Comparative Genomic Analysis of a Panton–Valentine Leukocidin-Positive ST22 Community-Acquired Methicillin-Resistant Staphylococcus aureus from Pakistan
Abstract
:1. Introduction
2. Results
2.1. Preliminary Identification and Phenotypic Antibiotic Resistance Pattern
2.2. Genomic Features and Epidemiological Typing
2.3. Predicted Antibiotic Resistance Determinants and Virulence Factors
2.4. Predicted Plasmids and Prophages
2.5. Comparative Phylogenetic Analysis
2.6. Comparative Analysis of Antibiotic Resistance Determinants and Virulence Factors
2.7. Pan-Genome Analysis and Functional Annotation
3. Discussion
4. Materials and Methods
4.1. Isolation and Antibiotic Susceptibility Testing
4.2. Genome Sequencing, Assembly, and Annotation
4.3. Genome-Based Characterization
4.4. Prediction of Resistome, Virulome, and Mobilome
4.5. Whole-Genome Single Nucleotide Polymorphism (SNP)-Based Phylogenetic Analysis
4.6. Pan-Genome and Cluster of Orthologous Genes (COGs) Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- D’Souza, N.; Rodrigues, C.; Mehta, A. Molecular Characterization of Methicillin-Resistant Staphylococcus aureus with Emergence of Epidemic Clones of Sequence Type (ST) 22 and ST 772 in Mumbai, India. J. Clin. Microbiol. 2010, 48, 1806–1811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, T.A.; Unakal, C.G. Staphylococcus Aureus; StatPearls Publishing: Treasure Island, FL, USA, 2017. [Google Scholar]
- Mitevska, E.; Wong, B.; Surewaard, B.G.J.; Jenne, C.N. The Prevalence, Risk, and Management of Methicillin-Resistant Staphylococcus aureus Infection in Diverse Populations across Canada: A Systematic Review. Pathogens 2021, 10, 393. [Google Scholar] [CrossRef] [PubMed]
- Yeo, W.-S.; Jeong, B.; Ullah, N.; Shah, M.A.; Ali, A.; Kim, K.K.; Bae, T. Ftsh Sensitizes Methicillin-Resistant Staphylococcus aureus to β-Lactam Antibiotics by Degrading YpfP, a Lipoteichoic Acid Synthesis Enzyme. Antibiotics 2021, 10, 1198. [Google Scholar] [CrossRef]
- Goering, R.V.; Shawar, R.M.; Scangarella, N.E.; O’Hara, F.P.; Amrine-Madsen, H.; West, J.M.; Dalessandro, M.; Becker, J.A.; Walsh, S.L.; Miller, L.A. Molecular epidemiology of methicillin-resistant and methicillin-susceptible Staphylococcus aureus isolates from global clinical trials. J. Clin. Microbiol. 2008, 46, 2842–2847. [Google Scholar] [CrossRef] [Green Version]
- Leme, R.C.P.; Bispo, P.J.M.; Salles, M.J. Community-genotype methicillin-resistant Staphylococcus aureus skin and soft tissue infections in Latin America: A systematic review. Braz. J. Infect. Dis. 2021, 25, 101539. [Google Scholar] [CrossRef] [PubMed]
- Cuny, C.; Wieler, L.H.; Witte, W. Livestock-associated MRSA: The impact on humans. Antibiotics 2015, 4, 521–543. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, K.; Yamaguchi, T.; Ono, D.; Suzuki, H.; Kamiyama, J.; Taguchi, S.; Kiyota, K. Two Cases of Intrafamilial Transmission of Community-Acquired Methicillin-Resistant Staphylococcus aureus Producing Both PVL and TSST-1 Causing Fatal Necrotizing Pneumonia and Sepsis. Infect. Drug Resist. 2020, 13, 2921. [Google Scholar] [CrossRef]
- Boakes, E.; Kearns, A.; Ganner, M.; Perry, C.; Hill, R.; Ellington, M.J. Distinct bacteriophages encoding Panton-Valentine leukocidin (PVL) among international methicillin-resistant Staphylococcus aureus clones harboring PVL. J. Clin. Microbiol. 2011, 49, 684–692. [Google Scholar] [CrossRef] [Green Version]
