Clinical Outcomes and Adverse Effects in Septic Patients with Impaired Renal Function Who Received Different Dosages of Cefoperazone–Sulbactam
Abstract
:1. Introduction
2. Results
2.1. Clinical Characteristics
2.2. Clinical Outcomes and Adverse Effects
3. Discussion
4. Materials and Methods
4.1. Data Source
4.2. Study Cohort
4.3. Outcome
4.4. Covariates
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States, 2019; US Department of Health and Human Services, Centers for Disease Control and Prevention: Atlanta, GA, USA, 2019. [Google Scholar]
- Perez, F.; Hujer, A.M.; Hujer, K.M.; Decker, B.K.; Rather, P.N.; Bonomo, R.A. Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2007, 51, 3471–3484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santella, B.; Serretiello, E.; De Filippis, A.; Veronica, F.; Iervolino, D.; Dell’Annunziata, F.; Manente, R.; Valitutti, F.; Santoro, E.; Pagliano, P.; et al. Lower Respiratory Tract Pathogens and Their Antimicrobial Susceptibility Pattern: A 5-Year Study. Antibiotics 2021, 10, 851. [Google Scholar] [CrossRef] [PubMed]
- Volpicelli, L.; Venditti, M.; Ceccarelli, G.; Oliva, A. Place in Therapy of the Newly Available Armamentarium for Multi-Drug-Resistant Gram-Negative Pathogens: Proposal of a Prescription Algorithm. Antibiotics 2021, 10, 1475. [Google Scholar] [CrossRef] [PubMed]
- Yahav, D.; Shepshelovich, D.; Tau, N. Cost Analysis of New Antibiotics to Treat Multidrug-Resistant Bacterial Infections: Mind the Gap. Infect. Dis. Ther. 2021, 10, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Theuretzbacher, U.; Van Bambeke, F.; Canton, R.; Giske, C.G.; Mouton, J.W.; Nation, R.L.; Paul, M.; Turnidge, J.D.; Kahlmeter, G. Reviving old antibiotics. J. Antimicrob. Chemother. 2015, 70, 2177–2181. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.W.; Chen, Y.H.; Lee, W.S.; Lin, J.C.; Huang, C.T.; Lin, H.H.; Liu, Y.C.; Chuang, Y.C.; Tang, H.J.; Chen, Y.S.; et al. Randomized Noninferiority Trial of Cefoperazone-Sulbactam versus Cefepime in the Treatment of Hospital-Acquired and Healthcare-Associated Pneumonia. Antimicrob. Agents Chemother. 2019, 63, 63. [Google Scholar] [CrossRef] [Green Version]
- Niu, T.; Luo, Q.; Li, Y.; Zhou, Y.; Yu, W.; Xiao, Y. Comparison of Tigecycline or Cefoperazone/Sulbactam therapy for bloodstream infection due to Carbapenem-resistant Acinetobacter baumannii. Antimicrob. Resist. Infect. Control 2019, 8, 52. [Google Scholar] [CrossRef]
- Chen, C.H.; Tu, C.Y.; Chen, W.C.; Kuo, L.K.; Wang, Y.T.; Fu, P.K.; Ku, S.C.; Fang, W.F.; Chen, C.M.; Lai, C.C. Clinical Efficacy of Cefoperazone-Sulbactam versus Piperacillin-Tazobactam in the Treatment of Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia. Infect. Drug Resist. 2021, 14, 2251–2258. [Google Scholar] [CrossRef]
- Lai, C.C.; Chen, C.C.; Lu, Y.C.; Lin, T.P.; Chuang, Y.C.; Tang, H.J. Appropriate composites of cefoperazone-sulbactam against multidrug-resistant organisms. Infect. Drug Resist. 2018, 11, 1441–1445. [Google Scholar] [CrossRef] [Green Version]
