Prevalence and Antimicrobial Resistance of Causative Agents to Ocular Infections
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Samples Collection
4.2. Identification and Antimicrobial Susceptibility Testing
4.3. Statistical Analysis
4.4. Ethical Consideration Statement
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2019 Blindness and Vision Impairment Collaborators. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: The Right to Sight: An analysis for the Global Burden of Disease Study. Lancet Glob. Health 2021, 9, e144–e160. [Google Scholar] [CrossRef]
- Asbell, P.A.; Pandit, R.T.; Sanfilippo, C.M. Antibiotic Resistance Rates by Geographic Region among Ocular Pathogens Collected during the ARMOR Surveillance Study. Ophthalmology 2018, 7, 417–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teweldemedhin, M.; Gebreyesus, H.; Atsbaha, A.H.; Asgedom, S.W.; Saravanan, M. Bacterial profile of ocular infections: A systematic review. BMC Ophthalmol. 2017, 17, 212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S. Antibiotic resistance in ocular bacterial pathogens. Indian J. Med. Microbiol. 2011, 29, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Petrillo, F.; Chianese, A.; De Bernardo, M.; Zannella, C.; Galdiero, M.; Reibaldi, M.; Avitabile, T.; Boccia, G.; Galdiero, M.; Rosa, N.; et al. Inhibitory Effect of Ophthalmic Solutions against SARS-CoV-2: A Preventive Action to Block the Viral Transmission? Microorganisms 2021, 9, 1550. [Google Scholar] [CrossRef]
- Thomas, R.K.; Melton, R.; Asbell, P.A. Antibiotic resistance among ocular pathogens: Current trends from the ARMOR surveillance study (2009–2016). Clin. Optom. 2019, 11, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Willcox, M.D. Pseudomonas aeruginosa infection and inflammation during contact lens wear: A review. Optom. Vis. Sci. 2007, 84, 273–278. [Google Scholar] [CrossRef]
- Lin, A.; Rhee, M.K.; Akpek, E.K.; Amescua, G.; Farid, M.; Garcia-Ferrer, F.J.; Varu, D.M.; Musch, D.C.; Dunn, S.P.; Mah, F.S.; et al. Bacterial Keratitis Preferred Practice Pattern(R). Ophthalmology 2019, 126, P1–P55. [Google Scholar] [CrossRef] [Green Version]
- Teweldemedhin, M.; Saravanan, M.; Gebreyesus, A.; Gebreegziabiher, D. Ocular bacterial infections at Quiha Ophthalmic Hospital, Northern Ethiopia: An evaluation according to the risk factors and the antimicrobial susceptibility of bacterial isolates. BMC Infect. Dis. 2017, 17, 207. [Google Scholar] [CrossRef] [Green Version]
- Slean, G.R.; Shorstein, N.H.; Liu, L.; Paschal, J.F.; Winthrop, K.L.; Herrinton, L.J. Pathogens and antibiotic sensitivities in endophthalmitis. Clin. Exp. Ophthalmol. 2017, 45, 481–488. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Guo, D.; Liu, X.; Jin, X.; Shi, Y.; Wang, Y.; Zhang, N.; Zhang, H. Ocular pathogens and antibiotic resistance in microbial keratitis over three years in Harbin, Northeast China. Acta Ophthalmol. 2021, 99, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Kupsik, M.; Sulo, S.; Katz, A.; Memmel, H. What do women really think? Patient understanding of breast cancer risk. Breast J. 2019, 25, 1320–1322. [Google Scholar] [CrossRef] [PubMed]