- Vandenesch, F.; Naimi, T.; Enright, M.C.; Lina, G.; Nimmo, G.R.; Heffernan, H.; Liassine, N.; Bes, M.; Greenland, T.; Reverdy, M.-E. Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: Worldwide emergence. Emerg. Infect. Dis. 2003, 9, 978. [Google Scholar] [CrossRef]
- Pokhrel, R.H.; Aung, M.S.; Thapa, B.; Chaudhary, R.; Mishra, S.; Kawaguchiya, M.; Urushibara, N.; Kobayashi, N. Detection of ST772 Panton-Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus (Bengal Bay clone) and ST22 S. aureus isolates with a genetic variant of elastin binding protein in Nepal. New Microbes New Infect. 2016, 11, 20–27. [Google Scholar] [CrossRef] [Green Version]
- DeLeo, F.R.; Otto, M.; Kreiswirth, B.N.; Chambers, H.F.J.T.L. Community-associated meticillin-resistant Staphylococcus aureus. Lancet 2010, 375, 1557–1568. [Google Scholar] [CrossRef] [Green Version]
- Tenover, F.C.; McDougal, L.K.; Goering, R.V.; Killgore, G.; Projan, S.J.; Patel, J.B.; Dunman, P.M. Characterization of a Strain of Community-Associated Methicillin-Resistant Staphylococcus aureus Widely Disseminated in the UnitedStates. J. Clin. Microbiol. 2006, 44, 108–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takano, T.; Higuchi, W.; Otsuka, T.; Baranovich, T.; Enany, S.; Saito, K.; Isobe, H.; Dohmae, S.; Ozaki, K.; Takano, M.; et al. Novel characteristics of community-acquired methicillin-resistant Staphylococcus aureus strains belonging to multilocus sequence type 59 in Taiwan. Antimicrob. Agents Chemother. 2008, 52, 837–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, T.; Dohmae, S.; Saito, K.; Otsuka, T.; Takano, T.; Chiba, M.; Fujikawa, K.; Tanaka, M. Molecular characteristics and in vitro susceptibility to antimicrobial agents, including the des-fluoro (6) quinolone DX-619, of Panton-Valentine leucocidin-positive methicillin-resistant Staphylococcus aureus isolates from the community and hospitals. Antimicrob. Agents Chemother. 2006, 50, 4077–4086. [Google Scholar] [CrossRef] [Green Version]
- Gostev, V.; Ivanova, K.; Kruglov, A.; Kalinogorskaya, O.; Ryabchenko, I.; Zyryanov, S.; Kalisnikova, E.; Likholetova, D.; Lobzin, Y.; Sidorenko, S. Comparative genome analysis of global and Russian strains of community-acquired methicillin-resistant Staphylococcus aureus ST22, a ‘Gaza clone’. Int. J. Antimicrob. Agents 2021, 57, 106264. [Google Scholar] [CrossRef]
- Reuter, S.; Török, M.E.; Holden, M.T.; Reynolds, R.; Raven, K.E.; Blane, B.; Donker, T.; Bentley, S.D.; Aanensen, D.M.; Grundmann, H. Building a genomic framework for prospective MRSA surveillance in the United Kingdom and the Republic of Ireland. Genome Res. 2016, 26, 263–270. [Google Scholar] [CrossRef] [Green Version]
- Holden, M.T.; Hsu, L.-Y.; Kurt, K.; Weinert, L.A.; Mather, A.E.; Harris, S.R.; Strommenger, B.; Layer, F.; Witte, W.; de Lencastre, H. A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res. 2013, 23, 653–664. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Marasa, B.S.; Sung, K.; Nawaz, M. Genotypic Characterization of Clinical Isolates of Staphylococcus aureus from Pakistan. Pathogens 2021, 10, 918. [Google Scholar] [CrossRef]
- Ullah, N.; Dar, H.A.; Naz, K.; Andleeb, S.; Rahman, A.; Saeed, M.T.; Hanan, F.; Bae, T.; Ali, A.J.A. Genomic Investigation of Methicillin-Resistant Staphylococcus aureus ST113 Strains Isolated from Tertiary Care Hospitals in Pakistan. Antibiotics 2021, 10, 1121. [Google Scholar] [CrossRef]
