R.; Leatherbarrow, H.; Upton, M.; Fox, A.J. Molecular epidemiology of Campylobacter jejuni populations in dairy cattle, wildlife, and the environment in a farmland area. Appl. Environ. Microbiol. 2008, 74, 5130–5138. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Meinersmann, R.J.; Sahin, O.; Wu, Z.; Dai, L.; Carlson, J.; Lawrence, J.P.; Genzlinger, L.; LeJeune, J.T.; Zhang, Q. Wide but variable distribution of a hypervirulent Campylobacter jejuni clone in beef and dairy cattle in the United States. Appl. Environ. Microbiol. 2017, 83, e01425-17. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Wang, Y.; Sahin, O.; Shen, Z.; Guo, B.; Shen, J.; Zhang, Q. A fluoroquinolone resistance associated mutation in gyrA affects DNA supercoiling in Campylobacter jejuni. Front. Cell. Infect. Microbiol. 2012, 2, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanthorn, C.J.; Dewell, R.D.; Cooper, V.L.; Frana, T.S.; Plummer, P.J.; Wang, C.; Dewell, G.A. Randomized clinical trial to evaluate the pathogenicity of Bibersteinia trehalosi in respiratory disease among calves. BMC Vet. Res. 2014, 10, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibbs, H.A.; Allen, E.M.; Wiseman, M.J.; Selman, I.E. Experimental production of bovine pneumonic pasteurellosis. Res. Vet. Sci. 1984, 37, 154–159. [Google Scholar] [CrossRef]
- Gharst, G.; Hanson, D.; Kathariou, S. Effect of direct culture versus selective enrichment on the isolation of thermophilic Campylobacter from feces of mature cattle at harvest. J. Food Prot. 2006, 69, 1024–1027. [Google Scholar] [CrossRef]
- Ribot, E.M.; Fitzgerald, C.; Kubota, K.; Swaminathan, B.; Barrett, T.J. Rapid pulsed-field gel electrophoresis protocol for subtyping of Campylobacter jejuni. J. Clin. Microbiol. 2001, 39, 1889–1894. [Google Scholar] [CrossRef] [Green Version]
- Serichantalergs, O.; Pootong, P.; Dalsgaard, A.; Bodhidatta, L.; Guerry, P.; Tribble, D.R.; Anuras, S.; Mason, C.J. PFGE, Lior serotype, and antimicrobial resistance patterns among Campylobacter jejuni isolated from travelers and U.S. military personnel with acute diarrhea in Thailand, 1998-2003. Gut Pathog. 2010, 2, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Behringer, M.; Miller, W.G.; Oyarzabal, O.A. Typing of Campylobacter jejuni and Campylobacter coli isolated from live broilers and retail broiler meat by flaA-RFLP, MLST, PFGE and REP-PCR. J. Microbiol. Methods 2011, 84, 194–201. [Google Scholar] [CrossRef]
- Noormohamed, A.; Fakhr, M.K. Molecular typing of Campylobacter jejuni and Campylobacter coli isolated from various retail meats by mlst and pfge. Foods 2014, 3, 82–93. [Google Scholar] [CrossRef] [Green Version]
- Jolley, K.A.; Chan, M.S.; Maiden, M.C.J. Distributed multi-locus sequence typing (MLST) databases. BMC Bioinform. 2004, 5, 86. [Google Scholar] [CrossRef] [Green Version]
- Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria. In CLSI Guideline M45, 3rd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2016; p. 21.