- Grandi, G.; Bianco, G.; Boattini, M.; Scalabrin, S.; Iannaccone, M.; Fea, A.; Cavallo, R.; Costa, C. Bacterial etiology and antimicrobial resistance trends in ocular infections: A 30-year study, Turin area, Italy. Eur. J. Ophthalmol. 2021, 31, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Snyder, R.W.; Glasser, D.B. Antibiotic therapy for ocular infection. West. J. Med. 1994, 161, 579–584. [Google Scholar] [PubMed]
- Asbell, P.A.; Sanfilippo, C.M.; Sahm, D.F.; DeCory, H.H. Trends in Antibiotic Resistance Among Ocular Microorganisms in the United States From 2009 to 2018. JAMA Ophthalmol. 2020, 138, 439–450. [Google Scholar] [CrossRef] [Green Version]
- Asbell, P.A.; Sahm, D.F.; Shaw, M.; Draghi, D.C.; Brown, N.P. Increasing prevalence of methicillin resistance in serious ocular infections caused by Staphylococcus aureus in the United States: 2000 to 2005. J. Cataract. Refract. Surg. 2008, 34, 814–818. [Google Scholar] [CrossRef]
- Chang, V.S.; Dhaliwal, D.K.; Raju, L.; Kowalski, R.P. Antibiotic Resistance in the Treatment of Staphylococcus aureus Keratitis: A 20-Year Review. Cornea 2015, 34, 698–703. [Google Scholar] [CrossRef] [Green Version]
- Haas, W.; Pillar, C.M.; Torres, M.; Morris, T.W.; Sahm, D.F. Monitoring antibiotic resistance in ocular microorganisms: Results from the Antibiotic Resistance Monitoring in Ocular micRorganisms (ARMOR) 2009 surveillance study. Am. J. Ophthalmol. 2011, 152, 567–574.e3. [Google Scholar] [CrossRef]
- Asbell, P.A.; DeCory, H.H. Antibiotic resistance among bacterial conjunctival pathogens collected in the Antibiotic Resistance Monitoring in Ocular Microorganisms (ARMOR) surveillance study. PLoS ONE 2018, 13, e0205814. [Google Scholar] [CrossRef] [Green Version]
- Teh, S.W.; Mok, P.L.; Abd Rashid, M.; Bastion, M.C.; Ibrahim, N.; Higuchi, A.; Murugan, K.; Mariappan, R.; Subbiah, S.K. Recent Updates on Treatment of Ocular Microbial Infections by Stem Cell Therapy: A Review. Int. J. Mol. Sci. 2018, 19, 558. [Google Scholar] [CrossRef] [Green Version]
- Arama, V. Topical antibiotic therapy in eye infections-myths and certainties in the era of bacterial resistance to antibiotics. Rom. J. Ophthalmol. 2020, 64, 245–260. [Google Scholar] [CrossRef] [PubMed]
- Bertino, J.S., Jr. Impact of antibiotic resistance in the management of ocular infections: The role of current and future antibiotics. Clin. Ophthalmol. 2009, 3, 507–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Ding, B.; Ji, J.; Wang, Z.; Chen, H.; Cao, W. Microbial Spectrum and Resistance Patterns in Ocular Infections: A 15-Year Review in East China. Infect. Drug Resist. 2021, 14, 2165–2171. [Google Scholar] [CrossRef]
- Getahun, E.; Gelaw, B.; Assefa, A.; Assefa, Y.; Amsalu, A. Bacterial pathogens associated with external ocular infections alongside eminent proportion of multidrug resistant isolates at the University of Gondar Hospital, northwest Ethiopia. BMC Ophthalmol. 2017, 17, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, H.Y.; Lind, J.T.; Miller, D.; Tseng, L. Assessment of risk factors for oxacillin-resistant ocular flora in eyes having cataract surgery. J. Cataract Refract. Surg. 2015, 41, 387–392. [Google Scholar] [CrossRef]
