The Molecular Characterization of Virulence Determinants and Antibiotic Resistance Patterns in Human Bacterial Uropathogens
Abstract
:1. Introduction
2. Results
2.1. Collection of Samples
2.2. Bacterial Growth and Colony Identification
2.3. Isolation and Identification of Pseudomonas aeruginosa
2.4. Bacterial Identification by Different Biochemical Tests
2.5. Bacterial Identification by Gram Staining
2.6. Antibiotic Susceptibility Assay
Interpretation of Antibiotic Susceptibility Pattern
2.7. Molecular Identification
3. Discussion
4. Materials and Methods
4.1. Collection of Samples
4.2. Sample Processing for Bacterial Cultures
4.3. Wet Smear Microscopic Examination of Urine Samples
4.4. Microscopic Identification of Bacterial Isolates
4.5. Biochemical Identification of Isolates
4.6. Antibiotic Susceptibility Testing (AST)
4.7. Antibiotic Panel for Enterobacteriaceae
4.8. Antibiotic Panel for S. aureus
4.8.1. Screening of Methicillin and Vancomycin Resistance
4.8.2. Determination of MIC
4.9. Antibiotic Panel for P. aeruginosa
4.10. Molecular Identification of Bacterial Isolates
4.10.1. DNA Isolation
4.10.2. Agarose Gel Electrophoresis
4.10.3. Identification of Bacterial Isolates through PCR with Different Primers
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, N.; Ali, Z.; Riaz, M.; Zeshan, B.; Wattoo, J.I.; Aslam, M.N. Evaluation of antibiotic resistance and virulence genes among clinical isolates of Pseudomonas aeruginosa from cancer patients. Asian Pac. J. Cancer Prev. APJCP 2020, 21, 1333–1338. [Google Scholar] [CrossRef] [PubMed]
- Kot, B.; Grużewska, A.; Szweda, P.; Wicha, J.; Parulska, U. Antibiotic resistance of uropathogens isolated from patients hospitalized in district hospital in central Poland in 2020. Antibiotics 2021, 10, 447. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, I.; Abdulla, M. Antibiotic resistance in Pseudomonas aeruginosa isolated from various clinical specimens in Ibn e Sina Hospital-Sirte-Libya. Bull. Alex Fac. Med. 2009, 45, 771–775. [Google Scholar]
- Machowska, A.; Stålsby Lundborg, C. Drivers of irrational use of antibiotics in Europe. Int. J. Environ. Res. Public Health 2019, 16, 27. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, N.; Zeshan, B.; Naveed, M.; Afzal, M.; Mohamed, M. Antibiotic resistance profile in relation to virulence genes fimH, hlyA and usp of uropathogenic E. coli isolates in Lahore, Pakistan. Trop. Biomed. 2019, 36, 559–568. [Google Scholar]
- Andrade, S.S.; Jones, R.N.; Gales, A.C.; Sader, H.S. Increasing prevalence of antimicrobial resistance among Pseudomonas aeruginosa isolates in Latin American medical centres: 5 year report of the SENTRY Antimicrobial Surveillance Program (1997–2001). J. Antimicrob. Chemother. 2003, 52, 140–141. [Google Scholar] [CrossRef]
- Anjum, F.; Mir, A. Susceptibility pattern of Pseudomonas aeruginosa against various antibiotics. Afr. J. Microbiol. Res. 2010, 4, 1005–1012. [Google Scholar]
- Mesaros, N.; Glupczynski, Y.; Avrain, L.; Caceres, N.E.; Tulkens, P.M.; Van Bambeke, F. A combined phenotypic and genotypic method for the detection of Mex efflux pumps in Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2007, 59, 378–386. [Google Scholar] [CrossRef]
- Lindenthal, C.; Elsinghorst, E.A. Enterotoxigenic Escherichia coli TibA glycoprotein adheres to human intestine epithelial cells. Infect. Immun. 2001, 69, 52–57. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, M.; Gupta, L.; Bala, K. Identification and antibiotic susceptibility testing of urinary isolates in a tertiary care hospital. Der. Pharm. Lett. 2015, 7, 270–279. [Google Scholar]
