Multi-Drug Resistant Escherichia coli, Biosecurity and Anti-Microbial Use in Live Bird Markets, Abeokuta, Nigeria
Abstract
:1. Introduction
2. Results
2.1. Participating Live Bird Sellers (LBS) and Live Bird Markets (LBMs) Characteristics
2.2. Live Bird Sellers Demographics
2.3. Biosecurity in the LBMs in Abeokuta, Ogun State
2.4. Antimicrobial Use among LBS in LBMs in Abeokuta, Ogun State
2.5. Prevalence of E. coli and the Multidrug Resistance Profile in Live Birds (LBs) in Abeokuta city, Ogun State
Prevalence of E. coli and the Multidrug Resistance Profile in Live Birds (LBs) in Abeokuta city, Ogun State
2.6. Feedback Meeting, LBS Perceptions towards AMU and AMR, and Challenges
3. Discussion
4. Materials and Methods
4.1. Study Area and Study Population
4.2. Study Design and Sample Size Estimation
4.3. The Recruitment of Live Bird Markets (LBM) and Live Bird Sellers (LBS)
4.4. Questionnaire Design and Data Collection
4.5. Sample Collection
4.6. Laboratory Isolation and Identification
4.6.1. Non-selective and Selective Enrichment of Samples
4.6.2. Biochemical Identification of E. coli Isolates
4.6.3. Antimicrobial Susceptibility Profiling
4.6.4. Rates of Antimicrobial Resistance (AMR)
4.6.5. Multiple Antimicrobial Resistance Indices (MARI)
4.7. Data Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adebowale, O.; Makanjuola, M.; Bankole, N.; Olanike, A.; Awoseyi, A.; Awoyomi, O.J. Biosecurity and Antimicrobial Use Practices in Live Bird Markets within Abeokuta Metropolis, Southwest, Nigeria: A Preliminary Survey. Maced. Vet. Rev. 2021, 44, 187–202. [Google Scholar] [CrossRef]
- Ogundipe, F.O.; Ojo, O.E.; Feßler, A.T.; Hanke, D.; Awoyomi, O.J.; Ojo, D.A.; Akintokun, A.K.; Schwarz, S.; Maurischat, S. Antimicrobial Resistance and Virulence of Methicillin-Resistant Staphylococcus aureus from Human, Chicken and Environmental Samples within Live Bird Markets in Three Nigerian Cities. Antibiotics 2020, 9, 588. [Google Scholar] [CrossRef] [PubMed]
- Cardona, C.; Yee, K.; Carpenter, T. Are live bird markets reservoirs of avian influenza? Poult. Sci. 2009, 88, 856–859. [Google Scholar] [CrossRef]
- Fasanmi, O.G.; Ahmed, S.S.U.; Oladele-Bukola, M.O.; El-Tahawy, A.S.; Elbestawy, A.R.; Fasina, F.O. An evaluation of biosecurity compliance levels and assessment of associated risk factors for highly pathogenic avian influenza H5N1 infection of live-bird-markets, Nigeria and Egypt. Acta Trop. 2016, 164, 321–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aworh, M.K.; Kwaga, J.; Okolocha, E.; Mba, N.; Thakur, S. Prevalence and risk factors for multi-drug resistant Escherichia coli among poultry workers in the Federal Capital Territory, Abuja, Nigeria. PLoS ONE 2019, 14, e0225379. [Google Scholar] [CrossRef]
- Fagbamila, I.; Barco, L.; Mancin, M.; Kwaga, J.; Ngulukun, S.S.; Zavagnin, P.; Lettini, A.A.; Lorenzetto, M.; Abdu, P.A.; Kabir, J.; et al. Salmonella serovars and their distribution in Nigerian commercial chicken layer farms. PLoS ONE 2017, 12, e0173097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabir, S.M.L. Avian Colibacillosis and Salmonellosis: A Closer Look at Epidemiology, Pathogenesis, Diagnosis, Control and Public Health Concerns. Int. J. Environ. Res. Public Health 2010, 7, 89–114. [Google Scholar] [CrossRef] [Green Version]
- Poirel, L.; Madec, J.-Y.; Lupo, A.; Schink, A.-K.; Kieffer, N.; Nordmann, P.; Schwarz, S. Antimicrobial Resistance in Escherichia coli. Microbiol. Spectr. 2018, 6, 289–316. [Google Scholar] [CrossRef] [Green Version]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef]
- .Chandran, A.; Mazumder, A. Pathogenic potential, genetic diversity, and population structure of Escherichia coli strains isolated from a forest-dominated watershed (Comox Lake) in British Columbia, Canada. J. Appl. Microbiol. 2015, 81, 1788–1798. [Google Scholar] [CrossRef]
- Looft, T.; Johnson, T.A.; Allen, H.K.; Bayles, D.O.; Alt, D.P.; Stedtfeld, R.D.; Sul, W.J.; Stedtfeld, T.M. In-feed antibiotic effects on the swine intestinal microbiome. Proc. Natl. Acad. Sci. USA 2012, 109, 1691–1696. [Google Scholar] [CrossRef] [Green Version]
- Adebowale, O.O.; Adeyemo, O.K.; Awoyomi, O.; Dada, R.; Adebowale, O. Antibiotic use and practices in commercial poultry laying hens in Ogun State Nigeria. Rev. D’élevage Médecine Vétérinaire Pays Trop. 2016, 69, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Joshua, A.; Moses, A.; Akinkunmi, E.O. A Survey of Antimicrobial Agents Usage in Poultry Farms and Antibiotic Resistance in Escherichia Coli and Staphylococci Isolates from the Poultry in Ile-Ife, Nigeria. J. Infect. Dis. Epidemiol. 2018, 4, 47. [Google Scholar] [CrossRef] [Green Version]