- Ong, S.J.; Huang, Y.C.; Tan, H.Y.; Ma, D.H.; Lin, H.C.; Yeh, L.K.; Chen, P.Y.; Chen, H.C.; Chuang, C.C.; Chang, C.J.; et al. Staphylococcus aureus keratitis: A review of hospital cases. PLoS ONE 2013, 8, e80119. [Google Scholar] [CrossRef]
- Major, J.C., Jr.; Engelbert, M.; Flynn, H.W., Jr.; Miller, D.; Smiddy, W.E.; Davis, J.L. Staphylococcus aureus endophthalmitis: Antibiotic susceptibilities, methicillin resistance, and clinical outcomes. Am. J. Ophthalmol. 2010, 149, 278–283.e271. [Google Scholar] [CrossRef]
- Petrillo, F.; Pignataro, D.; Di Lella, F.M.; Reibaldi, M.; Fallico, M.; Castellino, N.; Parisi, G.; Trotta, M.C.; D’Amico, M.; Santella, B.; et al. Antimicrobial Susceptibility Patterns and Resistance Trends of Staphylococcus aureus and Coagulase-Negative Staphylococci Strains Isolated from Ocular Infections. Antibiotics 2021, 10, 527. [Google Scholar] [CrossRef]
- Hsiao, C.H.; Chuang, C.C.; Tan, H.Y.; Ma, D.H.; Lin, K.K.; Chang, C.J.; Huang, Y.C. Methicillin-resistant Staphylococcus aureus ocular infection: A 10-year hospital-based study. Ophthalmology 2012, 119, 522–527. [Google Scholar] [CrossRef]
- Bagga, B.; Reddy, A.K.; Garg, P. Decreased susceptibility to quinolones in methicillin-resistant Staphylococcus aureus isolated from ocular infections at a tertiary eye care centre. Br. J. Ophthalmol. 2010, 94, 1407–1408. [Google Scholar] [CrossRef]
- Olson, R.; Donnenfeld, E.; Bucci, F.A., Jr.; Price, F.W., Jr.; Raizman, M.; Solomon, K.; Devgan, U.; Trattler, W.; Dell, S.; Wallace, R.B.; et al. Methicillin resistance of Staphylococcus species among health care and nonhealth care workers undergoing cataract surgery. Clin. Ophthalmol. 2010, 4, 1505–1514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shariati, A.; Dadashi, M.; Chegini, Z.; van Belkum, A.; Mirzaii, M.; Khoramrooz, S.S.; Darban-Sarokhalil, D. The global prevalence of Daptomycin, Tigecycline, Quinupristin/Dalfopristin, and Linezolid-resistant Staphylococcus aureus and coagulase-negative staphylococci strains: A systematic review and meta-analysis. Antimicrob. Resist Infect. Control. 2020, 9, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sader, H.S.; Farrell, D.J.; Flamm, R.K.; Jones, R.N. Daptomycin activity tested against 164457 bacterial isolates from hospitalised patients: Summary of 8 years of a Worldwide Surveillance Programme (2005–2012). Int. J. Antimicrob. Agents 2014, 43, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Rybak, M.J. The pharmacokinetic and pharmacodynamic properties of vancomycin. Clin. Infect Dis. 2006, 42 (Suppl. 1), S35–S39. [Google Scholar] [CrossRef]