- Kanchanasuwan, S.; Kositpantawong, N.; Singkhamanan, K.; Hortiwakul, T.; Charoenmak, B.; Ozioma, F.N.; Doi, Y.; Chusri, S. Outcomes of Adjunctive Therapy with Intravenous Cefoperazone-Sulbactam for Ventilator-Associated Pneumonia Due to Carbapenem-Resistant Acinetobacter baumannii. Infect. Drug Resist. 2021, 14, 1255–1264. [Google Scholar] [CrossRef]
- Sheu, M.J.; Chen, C.C.; Lu, Y.C.; Su, B.A.; Zhang, C.C.; Wang, S.S.; Chuang, Y.C.; Tang, H.J.; Lai, C.C. In Vitro Antimicrobial Activity of Various Cefoperazone/Sulbactam Products. Antibiotics 2020, 9, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Chen, Y.; Han, R.; Huang, Z.; Zhang, X.; Hu, F.; Yang, F. Sulbactam Enhances in vitro Activity of beta-Lactam Antibiotics Against Acinetobacter baumannii. Infect. Drug Resist. 2021, 14, 3971–3977. [Google Scholar] [CrossRef]
- Akova, M. Sulbactam-containing beta-lactamase inhibitor combinations. Clin. Microbiol. Infect. 2008, 14 (Suppl. S1), 185–188. [Google Scholar] [CrossRef] [Green Version]
- Santella, B.; Folliero, V.; Pirofalo, G.M.; Serretiello, E.; Zannella, C.; Moccia, G.; Santoro, E.; Sanna, G.; Motta, O.; De Caro, F.; et al. Sepsis-A Retrospective Cohort Study of Bloodstream Infections. Antibiotics 2020, 9, 851. [Google Scholar] [CrossRef] [PubMed]
- Sanders, C.C.; Sanders, W.E., Jr.; Goering, R.V. In vitro antagonism of beta-lactam antibiotics by cefoxitin. Antimicrob. Agents Chemother. 1982, 21, 968–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lister, P.D.; Gardner, V.M.; Sanders, C.C. Clavulanate induces expression of the Pseudomonas aeruginosa AmpC cephalosporinase at physiologically relevant concentrations and antagonizes the antibacterial activity of ticarcillin. Antimicrob. Agents Chemother. 1999, 43, 882–889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolton, W.K.; Scheld, W.M.; Spyker, D.A.; Sande, M.A. Pharmacokinetics of cefoperazone in normal volunteers and subjects with renal insufficiency. Antimicrob. Agents Chemother. 1981, 19, 821–825. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Shu, Y.; Zhu, F.; Feng, B.; Zhang, Z.; Liu, L.; Wang, G. Comparative efficacy and safety of combination therapy with high-dose sulbactam or colistin with additional antibacterial agents for multiple drug-resistant and extensively drug-resistant Acinetobacter baumannii infections: A systematic review and network meta-analysis. J. Glob. Antimicrob. Resist. 2021, 24, 136–147. [Google Scholar] [CrossRef]
- Gilbert, D.N. Sanford Guide to Antimicrobial Therapy 2021; Antimicrobial Therapy: Sperryville, VA, USA, 2021. [Google Scholar]