- Adebowale, O.O.; Ekundayo, O.; Awoseyi, A.A. Female cattle slaughter and foetal wastage: A case study of the Lafenwa abattoir, Ogun state, Nigeria. Cogent Food Agric. 2020, 6, 1809308. [Google Scholar] [CrossRef]
- Lawal, J.R.; Jajere, S.M.; Geidam, Y.A.; Bello, A.M.; Wakil, Y.; Mustapha, M. Antibiotic Residues in Edible Poultry Tissues and Products in Nigeria: A Potential Public Health Hazard. Int. J. Anim. Vet. Adv. 2015, 7, 55–61. [Google Scholar] [CrossRef]
- Kabir, J.; Umoh, V.; Audu-Okoh, E.; Umoh, J.; Kwaga, J. Veterinary drug use in poultry farms and determination of antimicrobial drug residues in commercial eggs and slaughtered chicken in Kaduna State, Nigeria. Food Control 2004, 15, 99–105. [Google Scholar] [CrossRef]
- Jochum, J.M.; Redweik, G.A.J.; Ott, L.C.; Mellata, M. Bacteria Broadly-Resistant to Last Resort Antibiotics Detected in Commercial Chicken Farms. Microorganisms 2021, 9, 141. [Google Scholar] [CrossRef]
- Economou, V.; Gousia, P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect. Drug Resist. 2015, 8, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Hegde, N.V.; Kariyawasam, S.; DebRoy, C. Comparison of antimicrobial resistant genes in chicken gut microbiome grown on organic and conventional diet. Vet. Anim. Sci. 2016, 1–2, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Subramanya, S.H.; Bairy, I.; Metok, Y.; Baral, B.P.; Gautam, D.; Nayak, N. Detection and characterization of ESBL-producing Enterobacteriaceae from the gut of subsistence farmers, their livestock, and the surrounding environment in rural Nepal. Sci. Rep. 2021, 11, 2091. [Google Scholar] [CrossRef]
- Ibrahim, S.; Hoong, L.W.; Siong, Y.L.; Mustapha, Z.; Zalati, C.C.W.; Aklilu, E.; Mohamad, M.; Kamaruzzaman, N. Prevalence of Antimicrobial Resistance (AMR) Salmonella spp. and Escherichia coli Isolated from Broilers in the East Coast of Peninsular Malaysia. Antibiotics 2021, 10, 579. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.; Junaidu, A.; Garba, M. Multiple antibiotic residues in meat from slaughtered cattle in Nigeria. Internet J. Vet. Med. 2010, 8, 354. [Google Scholar]
- Adenipekun, E.O.; Jackson, C.R.; Oluwadun, A.; Iwalokun, B.; Frye, J.; Barrett, J.B.; Hiott, L.M.; Woodley, T.A. Prevalence and Antimicrobial Resistance in Escherichia coli from Food Animals in Lagos, Nigeria. Microb. Drug Resist. 2015, 21, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Igwe, J.C.; Olayinka, B.O.; Ehnimidu, J.O.; Onaolapo, J.A. Virulent Characteristics of Multidrug Resistant E. coli from Zaria, Nigeria. Clin. Microbiol. Open Access 2016, 5, 1000268. [Google Scholar] [CrossRef] [Green Version]
- Aworh, M.K.; Kwaga, J.K.P.; Hendriksen, R.S.; Okolocha, E.C.; Thakur, S. Genetic relatedness of multidrug resistant Escherichia coli isolated from humans, chickens and poultry environments. Antimicrob. Resist. Infect. Control 2021, 10, 58. [Google Scholar] [CrossRef] [PubMed]
- Hosain, Z.; Kabir, S.M.L.; Kamal, M. Antimicrobial uses for livestock production in developing countries. Vet. World 2021, 14, 210–221. [Google Scholar] [CrossRef]
- Oloso, N.O.; Fagbo, S.; Garbati, M.; Olonitola, S.O.; Awosanya, E.J.; Aworh, M.K.; Adamu, H.; Odetokun, I.A.; Fasina, F.O. Antimicrobial resistance in food animals and the environment in Nigeria: A Review. Int. J. Environ. Res. Public Health 2018, 15, 1284. [Google Scholar] [CrossRef] [Green Version]
- Adeyemo, O.K.; Alarape, S.A.; Adetunji, V.E.; Saka, A.B.; Adebowale, O.O.; Ubiogoro, O.O.; Agbede, S.A. Safety Hazards Along Animal Food Supply Chain in Nigeria. In Food Security and Safety, 1st ed.; Springer: Cham, Switzerland, 2021; pp. 869–883. [Google Scholar]
- Aworh, M.K.; Kwaga, J.; Okolocha, E.; Harden, L.; Hull, D.; Hendriksen, R.S.; Thakur, S. Extended-spectrum ß-lactamase-producing Escherichia coli among humans, chickens and poultry environments in Abuja, Nigeria. One Health Outlook 2020, 2, 8. [Google Scholar] [CrossRef]
- Jibril, A.H.; Bello, M.B.; Bello, S.M.; Saheed, Y.; Balla, F.M. Biosecurity Measures and Constraints among Rural Poultry Farmers in Zamfara State, Nigeria. Anim. Vet. Sci. 2016, 4, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Carroll, D.; Wang, J.; Fanning, S.; McMahon, B.J. Antimicrobial Resistance in Wildlife: Implications for Public Health. Zoonoses Public Health 2015, 62, 534–542. [Google Scholar] [CrossRef] [Green Version]