- Franci, G.; Falanga, A.; Zannella, C.; Folliero, V.; Martora, F.; Galdiero, M.; Galdiero, S.; Morelli, G.; Galdiero, M. Infectivity inhibition by overlapping synthetic peptides derived from the gH/gL heterodimer of herpes simplex virus type 1. J. Pept. Sci. 2017, 23, 311–319. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Bautista, A.; Coy, J.; García-Shimizu, P.; Rodríguez, J.C. From CLSI to EUCAST guidelines in the interpretation of antimicrobial susceptibility: What is the effect in our setting? Enferm. Infecc. Y Microbiol. Clin. 2018, 36, 229–232. [Google Scholar] [CrossRef]
Year | 2015 | 2016 | 2017 | 2018 | 2019 | 2015–2019 |
---|---|---|---|---|---|---|
Total samples | 374 | 264 | 236 | 229 | 261 | 1364 |
Positive samples (%) | 77 20.6 | 71 26.9 | 54 22.9 | 40 17.5 | 43 16.5 | 285 21.0 |
Gender | % (n) | CI 95% |
---|---|---|
Male | 54.7 (154) | [48.25–59.82] |
Female | 45.3 (131) | [40.18–51.75] |
Age (years) | % (n) | CI 95% |
0–30 | 25.9 (74) | [20.87–31.06] |
31–60 | 28.1 (80) | [22.85–33.29] |
61–90 | 45.9 (131) | [40.18–51.75] |
Species | 2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|
CoNS | 55.3 | 60.6 | 47.2 | 43.6 | 35.7 |
Staphylococcus aureus | 23.7 | 21.1 | 35.8 | 25.6 | 33.3 |
Escherichia coli | 3.9 | 1.4 | 1.9 | 2.6 | 2.4 |
Serratia marcescens | 6.6 | 0 | 3.8 | 2.6 | 0 |
Pseudomonas spp. | 5.3 | 7.0 | 0 | 2.6 | 7.1 |
Citrobacter spp. | 1.3 | 1.4 | 5.7 | 0 | 0 |
Enterobacter spp. | 1.3 | 1.4 | 1.9 | 0 | 0 |
Enterococcus faecalis | 1.3 | 0 | 3.8 | 2.6 | 7.1 |
Raoultella planticola | 1.3 | 0 | 0 | 2.6 | 0 |
Acinetobacter spp. | 0 | 1.4 | 0 | 2.6 | 7.1 |
Klebsiella pneumoniae | 0 | 2.8 | 0 | 10.2 | 0 |
Proteus mirabilis | 0 | 0 | 0 | 0 | 2.4 |
Streptococcus spp. | 0 | 2.8 | 0 | 5.1 | 4.8 |
Total isolates (n) | 77 | 71 | 54 | 40 | 43 |
Antibiotics | 2015 | 2016 | 2017 | 2018 | 2019 | * | ** |
---|---|---|---|---|---|---|---|
Fusidic acid | 0.0 | 13.3 | 15.8 | 0.0 | 0.0 | 0.153 | 0.355 |
Azithromycin | 41.2 | 6.7 | 36.8 | 50.0 | N.A. | 0.071 | 0.099 |
Clarithromycin | 41.2 | 6.7 | 36.8 | 50.0 | N.A. | 0.071 | 0.099 |
Clindamycin | 44.4 | 13.3 | 31.6 | 30.0 | 50.0 | 0.246 | 0.229 |
Daptomycin | 5.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.514 | 0.368 |
Erythromycin | 44.4 | 6.7 | 36.8 | 40.0 | 50.0 | 0.113 | 0.157 |
Gentamicin | 11.1 | 20.0 | 21.1 | 10.0 | 0.0 | 0.416 | 0.540 |
Levofloxacin | 16.7 | 20.0 | 36.8 | 10.0 | 7.1 | 0.230 | 0.524 |
Linezolid | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | N.A. | N.A. |
Oxacillin | 33.3 | 13.3 | 26.3 | 40.0 | 14.3 | 0.429 | 0.510 |
Penicillin G | 66.7 | 80.0 | 84.2 | 80.0 | 85.7 | 0.671 | 0.111 |
Rifampicin | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | N.A. | N.A. |
Teicoplanin | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.503 | 0.249 |
Tetracycline | 5.6 | 6.7 | 0.0 | 0.0 | 7.1 | 0.739 | 0.319 |
Tigecycline | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | N.A. | N.A. |
Trimethoprim/Sulfam. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | N.A. | N.A. |
Vancomycin | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | N.A. | N.A. |
Total isolates (n) | 18 | 15 | 19 | 10 | 14 |
Antibiotics | 2015 | 2016 | 2017 | 2018 | 2019 | * | ** |
---|---|---|---|---|---|---|---|