- Yokoyama, Y.; Matsumoto, K.; Ikawa, K.; Watanabe, E.; Morikawa, N.; Takeda, Y. Population pharmacokinetic-pharmacodynamic target attainment analysis of sulbactam in patients with impaired renal function: Dosing considerations for Acinetobacter baumannii infections. J. Infect. Chemother. 2015, 21, 284–289. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y.; Yu, C.; Tan, J.; Xiong, W.; Dong, D.; Li, S.; Zhang, R.; Li, J.; Wu, Y.; et al. Cefoperazone-sulbactam and risk of coagulation disorders or bleeding: A retrospective cohort study. Expert Opin. Drug Saf. 2020, 19, 339–347. [Google Scholar] [CrossRef]
- Spyker, D.A.; Richmond, J.D.; Scheld, W.M.; Bolton, W.K. Pharmacokinetics of multiple-dose cefoperazone in hemodialysis patients. Am. J. Nephrol. 1985, 5, 355–360. [Google Scholar] [CrossRef]
- Cohen, M.S.; Washton, H.E.; Barranco, S.F. Multicenter clinical trial of cefoperazone sodium in the United States. Am. J. Med. 1984, 77, 35–41. [Google Scholar] [CrossRef]
- Hu, H.R. Fatal Vitamin K-Dependent Coagulopathy Associated with Cefoperazone/Sulbactam: A Case Report. Drug Saf. Case Rep. 2019, 6, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leao, A.C.; Menezes, P.R.; Oliveira, M.S.; Levin, A.S. Acinetobacter spp. are associated with a higher mortality in intensive care patients with bacteremia: A survival analysis. BMC Infect. Dis. 2016, 16, 386. [Google Scholar] [CrossRef] [PubMed]
- Ballouz, T.; Aridi, J.; Afif, C.; Irani, J.; Lakis, C.; Nasreddine, R.; Azar, E. Risk Factors, Clinical Presentation, and Outcome of Acinetobacter baumannii Bacteremia. Front. Cell Infect. Microbiol. 2017, 7, 156. [Google Scholar] [CrossRef]
- Ho, K.H.; Su, S.C.; Lee, K.R. Molecular docking and simulation of the interaction of sulbactam with Acinetobacter baumannii BaeSR and AdeSR. Biochem. Biophys. Res. Commun. 2021, 580, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.C.; Chen, C.C.; Lu, Y.C.; Chuang, Y.C.; Tang, H.J. In vitro activity of cefoperazone and cefoperazone-sulbactam against carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Infect. Drug Resist. 2019, 12, 25–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Hasan, M.N.; Lahr, B.D.; Eckel-Passow, J.E.; Baddour, L.M. Predictive scoring model of mortality in Gram-negative bloodstream infection. Clin. Microbiol. Infect. 2013, 19, 948–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Z.; Yang, W.; He, Y.; Chen, Q.; Wang, S.; Luo, X.; Wang, X. Cefoperazone/Sulbactam-Induced Abdominal Wall Hematoma and Upper Gastrointestinal Bleeding: A Case Report and Review of the Literature. Drug Saf. Case Rep. 2016, 3, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, R.S.; Cheng, G.; Chan, N.P.; Wong, W.S.; Ng, M.H. Use of cefoperazone still needs a caution for bleeding from induced vitamin K deficiency. Am. J. Hematol. 2006, 81, 76. [Google Scholar] [CrossRef]
- Wikstrom, S.; Aagaard Lentz, K.; Hansen, D.; Melholt Rasmussen, L.; Jakobsen, J.; Post Hansen, H.; Andersen, J.R. Causes of Vitamin K Deficiency in Patients on Haemodialysis. Nutrients 2020, 12, 2513. [Google Scholar] [CrossRef] [PubMed]