- Nadkarni, M.A.; Martin, F.E.; Hunter, N.; Jacques, N.A. Methods for optimizing DNA extraction before quantifying oral bacterial numbers by real-time PCR. FEMS Microbiol. Lett. 2009, 296, 45–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, S.-K.; Wu, T.-L.; Chuang, Y.-C.; Lin, J.-C.; Fung, C.-P.; Lu, P.-L.; Wang, J.-T.; Wang, L.-S.; Siu, L.K.; Yeh, K.-M. National surveillance study on carbapenem non-susceptible Klebsiella pneumoniae in Taiwan: The emergence and rapid dissemination of KPC-2 carbapenemase. PLoS ONE 2013, 8, e69428. [Google Scholar] [CrossRef] [PubMed]
- Boroumand, M.A.; Anvari, M.S.; Habibi, E. Detection of vim-and ipm-type metallo-beta-lactamases in Pseudomonas aeruginosa clinical isolates. Arch. Iran. Med. 2012, 15, 670. [Google Scholar]
- Basu, S.; Mukherjee, M. Incidence and risk of co-transmission of plasmid mediated quinolone resistance and extended spectrum β-lactamase genes in fluoroquinolone resistant uropathogenic E. coli: A first study from Kolkata, India. J. Glob. Antimicrob. Resist. 2018, 14, 217–223. [Google Scholar] [CrossRef]
- Esposito, S.; Maglietta, G.; Costanzo, M.D.; Ceccoli, M.; Vergine, G.; Scola, C.L.; Malaventura, C.; Falcioni, A.; Iacono, A.; Crisafi, A. Retrospective 8-year study on the antibiotic resistance of uropathogens in children hospitalised for urinary tract infection in the Emilia-Romagna Region, Italy. Antibiotics 2021, 10, 1207. [Google Scholar] [CrossRef]
- Vieira, G.; Leal, N.; Rodrigues, A.; Chaves, C.; Rodrigues, F.; Osório, N. MRSA/MSSA causing infections: Prevalence of mecA gene. Eur. J. Public Health 2020, 30, ckaa040–ckaa052. [Google Scholar] [CrossRef]
- Karimian, A.; Momtaz, H.; Madani, M. Detection of uropathogenic Escherichia coli virulence factors in patients with urinary tract infections in Iran. Afr. J. Microbiol. Res. 2012, 6, 6811–6816. [Google Scholar]
- Parveen, S.; Saqib, S.; Ahmed, A.; Shahzad, A.; Ahmed, N. Prevalence of MRSA colonization among healthcare-workers and effectiveness of decolonization regimen in ICU of a Tertiary care Hospital, Lahore, Pakistan. Adv. Life Sci. 2020, 8, 38–41. [Google Scholar]
- Chouchani, C.; Marrakchi, R.; Henriques, I.; Correia, A. Occurrence of IMP-8, IMP-10, and IMP-13 metallo-β-lactamases located on class 1 integrons and other extended-spectrum β-lactamases in bacterial isolates from Tunisian rivers. Scand. J. Infect. Dis. 2013, 45, 95–103. [Google Scholar] [CrossRef]
- Kalsoom, B.; Jafar, K.; Begum, H.; Munir, S.; Ul AKBAR, N.; Ansari, J.A.; Anees, M. Patterns of antibiotic sensitivity of bacterial pathogens among urinary tract infections (UTI) patients in a Pakistani population. Afr. J. Microbiol. Res. 2012, 6, 414–420. [Google Scholar] [CrossRef]
- Jamil, B.; Gawlik, D.; Syed, M.A.; Shah, A.A.; Abbasi, S.A.; Müller, E.; Reißig, A.; Ehricht, R.; Monecke, S. Hospital-acquired methicillin-resistant Staphylococcus aureus (MRSA) from Pakistan: Molecular characterisation by microarray technology. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Najeeb, S.; Munir, T.; Rehman, S.; Hafiz, A.; Gilani, M.; Latif, M. Comparison of urine dipstick test with conventional urine culture in diagnosis of urinary tract infection. J Coll. Physicians Surg. Pak. 2015, 25, 108–110. [Google Scholar] [PubMed]
- Mehboob, M.; Hakim, M.; Ullah, O.; Lodhi, S.S.; Anees, M.; Khalil, I.; Shuja, M.N. Identification and characterization of urinary tract infectious bacteria and its antibiotic sensitivity. BioScientific Rev. 2021, 3, 43–62. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2019. [Google Scholar]