- Hamer, S.A.; Lehrer, E.; Magle, S.B. Wild Birds as Sentinels for Multiple Zoonotic Pathogens Along an Urban to Rural Gradient in Greater Chicago, Illinois. Zoonoses Public Health 2012, 59, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.J.; Torremorell, M.; Bender, J.; Smith, K.E.; Boxrud, D.; Ertl, J.R.; Yang, M.; Suwannakarn, K.; Her, D.; Nguyen, J.; et al. Live Animal Markets in Minnesota: A Potential Source for Emergence of Novel Influenza A Viruses and Interspecies Transmission. Clin. Infect. Dis. 2015, 61, 1355–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowenstein, C.; Roess, A.; Leibler, J.H.; Graham, J.P.; Waters, W.F. Animal Husbandry Practices and Perceptions of Zoonotic Infectious Disease Risks among Livestock Keepers in a Rural Parish of Quito, Ecuador. Am. J. Trop. Med. Hyg. 2016, 95, 1450–1458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agnew, A.; Wang, J.; Fanning, S.; Bearhop, S.; Mc Mahon, B.J. Insights into antimicrobial resistance among long distance migratory East Canadian High Arctic light-bellied Brent geese (Branta bernicla hrota). Ir. Vet. J. 2015, 69, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nabil, N.M.; Erfan, A.M.; Tawakol, M.M.; Haggag, N.M.; Naguib, M.M.; Samy, A. Wild Birds in Live Birds Markets: Potential Reservoirs of Enzootic Avian Influenza Viruses and Antimicrobial Resistant Enterobacteriaceae in Northern Egypt. Pathogens 2020, 9, 196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramey, A.M.; Ahlstrom, C.A. Antibiotic resistant bacteria in wildlife: Perspectives on trends, acquisition and dissemination, data gaps, and future directions. J. Wildl. Dis. 2020, 56, 1–15. [Google Scholar] [CrossRef]
- Jorquera, C.B.; Moreno-Switt, A.I.; Sallaberry-Pincheira, N.; Munita, J.M.; Navarro, C.F.; Tardone, R.; González-Rocha, G.; Singer, R.S.; Bueno, I. Antimicrobial resistance in wildlife and in the built environment in a wildlife rehabilitation center. One Health 2021, 13, 100298. [Google Scholar] [CrossRef]
- Mikecz, O.; Pica-Ciamarra, U.; Felis, A.; Nizeyimana, G.; Okello, P.; Brunelli, C. Data on antimicrobial use in livestock: Lessons from Uganda. One Health 2020, 10, 100165. [Google Scholar] [CrossRef]
- Adebowale, O.O.; Adeyemo, F.A.; Bankole, N.; Olasoju, M.; Adesokan, H.K.; Fasanmi, O.; Adeyemo, O.; Awoyomi, O.; Kehinde, O.; Fasina, F.O. Farmers’ Perceptions and Drivers of Antimicrobial Use and Abuse in Commercial Pig Production, Ogun State, Nigeria. Int. J. Environ. Res. Public Health 2020, 17, 3579. [Google Scholar] [CrossRef]
- Adelowo, O.O.; Okunlola, I.O. Field assessment of antibiotic use in fish farms in Southwestern Nigeria. Rev. D’élevage Médecine Vétérinaire Pays Trop. 2019, 72, 187–191. [Google Scholar] [CrossRef]
- Geidam, Y.; Ibrahim, U.; Grema, H.; Sanda, K.; Suleiman, A.; Mohzo, D. Patterns of Antibiotic Sales by Drug Stores and Usage in Poultry Farms: A Questionnaire-Based Survey in Maiduguri, Northeastern Nigeria. J. Anim. Vet. Adv. 2012, 11, 2852–2855. [Google Scholar] [CrossRef] [Green Version]
- Ortega-Paredes, D.; Barba, P.; Mena-López, S.; Espinel, N.; Crespo-Pérez, V.; Zurita, J. High quantities of multidrug-resistant Escherichia coli are present in the Machángara urban river in Quito, Ecuador. J. Water Health 2020, 18, 67–76. [Google Scholar] [CrossRef]
- Ortega-Paredes, D.; de Janon, S.; Villavicencio, F.; Ruales, K.J.; de La Torre, K.; Villacís, J.E.; Wagenaar, J.A.; Matheu, J.; Bravo-Vallejo, C.; Fernández-Moreira, E.; et al. Broiler Farms and Carcasses Are an Important Reservoir of Multi-Drug Resistant Escherichia coli in Ecuador. Front. Vet. Sci. 2020, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Xu, S.; Tang, Z.; Li, Z.; Zhang, L. Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosaf. Health 2020, 3, 32–38. [Google Scholar] [CrossRef]
- Chitanand, M.P.; Kadam, T.A.; Gyananath, G.; Totewad, N.D.; Balhal, D.K. Multiple antibiotic resistance indexing of coliforms to identify high risk contamination sites in aquatic environment. Indian J. Microbiol. 2010, 50, 216–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akpan, S.N.; Odeniyi, O.A.; Adebowale, O.O.; Alarape, S.A.; Adeyemo, O.K. Antibiotic resistance profile of Gram-negative bacteria isolated from Lafenwa abattoir effluent and its receiving water (Ogun River) in Abeokuta, Ogun state, Nigeria. Onderstepoort J. Vet. Res. 2020, 87, a1854. [Google Scholar] [CrossRef]