- Caluwe, R.; Verbeke, F.; De Vriese, A.S. Evaluation of vitamin K status and rationale for vitamin K supplementation in dialysis patients. Nephrol. Dial. Transplant. 2020, 35, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Tansarli, G.S.; Rafailidis, P.I.; Kapaskelis, A.; Vardakas, K.Z. Impact of antibiotic MIC on infection outcome in patients with susceptible Gram-negative bacteria: A systematic review and meta-analysis. Antimicrob. Agents Chemother. 2012, 56, 4214–4222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, S.C.; Chan, Y.Y.; Kao Yang, Y.H.; Lin, S.J.; Hung, M.J.; Chien, R.N.; Lai, C.C.; Lai, E.C. The Chang Gung Research Database-A multi-institutional electronic medical records database for real-world epidemiological studies in Taiwan. Pharmacoepidemiol. Drug Saf. 2019, 28, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.Y.; Su, C.C.; Shao, S.C.; Sung, S.F.; Lin, S.J.; Kao Yang, Y.H.; Lai, E.C. Taiwan’s National Health Insurance Research Database: Past and future. Clin. Epidemiol. 2019, 11, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Charlson, M.E.; Carrozzino, D.; Guidi, J.; Patierno, C. Charlson Comorbidity Index: A Critical Review of Clinimetric Properties. Psychother. Psychosom. 2022, 91, 8–35. [Google Scholar] [CrossRef]
- Chow, J.W.; Yu, V.L. Combination antibiotic therapy versus monotherapy for gram-negative bacteraemia: A commentary. Int. J. Antimicrob. Agents 1999, 11, 7–12. [Google Scholar] [CrossRef]
- Jean, S.S.; Liao, C.H.; Sheng, W.H.; Lee, W.S.; Hsueh, P.R. Comparison of commonly used an-timicrobial susceptibility testing methods for evaluating susceptibilities of clinical iso-lates of Enterobacteriaceae and nonfermentative Gram-negative bacilli to cefopera-zone-sulbactam. J. Microbiol. Immunol. Infect. 2018, 50, 454–463, Erratum in J. Microbiol. Immunol. Infect. 2018, 51, 286. [Google Scholar] [CrossRef] [Green Version]
Unmatched Cohort (n = 265) | |||||||
---|---|---|---|---|---|---|---|
Total | CFP–SUL 1 g/1 g Q12H (n = 44) (%) | CFP–SUL 2 g/2 g Q12H (n = 221) (%) | p-Value | ||||
Sex | |||||||
Male | 158 | 21 | (47.7) | 137 | (62.0) | 0.08 | |
Female | 107 | 23 | (52.3) | 84 | (38.0) | ||
Age | 0.46 | ||||||
Mean | 74.9 | 76.3 | 74.7 | ||||
Standard deviation | 13.0 | 12.4 | 13.1 | ||||
Median | 77.7 | 79.3 | 77.0 | ||||
Minimum | 29.3 | 47.8 | 29.3 | ||||
Maximum | 102.9 | 96.8 | 102.9 | ||||
Charlson comorbidity index (CCI) | 0.01 | ||||||
Mean | 2.6 | 3.6 | 2.4 | ||||
Standard deviation | 3.2 | 3.5 | 3.1 | ||||
Median | 1.0 | 3.0 | 1.0 | ||||
Minimum | 0.0 | 0.0 | 0.0 | ||||
Maximum | 16.0 | 12.0 | 16.0 | ||||
Pitt bacteremia score (PBS) | 0.86 | ||||||
Mean | 2.1 | 2.2 | 2.1 | ||||
Standard deviation | 2.5 | 2.6 | 2.5 | ||||
Median | 1.0 | 1.0 | 1.0 | ||||
Minimum | 0.0 | 0.0 | 0.0 | ||||
Maximum | 10.0 | 9.0 | 10.0 | ||||
Body weight | 0.48 | ||||||
Mean | 54.4 | 53.7 | 54.5 | ||||
Standard deviation | 6.6 | 6.8 | 6.5 | ||||
Median | 55.0 | 53.0 | 55.7 | ||||
Minimum | 30.0 | 40.0 | 30.0 | ||||
Maximum | 74.0 | 69.0 | 74.0 | ||||
Comorbidity | |||||||
