Significant Difference in Antimicrobial Resistance of Bacteria in Septic Revision between Total Knee Arthroplasty and Total Hip Arthroplasty
Abstract
:1. Introduction
2. Results
3. Discussion
4. Methods
4.1. Surgical Treatment
4.2. Microbiology
4.3. Antibiotic Treatment
4.4. Outcome Measures
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leitner, L.; Türk, S.; Heidinger, M.; Stöckl, B.; Posch, F.; Maurer-Ertl, W.; Leithner, A.; Sadoghi, P. Trends and Economic Impact of Hip and Knee Arthroplasty in Central Europe: Findings from the Austrian National Database. Sci. Rep. 2018, 8, 6–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anzahl der Implantationen Künstlicher Hüftgelenke in Ausgewählten OECD-Ländern in den Jahren 2013 bis 2017. Wurden in Deutschland Durchschnittlich, Höchste Rate Derartiger Eingriffe Weltweit. Available online: https://de.statista.com/statistik/daten/studie/182669/umfrage/hueftgelenksoperationen-in-ausgewaehlten-oecd-laendern/#:~:text=2017 (accessed on 15 December 2021).
- Drago, L.; De Vecchi, E.; Bortolin, M.; Zagra, L.; Romanò, C.L.; Cappelletti, L. Epidemiology and Antibiotic Resistance of Late Prosthetic Knee and Hip Infections. J. Arthroplast. 2017, 32, 2496–2500. [Google Scholar] [CrossRef] [PubMed]
- Gehrke, T.; Alijanipour, P.; Parvizi, J. The management of an infected total knee arthroplasty. Bone Jt. J. 2015, 97-B, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.S.; Haddad, F.S. Prosthetic joint infection. Bone Jt. Res. 2019, 8, 570–572. [Google Scholar] [CrossRef] [PubMed]
- Springer, B.D.; Cahue, S.; Etkin, C.D.; Lewallen, D.G.; McGrory, B.J. Infection burden in total hip and knee arthroplasties: An international registry-based perspective. Arthroplast. Today 2017, 3, 137–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Premkumar, A.; Kolin, D.A.; Farley, K.X.; Wilson, J.M.; McLawhorn, A.S.; Cross, M.B.; Sculco, P.K. Projected Economic Burden of Periprosthetic Joint Infection of the Hip and Knee in the United States. J. Arthroplast. 2020, 36, 1484–1489. [Google Scholar] [CrossRef]
- Faschingbauer, M.; Bieger, R.; Kappe, T.; Weiner, C.; Freitag, T.; Reichel, H. Difficult to treat: Are there organism-dependent differences and overall risk factors in success rates for two-stage knee revision? Arch. Orthop. Trauma Surg. 2020, 140, 1595–1602. [Google Scholar] [CrossRef]
- Trampuz, A.; Widmer, A.F. Infections associated with orthopedic implants. Curr. Opin. Infect. Dis. 2006, 19, 349–356. [Google Scholar] [CrossRef]
- Klasan, A.; Schermuksnies, A.; Gerber, F.; Bowman, M.; Fuchs-Winkelmann, S.; Heyse, T.J. Development of antibiotic resistance in periprosthetic joint infection after total knee arthroplasty. Bone Jt. J. 2021, 103-B, 171–176. [Google Scholar] [CrossRef]
- Munita, J.; Arias, C. Mechanisms of antibiotic resistance. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Frost, I.; Van Boeckel, T.P.; Pires, J.; Craig, J.; Laxminarayan, R. Global geographic trends in antimicrobial resistance: The role of international travel. J. Travel Med. 2019, 26. [Google Scholar] [CrossRef] [PubMed]
- ECDC. Antimicrobial Resistance Tackling the Burden in the European Union. Eur. Cent. Dis. Prev. Control 2019, 1–20. Available online: https://www.oecd.org/health/health-systems/AMR-Tackling-the-Burden-in-the-EU-OECD-ECDC-Briefing-Note-2019.pdf (accessed on 15 December 2021).