- Ullah, N.; Raza, T.; Dar, H.A.; Shehroz, M.; Zaheer, T.; Naz, K.; Ali, A. Whole-genome sequencing of a new sequence type (ST5352) strain of community-acquired methicillin-resistant Staphylococcus aureus from a hospital in Pakistan. J. Glob. Antimicrob. Resist. 2019, 19, 161–163. [Google Scholar] [CrossRef]
- Naorem, R.S.; Blom, J.; Fekete, C.J.P. Genome-wide comparison of four MRSA clinical isolates from Germany and Hungary. PeerJ 2021, 9, e10185. [Google Scholar] [CrossRef] [PubMed]
- Punina, N.; Makridakis, N.; Remnev, M.; Topunov, A. Whole-genome sequencing targets drug-resistant bacterial infections. Hum. Genom. 2015, 9, 19. [Google Scholar] [CrossRef] [PubMed]
- Chang, Q.; Abuelaish, I.; Biber, A.; Jaber, H.; Callendrello, A.; Andam, C.P.; Regev-Yochay, G.; Hanage, W.P.; Eurosurveillance, P.S.G.J. Genomic epidemiology of meticillin-resistant Staphylococcus aureus ST22 widespread in communities of the Gaza Strip, 2009. Eurosurveillance 2018, 23, 1700592. [Google Scholar] [CrossRef] [PubMed]
- Manoharan, A.; Zhang, L.; Poojary, A.; Bhandarkar, L.; Koppikar, G.; Robinson, D.A. An outbreak of post-partum breast abscesses in Mumbai, India caused by ST22-MRSA-IV: Genetic characteristics and epidemiological implications. Epidemiol. Infect. 2012, 140, 1809–1812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tinelli, M.; Monaco, M.; Vimercati, M.; Ceraminiello, A.; Pantosti, A. Methicillin-susceptible Staphylococcus aureus in skin and soft tissue infections, Northern Italy. Emerg. Infect. Dis. 2009, 15, 250. [Google Scholar] [CrossRef]
- Toleman, M.S.; Watkins, E.R.; Williams, T.; Blane, B.; Sadler, B.; Harrison, E.M.; Coll, F.; Parkhill, J.; Nazareth, B.; Brown, N.M.; et al. Investigation of a Cluster of Sequence Type 22 Methicillin-Resistant Staphylococcus aureus Transmission in a Community Setting. Clin. Infect. Dis. 2017, 65, 2069–2077. [Google Scholar] [CrossRef] [Green Version]
- Madzgalla, S.; Syed, M.; Khan, M.; Rehman, S.; Müller, E.; Reissig, A.; Ehricht, R.; Monecke, S. Molecular characterization of Staphylococcus aureus isolates causing skin and soft tissue infections in patients from Malakand, Pakistan. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 1541–1547. [Google Scholar] [CrossRef]
- Shabir, S.; Hardy, K.J.; Abbasi, W.S.; McMurray, C.L.; Malik, S.A.; Wattal, C.; Hawkey, P.M. Epidemiological typing of meticillin-resistant Staphylococcus aureus isolates from Pakistan and India. J. Med. Microbiol. 2010, 59, 330–337. [Google Scholar] [CrossRef] [Green Version]
- Zafar, A.; Stone, M.; Ibrahim, S.; Parveen, Z.; Hasan, Z.; Khan, E.; Hasan, R.; Wain, J.; Bamford, K. Prevalent genotypes of meticillin-resistant Staphylococcus aureus: Report from Pakistan. J. Med. Microbiol. 2011, 60, 56–62. [Google Scholar] [CrossRef]
- Chua, K.Y.; Howden, B.P.; Jiang, J.-H.; Stinear, T.; Peleg, A.Y. Genetics Evolution. Population genetics and the evolution of virulence in Staphylococcus aureus. Infect. Genet. Evol. 2014, 21, 554–562. [Google Scholar] [CrossRef]
- Shukla, S.K.; Pantrang, M.; Stahl, B.; Briska, A.M.; Stemper, M.E.; Wagner, T.K.; Zentz, E.B.; Callister, S.M.; Lovrich, S.D.; Henkhaus, J.K.; et al. Comparative Whole-Genome Mapping to Determine Staphylococcus aureus Genome Size, Virulence Motifs, and Clonality. J. Clin. Microbiol. 2012, 50, 3526–3533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, W.; Liu, J.; Zhan, Y.; Wang, L.; Jiang, Y.; Zhang, Y.; Sun, N.; Hou, N. Molecular typing revealed the emergence of pvl-positive sequence type 22 methicillin-susceptible Staphylococcus aureus in Urumqi, Northwestern China. Infect. Drug Resist. 