- Rottier, W.C.; Ammerlaan, H.S.M.; Bonten, M.J.M. Effects of confounders and intermediates on the association of bacteraemia caused by extended-spectrum β-lactamase-producing Enterobacteriaceae and patient outcome: A meta-analysis. J. Antimicrob. Chemother. 2012, 67, 1311–1320. [Google Scholar] [CrossRef] [Green Version]
- World Health Organisation; WHO Advisory Group on Integrated Surveillance of Antimicrobial Resistance (AGISAR). Critically Important Antimicrobials for Human Medicine; World Health Organisation: Geneva, Switzerland, 2011; pp. 1–38. [Google Scholar]
- Ajayi, A.; Oluyege, A.; Olowe, O.; Famurewa, O. Antibiotic Resistance among Commensal Escherichia coli Isolated from Faeces of Cattle in Ado-Ekiti, Nigeria. J. Anim. Vet. Adv. 2011, 10, 174–179. [Google Scholar] [CrossRef]
- Oluduro, A.O. Antibiotic-resistant commensal Escherichia coli in faecal droplets from bats and poultry in Nigeria. Vet. Ital. 2012, 48, 297–308. [Google Scholar]
- Ogunleye, A.O.; Oyekunle, M.A.; Sonibare, A.O. Multidrug resistant Escherichia coli isolates of poultry origin in Abeokuta, South Western Nigeria. Vet. Arh. 2008, 78, 501–509. [Google Scholar]
- Sharma, P.; Gupta, S.K.; Adenipekun, E.O.; Barrett, J.B.; Hiott, L.M.; Woodley, T.A.; Iwalokun, B.; Oluwadun, A.; Ramadan, H.; Frye, J.G.; et al. Genome Analysis of Multidrug-Resistant Escherichia coli Isolated from Poultry in Nigeria. Foodborne Pathog. Dis. 2020, 17, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ejikeugwu, C.; Nworie, O.; Saki, M.; Al-Dahmoshi, H.O.M.; Al-Khafaji, N.S.K.; Ezeador, C.; Nwakaeze, E.; Eze, P.; Oni, E.; Obi, C.; et al. Metallo-β-lactamase and AmpC genes in Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa isolates from abattoir and poultry origin in Nigeria. BMC Microbiol. 2021, 21, 124. [Google Scholar] [CrossRef] [PubMed]
- Manges, A.R.; Smith, S.P.; Lau, B.J.; Nuval, C.J.; Eisenberg, J.N.S.; Dietrich, P.S.; Riley, L.W. Retail Meat Consumption and the Acquisition of Antimicrobial Resistant Escherichia coli Causing Urinary Tract Infections: A Case–Control Study. Foodborne Pathog. Dis. 2007, 4, 419–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falgenhauer, L.; Imirzalioglu, C.; Oppong, K.; Akenten, C.W.; Hogan, B.; Krumkamp, R.; Poppert, S.; Levermann, V.; Schwengers, O.; Sarpong, N.; et al. Detection and Characterization of ESBL-Producing Escherichia coli from Humans and Poultry in Ghana. Front. Microbiol. 2019, 9, 3358. [Google Scholar] [CrossRef] [Green Version]
- Adenipekun, E.O.; Jackson, C.R.; Ramadan, H.; Iwalokun, B.; Oyedeji, K.S.; Frye, J.G.; Barrett, J.B.; Hiott, L.M.; Woodley, T.A.; Oluwadun, A. Prevalence and multidrug resistance of Escherichia coli from community-acquired infections in Lagos, Nigeria. J. Infect. Dev. Ctries. 2016, 10, 920–931. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Critically Important Antimicrobials for Human Medicine, 6th ed.; World Health Organization: Geneva, Switzerland, 2018; pp. 1–52. [Google Scholar]
- Ramsamy, Y.; Mlisana, K.P.; Amoako, D.G.; Abia, A.L.K.; Ismail, A.; Allam, M.; Mbanga, J.; Singh, R.; Essack, S.Y. Mobile genetic elements-mediated Enterobacterales-associated carbapenemase antibiotic resistance genes propagation between the environment and humans: A One Health South African study. Sci. Total Environ. 2022, 806, 150641. [Google Scholar] [CrossRef]
- Lledo, W.; Hernandez, M.; Lopez, E.; Molinari, O.L.; Soto, R.Q.; Hernandez, E.; Santiago, N.; Flores, M.; Vazquez, G.J.; Robledo, I.E.; et al. Guidance for Control of Infections with Carbapenem-Resistant or Carbapenemase-Producing Enterobacteriaceae in Acute Care Facilities. Morb. Mortal. Wkly. Rep. 2009, 58, 256–260. [Google Scholar]
- Wong, D.; van Duin, D. Novel Beta-Lactamase Inhibitors: Unlocking Their Potential in Therapy. Drugs 2017, 77, 615–628. [Google Scholar] [CrossRef] [Green Version]
- Codjoe, F.S.; Donkor, E.S. Carbapenem Resistance: A Review. Med. Sci. 2017, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Köck, R.; Daniels-Haardt, I.; Becker, K.; Mellmann, A.; Friedrich, A.W.; Mevius, D.; Schwarz, S.; Jurke, A. Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: A systematic review. Clin. Microbiol. Infect. 2018, 24, 1241–1250. [Google Scholar] [CrossRef] [Green Version]
- Mgaya, F.; Matee, M.; Muhairwa, A.; Hoza, A. Occurrence of Multidrug Resistant Escherichia coli in Raw Meat and Cloaca Swabs in Poultry Processed in Slaughter Slabs in Dar es Salaam, Tanzania. Antibiotics 2021, 10, 343. [Google Scholar] [CrossRef] [PubMed]
- CLSI Supplement M100; Performance Standards for Antimicrobial Susceptibility Testing, 27th ed.; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2013.