- Arrouas, M.; Herzog, U. Resistance Report Austria AURES; Federal Ministry of Health and Women’s Affairs: Wien, Austria, 2018. [Google Scholar]
- Mohanty, S.S.; Kay, P.R. Infection in total joint replacements. J. Bone Jt. Surgery. Br. Vol. 2004, 86, 266–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, L.; Fu, J.; Zhou, Y.; Chai, W.; Zhang, G.; Hao, L.; Chen, J. Trends in microbiological profiles and antibiotic resistance in periprosthetic joint infections. J. Int. Med. Res. 2021, 49, 03000605211002784. [Google Scholar] [CrossRef] [PubMed]
- Stefánsdóttir, A.; Johansson, D.; Knutson, K.; Lidgren, L.; Robertsson, O. Microbiology of the infected knee arthroplasty: Report from the Swedish Knee Arthroplasty Register on 426 surgically revised cases. Scand. J. Infect. Dis. 2009, 41, 831–840. [Google Scholar] [CrossRef]
- Nickinson, R.S.J.; Board, T.N.; Gambhir, A.K.; Porter, M.L.; Kay, P.R. The microbiology of the infected knee arthroplasty. Int. Orthop. 2009, 34, 505–510. [Google Scholar] [CrossRef] [Green Version]
- Hickson, C.J.; Metcalfe, D.; Elgohari, S.; Oswald, T.; Masters, J.P.; Rymaszewska, M.; Reed, M.R.; Sprowson, A.P. Prophylactic antibiotics in elective hip and knee arthroplasty: An analysis of organisms reported to cause infections and national survey of clinical practice. Bone Jt. Res. 2015, 4, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, V.; Bakhshi, H.; Ecker, N.U.; Parvizi, J.; Gehrke, T.; Kendoff, D. Organism Profile in Periprosthetic Joint Infection: Pathogens Differ at Two Arthroplasty Infection Referral Centers in Europe and in the United States. J. Knee Surg. 2014, 27, 399–406. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Du, Y.; Piao, S.; Sun, J.; Li, X.; Zhou, Y. Comparison between the Staphylococci aureus and coagulase-negative staphylococci infected total joint arthroplasty treated by two-stage revision: A retrospective study with two year minimum follow-up. J. Orthop. Sci. 2018, 24, 109–115. [Google Scholar] [CrossRef]
- Tsai, Y.; Chang, C.-H.; Lin, Y.-C.; Lee, S.-H.; Hsieh, P.-H.; Chang, Y. Different microbiological profiles between hip and knee prosthetic joint infections. J. Orthop. Surg. 2019, 27, 2309499019847768. [Google Scholar] [CrossRef] [Green Version]
- Tande, A.J.; Patel, R. Prosthetic Joint Infection. Clin. Microbiol. Rev. 2014, 27, 302–345. [Google Scholar] [CrossRef] [Green Version]
- Marculescu, C.E.; Cantey, R.J. Polymicrobial Prosthetic Joint Infections: Risk Factors and Outcome. Clin. Orthop. Relat. Res. 2008, 466, 1397–1404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zmistowski, B.; Fedorka, C.J.; Sheehan, E.; Deirmengian, G.; Austin, M.S.; Parvizi, J. Prosthetic Joint Infection Caused by Gram-Negative Organisms. J. Arthroplast. 2011, 26, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Preobrazhensky, P.; Bozhkova, S.; Kochish, A.; Tikhilov, R.; Kazemirsky, A. Comparative analysis of pathogen structure in patients with PJI after primary total hip and knee arthroplasty. Arch. Orthop. Trauma. Surg. 2021, 141, 1963–1969. [Google Scholar] [CrossRef] [PubMed]