Myocardial infarction | 12 | 1 | (2.3) | 11 | (5.0) | 0.43 | |
Congestive heart failure | 29 | 9 | (20.5) | 20 | (9.0) | 0.03 | |
Peripheral vascular disease | 4 | 1 | (2.3) | 3 | (1.4) | 0.65 | |
Cerebrovascular disease | 46 | 8 | (18.2) | 38 | (17.2) | 0.87 | |
Dementia | 3 | 1 | (2.3) | 2 | (0.9) | 0.43 | |
Chronic pulmonary disease | 39 | 7 | (15.9) | 32 | (14.5) | 0.81 | |
Connective tissue disease | 3 | 0 | (0.0) | 3 | (1.4) | 0.44 | |
Peptic ulcer disease | 28 | 4 | (9.1) | 24 | (10.9) | 0.73 | |
Mild liver disease | 19 | 8 | (18.2) | 11 | (5.0) | 0.00 | |
Diabetes without end-organ damage | 52 | 11 | (25.0) | 41 | (18.6) | 0.33 | |
Diabetes with end-organ damage | 25 | 4 | (9.1) | 21 | (9.5) | 0.93 | |
Hemiplegia | 4 | 0 | (0.0) | 4 | (1.8) | 0.37 | |
Moderate or severe renal disease | 55 | 13 | (29.5) | 42 | (19.0) | 0.12 | |
Tumor without metastasis (include leukemia and lymphoma) | 47 | 11 | (25.0) | 36 | (16.3) | 0.17 | |
Severe liver disease | 2 | 1 | (2.3) | 1 | (0.5) | 0.20 | |
Metastatic solid tumor | 30 | 8 | (18.2) | 22 | (10.0) | 0.12 | |
Renal function | |||||||
eGFR: 30–60 | 115 | 14 | (31.8) | 101 | (45.7) | 0.35 | |
eGFR: 15–30 | 62 | 11 | (25.0) | 51 | (23.1) | ||
eGFR: <15 | 19 | 4 | (9.1) | 15 | (6.8) | ||
Renal replacement therapy | 69 | 15 | (34.1) | 54 | (24.4) | ||
PSM Cohort (n = 164) | |||||||
Total | CFP–SUL 1 g/1 g Q12H (n = 41) (%) | CFP–SUL 2 g/2 gQ12H (n = 123) (%) | p-Value | ||||
Sex | |||||||
Male | 83 | 21 | (51.2) | 62 | (50.4) | 0.93 | |
Female | 81 | 20 | (48.8) | 61 | (49.6) | ||
Age | 0.54 | ||||||
Mean | 75.8 | 76.5 | 75.5 | ||||
Standard deviation | 11.9 | 12.4 | 11.7 | ||||
Median | 77.2 | 79.3 | 76.1 | ||||
Minimum | 47.8 | 47.8 | 52.7 | ||||
Maximum | 102.9 | 96.8 | 102.9 | ||||
Charlson comorbidity index (CCI) | 0.95 | ||||||
Mean | 3.1 | 3.1 | 3.1 | ||||
Standard deviation | 3.2 | 3.1 | 3.2 | ||||
Median | 2.0 | 3.0 | 2.0 | ||||
Minimum | 0.0 | 0.0 | 0.0 | ||||
Maximum | 12.0 | 12.0 | 12.0 | ||||
Pitt bacteremia score (PBS) | 0.90 | ||||||
Mean | 2.2 | 2.1 | 2.2 | ||||
Standard deviation | 2.5 | 2.5 | 2.5 | ||||
Median | 1.0 | 1.0 | 1.0 | ||||
Minimum | 0.0 | 0.0 | 0.0 | ||||
Maximum | 9.0 | 9.0 | 8.0 | ||||
Body weight | 0.78 | ||||||
Mean | 53.4 | 53.7 | 53.3 | ||||
Standard deviation | 6.7 | 7.1 | 6.6 | ||||
Median | 52.8 | 52.8 | 53.0 | ||||
Minimum | 34.0 | 40.0 | 34.0 | ||||
Maximum | 74.0 | 69.0 | 74.0 | ||||
Comorbidity | |||||||
Myocardial infarction | 10 | 1 | (2.4) | 9 | (7.3) | 0.26 | |
Congestive heart failure | 23 | 8 | (19.5) | 15 | (12.2) | 0.24 | |
Peripheral vascular disease | 3 | 1 | (2.4) | 2 | (1.6) | 0.74 | |
Cerebrovascular disease | 32 | 8 | (19.5) | 24 | (19.5) | >0.99 | |
Dementia | 1 | 1 | (2.4) | 0 | (0.0) | 0.08 | |
Chronic pulmonary disease | 26 | 7 | (17.1) | 19 | (15.4) | 0.81 | |
Connective tissue disease | 2 | 0 | (0.0) | 2 | (1.6) | 0.41 | |
Peptic ulcer disease | 18 | 3 | (7.3) | 15 | (12.2) | 0.39 | |