- Papadopoulos, D.; Papadopoulos, T.; Papageorgiou, K.; Sergelidis, D.; Adamopoulou, M.; Kritas, S.K.; Petridou, E. Anti-microbial resistance rates in commensal Escherichia coli isolates from healthy pigs in Greek swine farms. J. Hell. Vet. Med. Soc. 2021, 72, 2909–2916. [Google Scholar]
- Krumperman, P.H. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl. Environ. Microbiol. 1983, 46, 165–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olasoju, M.I.; Olasoju, T.I.; Adebowale, O.O.; Adetunji, V.O. Knowledge and practice of cattle handlers on antibiotic residues in meat and milk in Kwara State, Northcentral Nigeria. PLoS ONE 2021, 16, e0257249. [Google Scholar] [CrossRef]
Variables | Frequency | Percent (%) | 95% CI |
---|---|---|---|
Gender (n = 40) | |||
Male | 6 | 15.0 | 6.7–29.5 |
Female | 34 | 85.0 | 70.5–93.3 |
Marital Status (n = 39) | |||
Single | 3 | 7.7 | 1.9–21.0 |
Married | 36 | 92.3 | 79.0–98.1 |
Age (in years, n = 37) | |||
20–30 | 5 | 13.5 | 5.4–2.8 |
31–40 | 9 | 24.3 | 13.2–40.3 |
41–50 | 12 | 32.5 | 19.6–48.6 |
51–60 | 8 | 21.6 | 11.1–37.4 |
61–70 | 3 | 8.1 | 2.1–22.0 |
Educational level (n = 39) | |||
Informal | 18 | 45.0 | 31.6–61.4 |
Primary | 12 | 30.0 | 18.5–46.5 |
Secondary | 9 | 22.5 | 12.4–38.5 |
Tertiary | 1 | 2.5 | <0.01–14.4 |
Primary Occupation [live bird, (n = 40)] | |||
No | 3 | 7.5 | 1.9–20.6 |
Yes | 92.5 | 37 | 79.4–98.1 |
Membership of the LBS Association (n = 40) | |||
No | 5 | 12.5 | 5.0–26.6 |
Yes | 35 | 87.5 | 73.4–95.0 |
Contact with a Vet (n = 39) | |||
Yes | 23 | 59.0 | 43.4–72.9 |
No | 16 | 41.0 | 27.1–56.6 |
Questions/Variables | Options | Score | Responses (n) | (%) | 95% CI |
---|---|---|---|---|---|
Biosecurity | |||||
B1. Presence of wild chickens (n = 40) | Yes | 0 | 21 | 52.5 | 37.5–67.1 |
No | 1 | 19 | 47.5 | 32.9–62.5 | |
B2. Mix bird of different species (n = 40) | Yes | 0 | 25 | 62.5 | 47.0–75.8 |
No | 1 | 15 | 37.5 | 24.2–53.0 | |
B3. Mix chickens of different ages (n = 40) | Yes | 0 | 19 | 47.5 | 32.93–62.5 |
No | 1 | 21 | 52.5 | 37.5–67.1 | |
B4. Chickens are overcrowded (n = 40) | Yes | 0 | 18 | 45 | 30.7–60.2 |
No | 1 | 22 | 55 | 39.8–69.3 | |
B5. Cages are multi-layered (n = 40) | Yes | 0 | 22 | 55 | 39.8–69.3 |
No | 1 | 18 | 45 | 30.7–60.2 | |
B6. Inspection of chickens and processing facilities (n = 40) | Yes | 1 | 8 | 20 | 10.2–35.0 |
No | 0 | 32 | 80 | 65.0–89.8 | |
B7. Presence of sick chickens (n = 40) | Yes | 0 | 17 | 42.5 | 28.50–57.8 |
No | 1 | 23 | 57.5 | 42.2–71.5 | |
B8. Isolation pen for sick chickens (n = 40) | Yes | 1 | 15 | 37.5 | 24.2–53.0 |
No | 0 | 25 | 62.5 | 47.0–75.8 | |
B9. Introduce chickens without quarantine (n = 36) | Yes | 0 | 31 | 77.5 | 70.9–94.4 |
No | 1 | 5 | 12.5 | 5.6–29.1 | |
B10. Presence of other Animals (n = 40) | Yes | 0 | 26 | 65 | 49.5–77.9 |
No | 1 | 14 | 35 | 22.1–50.6 | |
B11. Source of Poultry (n = 39) | Various farms | ||||
Yes | 0 | 25 | 62.5 | 49.5–77.9 | |
No | 1 | 14 | 35 | 22.1–50.6 | |
Various LBS | |||||
Yes | 0 | 22 | 55.5 | 41.0–70.7 | |
No | 1 | 17 | 42.5 | 29.3–59.0 | |
Various Middlemen(n=39) | |||||
Yes | 0 | 10 | 25.6 | 14.4–41.2 | |
No | 1 | 29 | 74.4 | 58.8–85.6 | |
B12. Cage Type (n = 40) | Metal | 1 | 22 | 55 | 39.8–69.3 |
Non-metal | 0 | 18 | 45 | 30.7–60.2 | |