- Colgan, R.; Nicolle, L.E.; McGlone, A.; Hooton, T.M. Asymptomatic bacteriuria in adults. Am. Fam. Physician 2006, 74, 985–990. [Google Scholar]
- Nicolle, L.E.; Gupta, K.; Bradley, S.F.; Colgan, R.; DeMuri, G.P.; Drekonja, D.; Eckert, L.O.; Geerlings, S.E.; Köves, B.; Hooton, T.M.; et al. Clinical practice guideline for the management of asymptomatic bacteriuria: 2019 update by the infectious diseases society of America. Clin. Infect. Dis. 2019, 68, e83–e110. [Google Scholar] [CrossRef]
- Sumati, A.; Saritha, N. Association of urinary tract infection in women with bacterial vaginosis. J. Glob. Infect. Dis. 2009, 1, 151. [Google Scholar] [CrossRef]
- Gul, N.; Mujahid, T.Y.; Ahmad, S. Isolation, identification and antibiotic resistance profile of indigenous bacterial isolates from urinary tract infection patients. Pak. J. Biol. Sci. 2004, 7, 2051–2054. [Google Scholar]
- Reiner, K. Catalase Test Protocol; American Society of Microbiology: Washington, DC, USA, 2010; pp. 1–9. [Google Scholar]
- Rakotovao-Ravahatra, Z.D.; Randriatsarafara, F.M.; Milasoanjara, R.N.; Ranaivosoa, M.K.; Rakotovao, A.L.; Rasamindrakotroka, A. Assessment of the coagulase test in the identification of Staphylococcus aureus strains. J. Biotechnol. Biomed. 2019, 2, 105–111. [Google Scholar]
- Anyanwu, N.; John, W.C. Conventional and rapid methods for identification of Staphylococcus aureus from clinical specimens. Am. J. Biomed. Life Sci. 2013, 1, 41–43. [Google Scholar] [CrossRef] [Green Version]
- Lehman, D.C. Biochemical Identification of Gram-Negative Bacteria; Elsevier Health Sciences: Amsterdam, The Netherlands, 2014; p. 182. [Google Scholar]
- Maheen, S.; Mahmood, Z.; Bhatti, A.N. Midstream urine isolates: Sensitivity pattern of various antibiotics in pediatric patients. Prof. Med. J. 2014, 21, 320–324. [Google Scholar]
- Costello, M.-E.C. Single Nucleotide Polymorphism (SNP)-Genotyping of Community Acquired Methicillin-Resistant Staphylococcus aureus, Including the Subtyping of PVL Toxin Producers using Real-Time PCR; Queensland University of Technology: Brisbane City, Australia, 2010. [Google Scholar]
Organisms | Urine | Foley Tip | Cystoscopy Urine | Nephrostomy Urine | Total Positive |
---|---|---|---|---|---|
E. coli | 607 | 16 | 26 | 32 | 681 |
P. aeruginosa | 95 | 08 | 15 | 24 | 142 |
Klebsiella pneumoniae | 24 | 01 | 04 | 12 | 41 |
Proteus mirabilis | 04 | - | - | 03 | 07 |
Acinetobacter baumanni | 11 | 03 | 01 | 04 | 19 |
Enterobacter cloacae | 03 | - | 01 | 02 | 06 |
Citrobacter spp. | 05 | - | - | 01 | 06 |
Staphylococcus aureus | 152 | 07 | 06 | 18 | 183 |
Enterococcus faecium | 01 | - | 01 | 02 | 04 |
Enterococcus faecalis | 13 | 01 | 01 | 03 | 18 |
Total organism | 915 | 36 | 55 | 101 | 1107 |
Total no. of samples | 1534 | 94 | 104 | 167 | 1899 |
Antibiotics | Concentration (µg) | E. coli (n = 681) | P. aeruginosa (n = 142) | ||
---|---|---|---|---|---|
S (n) | R (n/%) | S (n) | R (n/%) | ||
Ampicillin (AMP) | 10 | 46 | 635 (93.24) | NT | NT |
Amp-clavulanic acid (AMC) | 20 | 76 | 605 (88.83) | NT | NT |
Amikacin (AK) | 30 | 598 | 83 (12.18) | 126 | 16 (11.26) |
Aztreonam (AZM) | 30 | NT | NT | 24 | 118 (83.09) |
Ceftriaxone (3G) (CRO) | 30 | 131 | 550 (80.76) | NT | NT |
Ceftazidime (CAZ) | 30 | NT | NT | 107 | 35 (24.64) |
Cefuroxime (2G) (CFM) | 30 | 104 | 577 (84.72) | NT | NT |
Cefixime (3G) (CXM) | 5 | 104 | 577 (84.72) | NT | NT |
Ciprofloxacin (CIP) | 5 | 91 | 590 (86.63) | NT | NT |
Co-trimoxazole (SXT) | 23.75 | 138 | 543 (79.73) | NT | NT |