Mild liver disease | 13 | 6 | (14.6) | 7 | (5.7) | 0.07 | |
Diabetes without end-organ damage | 37 | 9 | (22.0) | 28 | (22.8) | 0.91 | |
Diabetes with end-organ damage | 20 | 3 | (7.3) | 17 | (13.8) | 0.27 | |
Hemiplegia | 2 | 0 | (0.0) | 2 | (1.6) | 0.41 | |
Moderate or severe renal disease | 41 | 11 | (26.8) | 30 | (24.4) | 0.75 | |
Tumor without metastasis (include leukemia and lymphoma) | 35 | 9 | (22.0) | 26 | (21.1) | 0.91 | |
Severe liver disease | 1 | 0 | (0.0) | 1 | (0.8) | 0.56 | |
Metastatic solid tumor | 24 | 6 | (14.6) | 18 | (14.6) | >0.99 | |
Renal function | |||||||
eGFR: 30–60 | 68 | 13 | (31.7) | 55 | (44.7) | 0.52 | |
eGFR: 15–30 | 40 | 11 | (26.8) | 29 | (23.6) | ||
eGFR: <15 | 10 | 3 | (7.3) | 7 | (5.7) | ||
Renal replacement therapy | 46 | 14 | (34.1) | 32 | (26.0) | ||
Unmatched Cohort (n = 265) | PSM Cohort (n = 164) | ||||||
CFP–SUL 1 g/1 g Q12H (n = 44) | CFP–SUL 2 g/2 g Q12H (n = 221) | SMD * | CFP–SUL 1 g/1 g Q12H (n = 41) | CFP–SUL 2 g/2 g Q12H (n = 123) | SMD * | ||
Male (%) | 21 (47.7) | 137 (62.0) | 0.3 | 21 (51.2) | 62 (50.4) | 0.0 | |
Age (SD) | 76.3 (12.4) | 74.7 (13.1) | 0.1 | 76.5 (12.4) | 75.5 (11.7) | 0.1 | |
CCI (SD) | 3.6 (3.5) | 2.4 (3.1) | 0.4 | 3.1 (3.1) | 3.1 (3.2) | 0.0 | |
PBS (SD) | 2.2 (2.6) | 2.1 (2.6) | 0.0 | 2.2 (2.5) | 2.2 (2.5) | 0.0 |
Unmatched Cohort (n = 265) | PSM Cohort (n = 164) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
CFP–SUL 1 g/1 g Q12H (n = 44) | CFP–SUL 2 g/2 g Q12H (n = 221) | p-Value | CFP–SUL 1 g/1 g Q12H (n = 41) | CFP–SUL 2 g/2 g Q12H (n = 123) | p-Value | |||||
n | (%) | n | (%) | n | (%) | N | (%) | |||
14-day all-cause mortality | 11 | (25.0) | 47 | (21.3) | 0.58 | 10 | (24.4) | 28 | (22.8) | 0.83 |
30-day all-cause mortality | 14 | (31.8) | 55 | (24.9) | 0.34 | 13 | (31.7) | 32 | (26.0) | 0.48 |
Clinical resolution | 32 | (72.7) | 162 | (73.3) | 0.94 | 29 | (70.7) | 91 | (74.0) | 0.68 |
Abnormal INR | 17 | (38.6) | 83 | (37.6) | 0.89 | 15 | (36.6) | 50 | (40.7) | 0.64 |
Clostridioides difficile- associated diarrhea | 1 | (2.3) | 4 | (1.8) | 0.84 | 1 | (2.4) | 0 | (0.0) | 0.25 |
Diarrhea | 8 | (18.2) | 67 | (30.3) | 0.10 | 8 | (19.5) | 33 | (26.8) | 0.35 |
Leukopenia | 2 | (4.5) | 14 | (6.3) | 0.65 | 2 | (4.9) | 6 | (4.9) | >0.99 |
Neutropenia | 1 | (2.3) | 9 | (4.1) | 0.57 | 1 | (2.4) | 6 | (4.9) | 0.68 |
(a) | |||||
---|---|---|---|---|---|
CFP–SUL 1 g/1 g Q12H (n = 23) | CFP–SUL 2 g/2 g Q12H (n = 102) | p-Value | |||
n | (%) | n | (%) | ||
14-day all-cause mortality | 2 | (8.7) | 21 | (20.6) | 0.24 |
30-day all-cause mortality | 3 | (13.0) | 26 | (25.5) | 0.20 |
Clinical resolution | 18 | (78.3) | 80 | (78.4) | >0.99 |
Abnormal INR | 7 | (30.4) | 38 | (37.3) | 0.54 |
Clostridioides difficile-associated diarrhea | 1 | (4.3) | 2 | (2.0) | 0.46 |
Diarrhea | 3 | (13.0) | 31 | (30.4) | 0.09 |
Leukopenia | 1 | (4.3) | 9 | (8.8) | 0.69 |
Neutropenia | 1 | (4.3) | 5 | (4.9) | >0.99 |
(b) | |||||