B13. Clean the environment always (n = 40) | Yes | 1 | 20 | 50 | 35.2 –64.8 |
No | 0 | 20 | 50 | 35.2–64.8 | |
B14. Disinfect the environment always (n = 40) | Yes | 1 | 16 | 40 | 26.3–55.4 |
No | 0 | 24 | 60 | 44.6–73.7 | |
B15. Clean the cages always (n = 40) | Yes | 1 | 19 | 47.5 | 32.9–62.5 |
No | 0 | 21 | 52.5 | 37.5–67.1 | |
B16. Disinfect the cages always (n = 40) | Yes | 1 | 10 | 25 | 14.0–40.4 |
No | 0 | 30 | 75 | 59.6–86.0 | |
B17. Clean processing table regularly/always(n = 40) | Yes | 1 | 17 | 42.5 | 28.5–57.8 |
No | 0 | 23 | 57.5 | 42.2–71.5 | |
B18. Disinfect processing table regularly/always (n = 40) | Yes | 1 | 8 | 20 | 10.2–35.0 |
No | 0 | 32 | 80 | 65.0–89.8 | |
Antimicrobial use | |||||
A1. Aware of antimicrobials (n = 40) | Yes | 1 | 40 | 100 | 89.6–1.0 |
No | 0 | 0 | 0 | 0.0– 10.4 | |
A2. Use Antimicrobials for poultry? (n = 40) | Yes | 0 | 35 | 87.5 | 76.4–96.6 |
No | 1 | 5 | 12.5 | 3.4–23.6 | |
A3. For what purpose? (n = 40) | Treat diseases | ||||
Yes | 1 | 20 | 50 | 35.2–64.8 | |
No | 0 | 20 | 50 | 35.2–64.8 | |
Prevent diseases | |||||
Yes | 0 | 21 | 52.5 | 37.50–67.1 | |
No | 1 | 19 | 47.5 | 32.9–62.5 | |
A4. How do you administer drugs? (n = 40) | Call a veterinarian | ||||
Yes | 1 | 4 | 10 | 3.4–23.6 | |
No | 0 | 36 | 90 | 76.4–96.6 | |
Self | |||||
Yes | 0 | 36 | 90 | 76.4–96.6 | |
No | 1 | 4 | 10 | 3.4–23.6 | |
A5. Where do you obtain antimicrobials for your chickens? (n = 40) | Vet Shops | ||||
Yes | 1 | 22 | 55 | 39.8–69.3 | |
No | 0 | 18 | 45 | 30.7–60.2 | |
Pharmacy shops | |||||
Yes | 0 | 29 | 72.5 | 57.0–84.0 | |
No | 1 | 11 | 27.5 | 16.0–43.0 | |
Poultry farmers | |||||
Yes | 0 | 10 | 25 | 14.0–40.4 | |
No | 1 | 30 | 75 | 59.6–86.0 | |
Live Bird Sellers | |||||
Yes | 0 | 11 | 27.5 | 16.0–43.0 | |
No | 1 | 29 | 72.5 | 57.0–84.0 | |
A6. Are you influenced by company’s brand before use? (n = 40) | Yes | 0 | 24 | 60 | 44.673.7 |
No | 1 | 16 | 40 | 26.3–55.4 |
Variables | Biosecurity Level | AMU Level | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Poor (%) | Satisfactory (%) | COR | 95% CI | p Value | Poor (%) | Satisfactory (%) | COR | 95% CI | p Value | |
Age (years) n = 37 | ||||||||||
<46 | 17 (63.0) | 2 (20.0) | 6.8 | 1.20–38.56 | 0.03 b* | 14 (50.0) | 5 (55.6) | 0.8 | 0.17–3.61 | 1.00 b |
≥46 | 10 (37.0) | 8 (80.0) | 14 (50.0) | 4 (4.4) | ||||||
Gender (n = 40) | ||||||||||
Male | 6 (21.4) | 0 (0.0) | - | - | - | 6 (20.7) | 0 (0.0) | - | - | - |
Female | 22 (78.6) | 12 (100.0) | 23 (79.3) | 11 (100.0) | ||||||
Marital Status (n = 39) | ||||||||||
Single | 2 (7.3) | 1 (8.3) | 0.88 | 0.07–10.75 | 1.00 b | 1 (3.6) | 2 (18.2) | 0.17 | 0.01–2.06 | 0.19 b |
Married | 25 (92.6) | 11 (91.7) | 27 (96.4) | 9 (81.8) | ||||||
Education (n = 40) | 15.17 | 2.73–84.18 | 0.002 b* | |||||||
Informal/Primary | 23 (82.1) | 7 (58.3) | 3.28 | 0.73–14.73 | 0.13 b | 26 (89.7) | 4 (36.4) | |||
Post Primary | 5 (17.9) | 5 (41.7) | 3 (10.3) | 7 (63.6) | ||||||
Main Occupation as LBS (n = 40) | 0.74 | 0.06–9.09 | 1.00 b | |||||||
Yes | 28 (100.0) | 9 (75.0) | - | - | - | 27 (93.1) | 10 (90.9) | |||
No | 0 (0.0) | 3 (25.0) | 2 (6.9) | 1 (9.1) | ||||||
Member of LBS association (n = 40) | ||||||||||
Yes | 24 (85.7) | 11 (91.7) | 1.83 | 0.18–18.37 | 1.00 b | 24 (82.8) | 11 (100.0) | - | - | - |