Fusidic acid | 36.4 | 20.6 | 54.5 | 46.2 | 16.7 | 0.052 | 0.017 |
Azithromycin | 66.7 | 67.6 | 81.8 | 100.0 | N.S. | 0.264 | 0.071 |
Clarithromycin | 66.7 | 67.6 | 81.8 | 100.0 | N.S. | 0.264 | 0.071 |
Clindamycin | 45.5 | 44.1 | 50.0 | 38.5 | 8.3 | 0.320 | 0.001 |
Daptomycin | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NC | - |
Erythromycin | 66.7 | 67.6 | 81.8 | 100.0 | 58.3 | 0.087 | 0.002 |
Gentamicin | 60.6 | 58.8 | 50.0 | 69.2 | 58.3 | 0.856 | 0.001 |
Levofloxacin | 45.5 | 47.1 | 59.1 | 53.8 | 33.3 | 0.493 | 0.003 |
Linezolid | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NC | - |
Oxacillin | 57.6 | 52.9 | 59.1 | 69.2 | 41.7 | 0.704 | 0.001 |
Rifampicin | 9.1 | 2.9 | 4.5 | 0.0 | 0.0 | 0.548 | 0.027 |
Tetracycline | 36.4 | 35.3 | 22.7 | 30.8 | 16.7 | 0.371 | 0.001 |
Tigecycline | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NC | - |
Trimethoprim/Sulfam. | 0.0 | 5.9 | 0.0 | 0.0 | 0.0 | 0.309 | 0.317 |
Vancomycin | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NC | 0.017 |
Total isolates (n) | 42 | 43 | 25 | 17 | 15 |
Antibiotics | 2015 | 2016 | 2017 | 2018 | 2019 | * | ** |
---|---|---|---|---|---|---|---|
Amoxicillin/Clav. acid | 71.4 (14) | 80.0 (10) | 57.1 (7) | 28.6 (7) | 0.0 (2) | 0.136 | 0.016 |
Cefepime | 0.0 (15) | 10.0 (10) | 0.0 (7) | 0.0 (8) | 0.0 (1) | 0.080 | 0.001 |
Ceftazidime | 0.0 (15) | 10.0 (10) | 0.0 (7) | 0.0 (8) | 0.0 (5) | 0.528 | 0.479 |
Ciprofloxacin | 0.0 (15) | 9.1 (11) | 0.0 (7) | 0.0 (9) | 0.0 (6) | 0.003 | 0.004 |
Colistin | 13.3 (15) | 0.0 (8) | 16.7 (6) | 14.3 (7) | 20.0 (5) | 0.466 | 0.479 |
Fosfomycin | 9.1 (11) | 0.0 (5) | 0.0 (7) | 14.3 (7) | 25.0 (4) | 0.488 | 0.479 |
Gentamicin | 6.7 (15) | 36.4 (11) | 0.0 (7) | 0.0 (9) | 0.0 (8) | 0.805 | 0.751 |
Imipenem | 10.0 (10) | 0.0 (11) | 0.0 (7) | 0.0 (8) | 0.0 (2) | 0.047 | 0.006 |
Meropenem | 6.7 (15) | 0.0 (10) | 0.0 (7) | 0.0 (9) | 0.0 (6) | 0.605 | 0.684 |
Piperacillin/tazobactam | 6.7 (15) | 20.0 (10) | 0.0 (5) | 0.0 (7) | 0.0 (5) | 0.022 | 0.058 |
Trimethoprim/Sulfam. | 21.4 (14) | 41.7 (12) | 0.0 (7) | 0.0 (8) | 0.0 (5) | 0.579 | 0.157 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manente, R.; Santella, B.; Pagliano, P.; Santoro, E.; Casolaro, V.; Borrelli, A.; Capunzo, M.; Galdiero, M.; Franci, G.; Boccia, G. Prevalence and Antimicrobial Resistance of Causative Agents to Ocular Infections. Antibiotics 2022, 11, 463. https://doi.org/10.3390/antibiotics11040463
Manente R, Santella B, Pagliano P, Santoro E, Casolaro V, Borrelli A, Capunzo M, Galdiero M, Franci G, Boccia G. Prevalence and Antimicrobial Resistance of Causative Agents to Ocular Infections. Antibiotics. 2022; 11(4):463. https://doi.org/10.3390/antibiotics11040463
Chicago/Turabian StyleManente, Roberta, Biagio Santella, Pasquale Pagliano, Emanuela Santoro, Vincenzo Casolaro, Anna Borrelli, Mario Capunzo, Massimiliano Galdiero, Gianluigi Franci, and Giovanni Boccia. 2022. "Prevalence and Antimicrobial Resistance of Causative Agents to Ocular Infections" Antibiotics 11, no. 4: 463. https://doi.org/10.3390/antibiotics11040463