2019, 12, 1719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, T.-R.; Chiou, C.-S.; Tsen, H.-Y. Use of novel PCR primers specific to the genes of staphylococcal enterotoxin G, H, I for the survey of Staphylococcus aureus strains isolated from food-poisoning cases and food samples in Taiwan. Int. J. Food Microbiol. 2004, 92, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Van Wamel, W.J.; Rooijakkers, S.H.; Ruyken, M.; van Kessel, K.P.; van Strijp, J.A.G. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on β-hemolysin-converting bacteriophages. J. Bacteriol. 2006, 188, 1310–1315. [Google Scholar] [CrossRef] [Green Version]
- Barrera-Rivas, C.I.; Valle-Hurtado, N.A.; González-Lugo, G.M.; Baizabal-Aguirre, V.M.; Bravo-Patiño, A.; Cajero-Juárez, M.; Valdez-Alarcón, J.J. Bacteriophage Therapy: An alternative for the treatment of Staphylococcus aureus infections in animals and animal models. Front. Staphylococcus Aureus 2017, 10, 179–201. [Google Scholar]
- Tchoupa, A.K.; Watkins, K.E.; Jones, R.A.; Kuroki, A.; Alam, M.T.; Perrier, S.; Chen, Y.; Unnikrishnan, M. The type VII secretion system protects Staphylococcus aureus against antimicrobial host fatty acids. Sci. Rep. 2020, 10, 14838. [Google Scholar]
- Burts, M.L.; Williams, W.A.; DeBord, K.; Missiakas, D.M. EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. Proc. Natl. Acad. Sci. USA 2005, 102, 1169–1174. [Google Scholar] [CrossRef] [Green Version]
- Azmi, K.; Qrei, W.; Abdeen, Z. Screening of genes encoding adhesion factors and biofilm production in methicillin resistant strains of Staphylococcus aureus isolated from Palestinian patients. BMC Genom. 2019, 20, 1–12. [Google Scholar] [CrossRef]
- Lim, S.; Lee, D.-H.; Kwak, W.; Shin, H.; Ku, H.-J.; Lee, J.-E.; Lee, G.E.; Kim, H.; Choi, S.-H.; Ryu, S.; et al. Comparative genomic analysis of Staphylococcus aureus FORC_001 and S. aureus MRSA252 reveals the characteristics of antibiotic resistance and virulence factors for human infection. J. Microbiol. Biotechnol. 2015, 25, 98–108. [Google Scholar] [CrossRef] [Green Version]
- Pugazhendhi, A.; Michael, D.; Prakash, D.; Krishnamaurthy, P.P.; Shanmuganathan, R.; Al-Dhabi, N.A.; Duraipandiyan, V.; Arasu, M.V.; Kaliannan, T. Antibiogram and plasmid profiling of beta-lactamase producing multi drug resistant Staphylococcus aureus isolated from poultry litter. J. King Saud Univ. -Sci. 2020, 32, 2723–2727. [Google Scholar] [CrossRef]
- Vogel, V.; Falquet, L.; Calderon-Copete, S.P.; Basset, P.; Blanc, D.S. Short term evolution of a highly transmissible methicillin-resistant Staphylococcus aureus clone (ST228) in a tertiary care hospital. PLoS ONE 2012, 7, e38969. [Google Scholar] [CrossRef] [PubMed]
- Bosi, E.; Monk, J.M.; Aziz, R.K.; Fondi, M.; Nizet, V.; Palsson, B. Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity. Proc. Natl. Acad. Sci. USA 2016, 113, E3801–E3809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, F.; Mo, Z.; Gu, W.; Xu, W.; Fu, X.; Zhang, Y. A comparative genomic analysis between methicillin-resistant Staphylococcus aureus strains of hospital acquired and community infections in Yunnan province of China. BMC Infect. Dis. 2020, 20, 137. [Google Scholar] [CrossRef] [PubMed]
- Karmakar, A.; Dua, P.; Ghosh, C. Biochemical and molecular analysis of Staphylococcus aureus clinical isolates from hospitalized patients. Can. J. Infect. Dis. Med. Microbiol. 2016, 2016, 9041636. [Google Scholar] [CrossRef] [Green Version]