No | 4 (14.3) | 1 (8.3) | 5 (17.2) | 0 (0.0) |
LBM | E. coli Positive Samples (n = 32) | Prevalence of E.coli Isolates (%) | MDR E. coli Positive Samples (n = 18) | Prevalence of MDR E. coli(%) |
---|---|---|---|---|
Lafenwa | 3 | 9.4 | - | 0.0 |
Kuto | 4 | 12.5 | 2 | 11.1 |
Itoku | 9 | 28.1 | 6 | 33.3 |
Gbonagun | 1 | 3.1 | 1 | 5.6 |
Ago ika | 3 | 9.4 | 2 | 11.1 |
Asero | 4 | 12.5 | 2 | 11.1 |
Asejere | 3 | 9.4 | 2 | 11.1 |
Osiele | 5 | 15.6 | 3 | 16.6 |
Total | 32 | 18 |
S/N | Sample Code | Live Bird Market | Antimicrobial Class | MARI |
---|---|---|---|---|
1 | KT 1AE(4) | Kuto | CL,2,3,4,5 | 0.5 |
2 | ASEJ 3AE(4) | Asejere | CL,3,4,5,6 | 0.3 |
3 | IT 7AE(4) | Itoku | CL,3,4,5,6 | 0.3 |
4 | A1AE(3) | Ago Ika | CL,3,5,6 | 0.2 |
5 | OS 3AE(3) | Osiele | CL,4,5,6 | 0.2 |
6 | IT 6AE(3) | Itoku | CL,4,5,6 | 0.2 |
7 | GB 2AE(4) | Gbonagun | CL,3,4,5,6 | 0.3 |
8 | IT 8AE(3) | Itoku | CL,3,4,5 | 0.2 |
9 | IT 3AE(3) | Itoku | CL,3,5,6 | 0.2 |
10 | A 3AE(3) | Ago Ika | CL,3,4,5 | 0.2 |
11 | IT 5AE(4) | Itoku | CL,3,4,5,6 | 0.3 |
12 | OS 2AE(4) | Osiele | CL,3,4,5,6 | 0.3 |
13 | AS 3AE(4) | Asero | CL,3,4,5,6 | 0.3 |
14 | IT 4AE(4) | Itoku | CL,3,4,5,6 | 0.3 |
15 | OS 5AE(4) | Osiele | CL,3,4,5,6 | 0.3 |
16 | AS 1AE(3) | Asero | CL,4,5,6 | 0.2 |
17 | KT 2AE(4) | Kuto | CL,3,4,5,6 | 0.2 |
18 | ASEJ 2AE(4) | Asejere | CL,3,4,5,6 | 0.3 |
LBM | E. coli (n = 32) | NF (%) | CXM (%) | CRO (%) | ACXV (%) | ZEM (%) | LBC (%) | AUG (%) | CTX (%) | IMP (%) | OFX (%) | GN (%) | NA (%) | CAZ (%) | CPR (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lafenwa | n = 3 | 33.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 33.3 | 0.0 | 0.0 | 33.3 | 66.7 | 0.0 |
Kuto | n = 4 | 50.0 | 50.0 | 0.0 | 75.0 | 0.0 | 50.0 | 50.0 | 0.0 | 100.0 | 50.0 | 25.0 | 100.0 | 100.0 | 75.0 |
Itoku | n = 9 | 77.7 | 44.4 | 11.1 | 55.5 | 0.0 | 22.2 | 66.6 | 11.1 | 100.0 | 0.0 | 55.5 | 44.4 | 100.0 | 33.3 |
Gbonagun | n = 1 | 100.0 | 100.0 | 100.0 | 100.0 | 0.0 | 0.0 | 100.0 | 0.0 | 100.0 | 0.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Ago ika | n = 3 | 66.6 | 33.3 | 0.0 | 66.6 | 0.0 | 0.0 | 33.3 | 66.6 | 100.0 | 33.3 | 33.3 | 33.3 | 100.0 | 33.3 |
Asero | n = 4 | 50.0 | 25.0 | 0.0 | 25.0 | 100.0 | 0.0 | 75.0 | 0.0 | 75.0 | 0.0 | 75.0 | 75.0 | 100.0 | 50.0 |
Asejere | n = 3 | 100.0 | 100.0 | 33.3 | 66.6 | 33.3 | 0.0 | 66.6 | 33.3 | 100.0 | 0.0 | 66.6 | 33.3 | 100.0 | 33.3 |
Osiele | n = 5 | 40.0 | 100.0 | 0.0 | 80.0 | 20.0 | 0.0 | 60.0 | 60.0 | 100.0 | 0.0 | 80.0 | 20.0 | 100.0 | 20.0 |
Variables | MDR E. coli | ||||||
---|---|---|---|---|---|---|---|
Present | % | Absent | % | COR | 95% CI | p Value | |
Use human AMs capsules for your birds | |||||||
Yes | 15 | 78.9 | 12 | 80.0 | 0.94 | 0.17–5.02 | 0.64 b |
No | 4 | 21.1 | 3 | 20.0 | |||
AMU for treatment of sick poultry | |||||||
Yes | 11 | 55.0 | 14 | 87.5 | 0.17 | 0.03–0.98 | 0.06 b |
No | 9 | 45.0 | 1 | 12.5% | |||
AMU for prophylaxis | |||||||
Yes | 13 | 65.0 | 12 | 81.3 | 8.04 | 1.69–38.13 | 0.01 a* |
No | 7 | 35.0 | 3 | 18.7 | |||
Veterinary Prescription | |||||||
Yes | 2 | 10.0 | 1 | 6.3 | 1.66 | 0.137–20.23 | 1.00 b |
No | 18 | 90.02 | 15 | 93.7 | |||
Self-Prescription | |||||||
Yes | 17 | 85.0 | 15 | 93.7% | 0.38 | 0.03–4.03 | 1.00 b |
No | 3 | 15.0 | 1 | 6.3 | |||