CFP–SUL 1 g/1 g Q12H (n = 23) | CFP–SUL 2 g/2 g Q12H (n = 102) | p-Value | |||
n | (%) | n | (%) | ||
Number of patients receiving CFP–SUL | |||||
Pseudomonas spp. | 4 | (17.4) | 19 | (18.6) | <0.01 |
Acinetobacter spp. | 1 | (4.3) | 40 | (39.2) | |
Ceftriaxone-resistant Enterobacteriaceae | 18 | (78.3) | 43 | (42.2) | |
14-day all-cause mortality | |||||
Pseudomonas spp. | 0 | (0.0) | 3 | (15.8) | >0.99 |
Acinetobacter spp. | 0 | (0.0) | 11 | (27.5) | >0.99 |
Ceftriaxone-resistant Enterobacteriaceae | 2 | (11.1) | 7 | (16.3) | 0.71 |
30-day all-cause mortality | |||||
Pseudomonas spp. | 1 | (25.0) | 4 | (21.1) | >0.99 |
Acinetobacter spp. | 0 | (0.0) | 14 | (35.0) | >0.99 |
Ceftriaxone-resistant Enterobacteriaceae | 2 | (11.1) | 8 | (18.6) | 0.47 |
Univariable | Multivariable | Hosmer–Lemeshow Goodness-of-Fit Test | ||||
---|---|---|---|---|---|---|
Factors | Comparisons | OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
14-day all-cause mortality | 14.93 (p = 0.06) | |||||
CCI | Per 1-score increase | 1.07 (0.98–1.16) | 0.14 | 1.10 (1.00–1.20) | 0.05 | |
PBS | ≥4 vs. <4 | 1.78 (0.96–3.32) | 0.07 | 2.07 (1.08–3.96) | 0.03 | |
Dosage | 1 g/1 g vs. 2 g/2 g | 1.23 (0.58–2.62) | 0.59 | 1.11 (0.50–2.45) | 0.80 | |
Sex | Male vs. female | 1.38 (0.75–2.53) | 0.30 | 1.36 (0.72–2.55) | 0.35 | |
Age | Per 1-year increase | 1.03 (1.01–1.06) | 0.02 | 1.04 (1.01–1.06) | 0.01 | |
30-day all-cause mortality | 5.92 (p = 0.66) | |||||
CCI | Per 1-score increase | 1.04 (0.96–1.13) | 0.32 | 1.06 (0.97–1.15) | 0.19 | |
PBS | ≥4 vs. <4 | 1.85 (1.03–3.35) | 0.04 | 2.01 (1.09–3.69) | 0.03 | |
Dosage | 1 g/1 g vs. 2 g/2 g | 1.41 (0.70–2.85) | 0.34 | 1.34 (0.65–2.80) | 0.43 | |
Sex | Male vs. female | 1.38 (0.78–2.44) | 0.27 | 1.38 (0.77–2.49) | 0.28 | |
Age | Per 1-year increase | 1.02 (1.00–1.04) | 0.12 | 1.02 (1.00–1.04) | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tai, C.-H.; Tang, H.-J.; Lee, C.-H. Clinical Outcomes and Adverse Effects in Septic Patients with Impaired Renal Function Who Received Different Dosages of Cefoperazone–Sulbactam. Antibiotics 2022, 11, 460. https://doi.org/10.3390/antibiotics11040460
Tai C-H, Tang H-J, Lee C-H. Clinical Outcomes and Adverse Effects in Septic Patients with Impaired Renal Function Who Received Different Dosages of Cefoperazone–Sulbactam. Antibiotics. 2022; 11(4):460. https://doi.org/10.3390/antibiotics11040460
Chicago/Turabian StyleTai, Chien-Hsiang, Hung-Jen Tang, and Chen-Hsiang Lee. 2022. "Clinical Outcomes and Adverse Effects in Septic Patients with Impaired Renal Function Who Received Different Dosages of Cefoperazone–Sulbactam" Antibiotics 11, no. 4: 460. https://doi.org/10.3390/antibiotics11040460
APA StyleTai, C. -H., Tang, H. -J., & Lee, C. -H. (2022). Clinical Outcomes and Adverse Effects in Septic Patients with Impaired Renal Function Who Received Different Dosages of Cefoperazone–Sulbactam. Antibiotics, 11(4), 460. https://doi.org/10.3390/antibiotics11040460