- Ge, B.; Wang, F.; Sjölund-Karlsson, M.; McDermott, P.F. Antimicrobial resistance in Campylobacter: Susceptibility testing methods and resistance trends. J. Microbiol. Methods 2013, 95, 57–67. [Google Scholar] [CrossRef]
Group | Inoculation with FQ-S C. jejuni * | Challenge with M. haemolytica # | Danofloxacin Injection § |
---|---|---|---|
1 | Yes | No | No |
2 | Yes | No | Yes |
3 | Yes | Yes | Yes |
Pre-Inoculation (DPI −2 and 0), n = 32 | Post-Inoculation (DPI 2–14), n = 75 | Post-Injection (DPI 15–24), n = 67 | ||||||
---|---|---|---|---|---|---|---|---|
Genotype * | CIP § | MIC * | Genotype | CIP | MIC | Genotype | CIP | MIC |
a (27) | R | 8 (25); 16 (2) | a (24) | R | 8 (22); 16 (2) | a (31) | R | 8 (30); 16 (1) |
b (3) | S | 0.06 (3) | b (1) | S | 0.06 (1) | b (3) | S/R | 0.06 (2); 8 (1) |
c (1) | R | 8 (1) | c (1) | R | 8 (1) | c (0) | --- | --- |
d (1) | S | 0.12 (1) | d (0) | --- | --- | d (0) | --- | --- |
e (0) | --- | --- | e (30) | S/R | 0.06 (3); 0.12 (19); 0.25 (1); 2 (1); 4 (3); 8 (3) | e (7) | S | 0.12 (4); 0.06 (3) |
f (0) | --- | --- | f (3) | S | 0.12 (3) | f (1) | S | 0.12 (1) |
g (0) | --- | --- | g (0) | --- | --- | g (1) | S | 0.12 (1) |
h (0) | --- | --- | h (0) | --- | --- | h (2) | S/R | 0.12 (1); 4 (1) |
i (0) | --- | --- | i (12) | S/R | 0.06 (1); 0.12 (9); 8 (2) | i (7) | S | 0.12 (7) |
j (0) | --- | --- | j (1) | S | 0.12 (1) | j (4) | S | 0.12 (4) |
k (0) | --- | --- | k (0) | --- | --- | k (1) | S | 0.12 (1) |
l (0) ¶ | --- | --- | l (3) | S | 0.12 (3) | l (9) | S | 0.06 (2); 0.25 (2); 0.12 (5) |
m (0) ¶ | --- | --- | m (0) | --- | --- | m (1) | S | 0.06 (1) |
Pre-Inoculation (DPI −2 and 0), n = 16 | Post-Inoculation (DPI 2–24), n = 72 | ||||
---|---|---|---|---|---|
Genotype * | CIP § | MIC * | Genotype | CIP | MIC |
a (12) | R | 4 (1); 8 (10); 16 (1) | a (16) | R | 8 (16) |
b (4) | S/R | 0.06 (2); 0.12 (1); 4 (1) | b (5) | S | 0.06 (4); 0.12 (1) |
e (0) | --- | --- | e (20) | S/R | 0.12 (16); 0.25 (1); 0.6 (2); 4 (1) |
f (0) | --- | --- | f (4) | S/R | 0.12 (3); 8 (1) |
i (0) | --- | --- | i (8) | S | 0.06 (1); 0.12 (6); 0.25 (1) |
j (0) | --- | --- | j (5) | S/R | 0.12 (4); 4 (1) |
l (0) ¶ | --- | --- | l (3) | S | 0.12 (3) |
m (0) ¶ | --- | --- | m (4) | S | 0.12 (4) |
n (0) | --- | --- | n (4) | S/R | 0.12 (3); 8 (1) |
o (0) | --- | --- | o (2) | S | 0.12 (2) |
p (0) | --- | --- | p (1) | S | 0.12 (1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goulart, D.B.; Beyi, A.F.; Wu, Z.; Adiguzel, M.C.; Schroeder, A.; Singh, K.; Xu, C.; Ocal, M.M.; Dewell, R.; Dewell, G.A.; et al. Effect of Danofloxacin Treatment on the Development of Fluoroquinolone Resistance in Campylobacter jejuni in Calves. Antibiotics 2022, 11, 531. https://doi.org/10.3390/antibiotics11040531
Goulart DB, Beyi AF, Wu Z, Adiguzel MC, Schroeder A, Singh K, Xu C, Ocal MM, Dewell R, Dewell GA, et al. Effect of Danofloxacin Treatment on the Development of Fluoroquinolone Resistance in Campylobacter jejuni in Calves. Antibiotics. 2022; 11(4):531. https://doi.org/10.3390/antibiotics11040531
Chicago/Turabian StyleGoulart, Debora Brito, Ashenafi Feyisa Beyi, Zuowei Wu, Mehmet Cemal Adiguzel, Anastasia Schroeder, Kritika Singh, Changyun Xu, Melda Meral Ocal, Renee Dewell, Grant A. Dewell, and et al. 2022. "Effect of Danofloxacin Treatment on the Development of Fluoroquinolone Resistance in Campylobacter jejuni in Calves" Antibiotics 11, no. 4: 531. https://doi.org/10.3390/antibiotics11040531
APA StyleGoulart, D. B., Beyi, A. F., Wu, Z., Adiguzel, M. C., Schroeder, A., Singh, K., Xu, C., Ocal, M. M., Dewell, R., Dewell, G. A., Plummer, P. J., Zhang, Q., & Sahin, O. (2022). Effect of Danofloxacin Treatment on the Development of Fluoroquinolone Resistance in Campylobacter jejuni in Calves. Antibiotics, 11(4), 531. https://doi.org/10.3390/antibiotics11040531