Having contact with Vet | |||||||
Yes | 14 | 63.6 | 9 | 52.9 | 1.56 | 0.43–5.64 | 0.50 a |
No | 8 | 36.4 | 8 | 47.1 | |||
Mix Poultry of various age | |||||||
Yes | 8 | 35.4 | 11 | 61.1 | 0.36 | 0.10–1.32 | 0.12 a |
No | 14 | 63.6 | 7 | 38.9 | |||
Mix Poultry of various types | |||||||
Yes | 14 | 63.6 | 11 | 61.1 | 1.11 | 0.31–4.03 | 1.00 a |
No | 8 | 36.4 | 7 | 38.9 | |||
Source poultry from various LBS | |||||||
Yes | 12 | 57.1 | 10 | 55.6 | 1.07 | 0.30–3.79 | 1.00 a |
No | 9 | 42.9 | 8 | 44.4 | |||
Source poultry from various farms | |||||||
Yes | 20 | 90.9 | 17 | 94.4 | 0.58 | 0.05–7.07 | 1.00 b |
No | 2 | 9.1 | 1 | 5.6 | |||
Presence of fence | |||||||
Yes | 2 | 9.5 | 2 | 11.8 | 0.79 | 0.10–6.28 | 1.00 b |
No | 19 | 90.5 | 15 | 88.2 | |||
Presence of Wild birds | |||||||
Yes | 9 | 40.9 | 8 | 44.4 | 1.16 | 0.33–4.07 | 0.82 a |
No | 13 | 59.1 | 10 | 55.6 | |||
Health Inspection | |||||||
Yes | 4 | 18.2 | 4 | 22.2 | 0.79 | 0.16–3.67 | 1.00 b |
No | 18 | 81.8 | 14 | 77.8 | |||
Introduction of poultry without quarantine | |||||||
Yes | 17 | 89.5 | 14 | 82.4% | 1.82 | 0.26–12.47 | 0.65 b |
No | 2 | 10.5 | 3 | 17.6 | |||
Presence of sick poultry | |||||||
Yes | 8 | 36.4 | 9 | 50.0 | 2.17 | 0.57–8.19 | 0.25 a |
No | 14 | 63.6 | 9 | 50.0 | |||
Cage Type | |||||||
Metal | 10 | 45.5 | 12 | 66.7 | 0.42 | 0.12–1.51 | 0.18 a |
Non-metal | 12 | 55.5 | 6 | 33.3 |
Name of Antimicrobials | Class | Concentration Per Disc (μg) |
---|---|---|
Ceftriaxone | Cephalosporins | 10 |
Cefixime | 5 | |
Cefuroxime | 30 | |
Ceftazidime | 30 | |
Cefotaxime | 25 | |
Nalidixic acid | Fluoroquinolones | 30 |
Ciprofloxacin | 5 | |
Ofloxacin | 5 | |
Levofloxacin | 5 | |
Nitrofurantoin | Nitrofurans | 300 |
Amoxicillin clavulanate | beta-lactam beta-lactamase inhibitor | 30 |
Imipinem | Carbapenem | 10 |
Gentamicin | Aminoglycosides | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adebowale, O.; Makanjuola, M.; Bankole, N.; Olasoju, M.; Alamu, A.; Kperegbeyi, E.; Oladejo, O.; Fasanmi, O.; Adeyemo, O.; Fasina, F.O. Multi-Drug Resistant Escherichia coli, Biosecurity and Anti-Microbial Use in Live Bird Markets, Abeokuta, Nigeria. Antibiotics 2022, 11, 253. https://doi.org/10.3390/antibiotics11020253
Adebowale O, Makanjuola M, Bankole N, Olasoju M, Alamu A, Kperegbeyi E, Oladejo O, Fasanmi O, Adeyemo O, Fasina FO. Multi-Drug Resistant Escherichia coli, Biosecurity and Anti-Microbial Use in Live Bird Markets, Abeokuta, Nigeria. Antibiotics. 2022; 11(2):253. https://doi.org/10.3390/antibiotics11020253
Chicago/Turabian StyleAdebowale, Oluwawemimo, Motunrayo Makanjuola, Noah Bankole, Mary Olasoju, Aderonke Alamu, Eniola Kperegbeyi, Oladotun Oladejo, Olubunmi Fasanmi, Olanike Adeyemo, and Folorunso O. Fasina. 2022. "Multi-Drug Resistant Escherichia coli, Biosecurity and Anti-Microbial Use in Live Bird Markets, Abeokuta, Nigeria" Antibiotics 11, no. 2: 253. https://doi.org/10.3390/antibiotics11020253
APA StyleAdebowale, O., Makanjuola, M., Bankole, N., Olasoju, M., Alamu, A., Kperegbeyi, E., Oladejo, O., Fasanmi, O., Adeyemo, O., & Fasina, F. O. (2022). Multi-Drug Resistant Escherichia coli, Biosecurity and Anti-Microbial Use in Live Bird Markets, Abeokuta, Nigeria. Antibiotics, 11(2), 253. https://doi.org/10.3390/antibiotics11020253