- Patel, J.B.; Cockerill, F.; Bradford, P.A. Performance standards for antimicrobial susceptibility testing: Twenty-fifth informational supplement. Clin. Lab. Stand. Inst. 2015, 35, 29–50. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.; Borodovsky, M.; Ostell, J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef]
- Darling, A.C.E.; Mau, B.; Blattner, F.R.; Perna, N.T. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004, 14, 1394–1403. [Google Scholar] [CrossRef] [Green Version]
- Grant, J.R.; Arantes, A.S.; Stothard, P. Comparing thousands of circular genomes using the CGView Comparison Tool. BMC Genom. 2012, 13, 202. [Google Scholar] [CrossRef] [Green Version]
- Kaya, H.; Hasman, H.; Larsen, J.; Stegger, M.; Johannesen, T.B.; Allesøe, R.L.; Lemvigh, C.K.; Aarestrup, F.M.; Lund, O.; Larsen, A.R.; et al. SCCmecFinder, a Web-Based Tool for Typing of Staphylococcal Cassette Chromosome mec in Staphylococcus aureus Using Whole-Genome Sequence Data. mSphere 2018, 3, e00612-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, M.V.; Cosentino, S.; Rasmussen, S.; Friis, C.; Hasman, H.; Marvig, R.L.; Jelsbak, L.; Sicheritz-Pontén, T.; Ussery, D.W.; Aarestrup, F.M.; et al. Multilocus Sequence Typing of Total-Genome-Sequenced Bacteria. J. Clin. Microbiol. 2012, 50, 1355–1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartels, M.D.; Petersen, A.; Worning, P.; Nielsen, J.B.; Larner-Svensson, H.; Johansen, H.K.; Andersen, L.P.; Jarløv, J.O.; Boye, K.; Larsen, A.R.; et al. Comparing Whole-Genome Sequencing with Sanger Sequencing for spa Typing of Methicillin-Resistant Staphylococcus aureus. J. Clin. Microbiol. 2014, 52, 4305–4308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef]
- Chen, L.H.; Yang, J.; Yu, J.; Ya, Z.J.; Sun, L.L.; Shen, Y.; Jin, Q. VFDB: A reference database for bacterial virulence factors. Nucleic Acids Res. 2005, 33, D325–D328. [Google Scholar] [CrossRef] [Green Version]
- Carattoli, A.; Zankari, E.; García-Fernández, A.; Larsen, M.V.; Lund, O.; Villa, L.; Aarestrup, F.M.; Hasman, H. In Silico Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [Green Version]
- Galata, V.; Fehlmann, T.; Backes, C.; Keller, A. PLSDB: A resource of complete bacterial plasmids. Nucleic Acids Res. 2018, 47, D195–D202. [Google Scholar] [CrossRef]
- Arndt, D.; Grant, J.R.; Marcu, A.; Sajed, T.; Pon, A.; Liang, Y.; Wishart, D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016, 44, W16–W21. [Google Scholar] [CrossRef] [Green Version]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2-Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef]
- Kaas, R.S.; Leekitcharoenphon, P.; Aarestrup, F.M.; Lund, O. Solving the Problem of Comparing Whole Bacterial Genomes across Different Sequencing Platforms. PLoS ONE 2014, 9, e104984. [Google Scholar] [CrossRef] [Green Version]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019, 47, W256–W259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Naz, K.; Naz, A.; Ashraf, S.T.; Rizwan, M.; Ahmad, J.; Baumbach, J.; Ali, A. PanRV: Pangenome-reverse vaccinology approach for identifications of potential vaccine candidates in microbial pangenome. BMC Bioinform. 2019, 20, 123. [Google Scholar] [CrossRef] [PubMed]
- Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015, 31, 3691–3693. [Google Scholar] [CrossRef] [PubMed]
- Galperin, M.Y.; Makarova, K.S.; Wolf, Y.I.; Koonin, E.V. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 2015, 43, D261–D269. [Google Scholar] [CrossRef]