Gentamicin (CN) | 10 | 601 | 80 (11.74) | 116 | 26 (18.30) |
Fosfomycin (FOS) | 200 | 609 | 72 (10.57) | NT | NT |
Imipenem (IMP) | 10 | 654 | 27 (3.96) | 104 | 38 (26.76) |
Meropenem (MEM) | 10 | 654 | 27 (3.96) | 84 | 58 (40.84) |
Nalidixic acid (NAL) | 30 | 36 | 645 (94.71) | NT | NT |
Nitrofurantoin (F) | 300 | 598 | 83 (12.18) | NT | NT |
Piperacillin-tazobactam (TZP) | 10 | 571 | 110 (16.15) | 129 | 13 (9.15) |
Tetracycline (TE) | 30 | 117 | 564 (82.81) | NT | NT |
Tobramycin (TOB) | 10 | 634 | 47 (6.90) | 98 | 44 (30.98) |
Colistin (CT) | 10 | NT | NT | 137 | 05 (3.52) |
Polymyxin (PB) | 300 units | NT | NT | 136 | 06 (4.22) |
Cefepime (FEP) | 30 | NT | NT | 73 | 69 (48.59) |
Antibiotics | Concentration (µg) | Antibiotic Susceptibility Testing | Resistance % | |
---|---|---|---|---|
Sensitive | Resistant | |||
Amikacin (AK) | 30 | 118 | 65 | 35.51 |
Cefoxitin (FOX) | 30 | 152 | 31 | 16.93 |
Ciprofloxacin (CIP) | 5 | 76 | 107 | 58.46 |
Co-trimoxazole (SXT) | 23.75 | 89 | 94 | 51.36 |
Gentamicin (CN) | 10 | 107 | 76 | 41.53 |
Linezolid (LZD) | 30 | 183 | 00 | 00 |
Clindamycin (DA) | 2 | 136 | 47 | 25.68 |
Erythromycin (E) | 15 | 89 | 94 | 51.36 |
Nitrofurantoin (F) | 300 | 179 | 04 | 2.18 |
Penicillin (P) | 10 units | 07 | 176 | 96.17 |
Tetracycline (TE) | 30 | 29 | 154 | 84.15 |
Teicoplanin (TEC) | 30 | 183 | 00 | 00 |
Tobramycin (TOB) | 10 | 111 | 72 | 39.34 |
Vancomycin (VA) | MIC | 183 | 00 | 00 |
Organisms | Genes | Sequences of Primer (5′-3′) | Annealing | Reference |
---|---|---|---|---|
E. coli | fimH | F-TGCAGAACGGATAAGCCGTGG | 60 °C for 1 min | [5] |
R-GCAGTCACCTGCCCTCCGGTA | ||||
usp | F-ACATTCACGGCAAGCCTCAG | 58 °C for 1 min | [5] | |
R-AGCGAGTTCCTGGTGAAAGC | ||||
P. aeruginosa | IMP | F-GAAGGCGTTTATGTTCATAC | 55 °C for 1 min | [1] |
R-GTATGTTTCAAGAGTGATGC | ||||
AIM | F-CTGAAGGTGTACGGAAACAC | 54 °C for 1 min | [1] | |
R-GTTCGGCCACCTCGAATTG | ||||
S. aureus | nuc | F-GCGATTGATGGTGATACGGTT | 50 °C for 30 s | [34] |
R-AGCCAAGCCTTGACGAACTAAAG | ||||
mecA | F-GATCGCAACGTTCAATTTAATTT | 50 °C for 30 s | [34] | |
R-GCTTTGGTCTTTCTGCATTCCT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, N.; Khalid, H.; Mushtaq, M.; Basha, S.; Rabaan, A.A.; Garout, M.; Halwani, M.A.; Al Mutair, A.; Alhumaid, S.; Al Alawi, Z.; et al. The Molecular Characterization of Virulence Determinants and Antibiotic Resistance Patterns in Human Bacterial Uropathogens. Antibiotics 2022, 11, 516. https://doi.org/10.3390/antibiotics11040516
Ahmed N, Khalid H, Mushtaq M, Basha S, Rabaan AA, Garout M, Halwani MA, Al Mutair A, Alhumaid S, Al Alawi Z, et al. The Molecular Characterization of Virulence Determinants and Antibiotic Resistance Patterns in Human Bacterial Uropathogens. Antibiotics. 2022; 11(4):516. https://doi.org/10.3390/antibiotics11040516
Chicago/Turabian StyleAhmed, Naveed, Hira Khalid, Mariam Mushtaq, Sakeenabi Basha, Ali A. Rabaan, Mohammed Garout, Muhammad A. Halwani, Abbas Al Mutair, Saad Alhumaid, Zainab Al Alawi, and et al. 2022. "The Molecular Characterization of Virulence Determinants and Antibiotic Resistance Patterns in Human Bacterial Uropathogens" Antibiotics 11, no. 4: 516. https://doi.org/10.3390/antibiotics11040516
APA StyleAhmed, N., Khalid, H., Mushtaq, M., Basha, S., Rabaan, A. A., Garout, M., Halwani, M. A., Al Mutair, A., Alhumaid, S., Al Alawi, Z., & Yean, C. Y. (2022). The Molecular Characterization of Virulence Determinants and Antibiotic Resistance Patterns in Human Bacterial Uropathogens. Antibiotics, 11(4), 516. https://doi.org/10.3390/antibiotics11040516