- Tatusov, R.L.; Galperin, M.Y.; Natale, D.A.; Koonin, E.V. The COG database: A tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000, 28, 33–36. [Google Scholar] [CrossRef] [Green Version]
Antibiotic | Sensitivity (Zone of Growth Inhibition in mm) | Related Gene(s) |
---|---|---|
Oxacillin | R (no zone) | mecA |
Ampicillin | R (no zone) | |
Methicillin | R (no zone) | |
Gentamicin | R (4 mm) | aac(6′)-Ie-aph(2″)-Ia |
Streptomycin | R (7 mm) | |
Erythromycin | R (4 mm) | erm(C) |
Clindamycin | R (9 mm) | |
Ciprofloxacin | R (11 mm) | gyrA |
Vancomycin | S (23 mm) | ND |
Chloramphenicol | S (17 mm) | ND |
Linezolid | R (13 mm) | ND |
Rifampicin | S (21 mm) | ND |
Tetracycline | R (9 mm) | ND |
Fusidic acid | R (11 mm) | ND |
Characteristics | Lr2 |
---|---|
Genome size (bp) | 2,831,239 |
Contigs | 52 |
GC content % | 32.7 |
N50 | 131,746 |
N75 | 94,139 |
L50 | 7 |
Largest contig (bp) | 425,597 |
Genes (total) | 2835 |
CDSs (total) | 2768 |
No. of tRNA | 56 |
No. of rRNA | 4, 2, 1 (5S, 16S, 23S) |
ST | 22 |
SCCmec type | IVa(2B) |
spa-type | t2986 |
NCBI Accession number | JAIGOF000000000 |
Prophage | Length (Kb) | Total Proteins | Phage Hit Proteins | GC % | Annotation | Most Common Phage | Virulence Factors |
---|---|---|---|---|---|---|---|
1 (incomplete) | 9 | 15 | 7 | 32.8 | Transposase, tail | PHAGE_Bacill_IEBH | None |
2 (incomplete) | 19 | 24 | 20 | 31.6 | Integrase | PHAGE_Staphy_PT1028 | sec, sell, tsst |
3 (incomplete) | 9.1 | 20 | 10 | 29.0 | Head | PHAGE_Clostr_phiC2 | None |
4 (incomplete) | 42.8 | 42 | 35 | 31.9 | Integrase | PHAGE_Staphy_phiPVL_CN125 | ebp, lukF-PV, lukS-PV |
5 (incomplete) | 12.5 | 24 | 21 | 28.8 | Portal, transposase | PHAGE_Staphy_96 | seg, sei, yent2, selm, seln, selo |
6 (complete) | 55.1 | 79 | 68 | 32.6 | Tail, head, portal, terminase, integrase | PHAGE_Staphy_tp310_3 | sak, chp, scn |
7 (questionable) | 46 | 37 | 26 | 33.2 | Tail, transposase, integrase | PHAGE_Staphy_phiN315 | cna |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, N.; Nasir, S.; Ishaq, Z.; Anwer, F.; Raza, T.; Rahman, M.; Alshammari, A.; Alharbi, M.; Bae, T.; Rahman, A.; et al. Comparative Genomic Analysis of a Panton–Valentine Leukocidin-Positive ST22 Community-Acquired Methicillin-Resistant Staphylococcus aureus from Pakistan. Antibiotics 2022, 11, 496. https://doi.org/10.3390/antibiotics11040496
Ullah N, Nasir S, Ishaq Z, Anwer F, Raza T, Rahman M, Alshammari A, Alharbi M, Bae T, Rahman A, et al. Comparative Genomic Analysis of a Panton–Valentine Leukocidin-Positive ST22 Community-Acquired Methicillin-Resistant Staphylococcus aureus from Pakistan. Antibiotics. 2022; 11(4):496. https://doi.org/10.3390/antibiotics11040496
Chicago/Turabian StyleUllah, Nimat, Samavi Nasir, Zaara Ishaq, Farha Anwer, Tanzeela Raza, Moazur Rahman, Abdulrahman Alshammari, Metab Alharbi, Taeok Bae, Abdur Rahman, and et al. 2022. "Comparative Genomic Analysis of a Panton–Valentine Leukocidin-Positive ST22 Community-Acquired Methicillin-Resistant Staphylococcus aureus from Pakistan" Antibiotics 11, no. 4: 496. https://doi.org/10.3390/antibiotics11040496
APA StyleUllah, N., Nasir, S., Ishaq, Z., Anwer, F., Raza, T., Rahman, M., Alshammari, A., Alharbi, M., Bae, T., Rahman, A., & Ali, A. (2022). Comparative Genomic Analysis of a Panton–Valentine Leukocidin-Positive ST22 Community-Acquired Methicillin-Resistant Staphylococcus aureus from Pakistan. Antibiotics, 11(4), 496. https://doi.org/10.3390/antibiotics11040496