- Morris, S.; Cerceo, E. Trends, Epidemiology, and Management of Multi-Drug Resistant Gram-Negative Bacterial Infections in the Hospitalized Setting. Antibiotics 2020, 9, 196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benito, N.; Franco, M.; Ribera, A.; Soriano, A.; Rodriguez-Pardo, D.; Sorlí, L.; Fresco, G.; Fernández-Sampedro, M.; Dolores del Toro, M.; Guío, L.; et al. Time trends in the aetiology of prosthetic joint infections: A multicentre cohort study. Clin. Microbiol. Infect. 2016, 22, 732.e1–732.e8. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, R.; Salles, M. Outcomes and Risk Factors in Prosthetic Joint Infections by multidrug-resistant Gram-negative Bacteria: A Retrospective Cohort Study. Antibiotics 2021, 10, 340. [Google Scholar] [CrossRef]
- Campoccia, D.; Montanaro, L.; Arciola, C.R. The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials 2006, 27, 2331–2339. [Google Scholar] [CrossRef]
- Nodzo, S.R.; Boyle, K.K.; Frisch, N.B. Nationwide Organism Susceptibility Patterns to Common Preoperative Prophylactic Antibiotics: What Are We Covering? J. Arthroplast. 2019, 34, S302–S306. [Google Scholar] [CrossRef]
- Bull, A.L.; Worth, L.J.; Richards, M.J. Impact of Vancomycin Surgical Antibiotic Prophylaxis on the Development of Methicillin-Sensitive Staphylococcus aureus Surgical Site Infections: Report from Australian surveillance data (VICNISS). Ann. Surg. 2012, 256, 1089–1092. [Google Scholar] [CrossRef]
- Livermore, D.M. Antibiotic resistance in staphylococci. Int. J. Antimicrob. Agents 2000, 16, 3–10. [Google Scholar] [CrossRef]
- Achermann, Y.; Eigenmann, K.; Ledergerber, B.; Derksen, L.; Rafeiner, P.; Clauss, M.; Nüesch, R.; Zellweger, C.; Vogt, M.; Zimmerli, W. Factors associated with rifampin resistance in staphylococcal periprosthetic joint infections (PJI): A matched case–control study. Infection 2012, 41, 431–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parvizi, J.; Gehrke, T.; Chen, A.F. Proceedings of the International Consensus on Periprosthetic Joint Infection. Bone Jt. J. 2013, 95-B, 1450–1452. [Google Scholar] [CrossRef] [PubMed]
- Leclercq, R.; Cantón, R.; Brown, D.; Giske, C.; Heisig, P.; MacGowan, A.; Mouton, J.; Nordmann, P.; Rodloff, A.; Rossolini, G.M.; et al. EUCAST expert rules in antimicrobial susceptibility testing. Clin. Microbiol. Infect. 2013, 19, 141–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Bacteria | Occurrence in TKA: n (%) | Occurrence in THA: n (%) | p-Value (Significant < 0.05) |
---|---|---|---|
Gram-positive | 94 (94.9) | 105 (81.4) | p = 0.002 |
CPS | 16 (16.2) | 23 (17.8) | p = 0.740 |
Staphylococcus aureus | 15 (15.2) | 22 (17.1) | |
MRSA | 0 | 1 (0.8) | |
Staphylococcus pseudintermedius | 1 (1.0) | 0 | |
CNS | 56 (56.6) | 56 (43.4) | p = 0.049 |
Staphylococcus capitis | 1 (1.0) | 3 (2.3) | |
Staphylococcus caprae | 1 (1.0) | 0 | |
Staphylococcus cohnii | 1 (1.0) | 0 | |
Staphylococcus epidermidis | 42 (42.4) | 42 (32.6) | |
Staphylococcus haemolyticus | 3 (3.0) | 8 (6.2) | |
Staphylococcus hominis | 4 (4.0) | 0 | |
Staphylococcus lugdunensis | 3 (3.0) | 2 (1.6) | |
Staphylococcus saccharolyticus | 0 | 1 (0.8) | |
Staphylococcus saprophyticus | 1 (1.0) | 0 | |
Streptococcus spp. | 13 (13.1) | 3 (2.3) | p = 0.002 |
Streptococcus agalactiae | 3 (3.0) | 2 (1.6) | |
Streptococcus gordonii | 1 (1.0) | 0 | |
Streptococcus oralis | 1 (1.0) | 0 | |
β-haemolytic streptococci group G | 8 (8.0) | 1 (0.8) | |
Anaerobes | 3 (3.0) | 9 (7.1) | p = 0.190 |
Propionibacterium | 3 (3.0) | 6 (4.7) | |
Cutibacterium acnes | 0 | 1 (0.8) | |
Finegoldia magna | 0 | 1 (0.8) | |
Peptostreptococcus magnus | 0 | 1 (0.8) | |
Enterococcus spp. | 3 (3.0) | 14 (10.9) | p = 0.026 |
Enterococcus faecalis | 2 (2.0) | 13 (10.1) | |
Enterococcus faecium | 1 (1.0) | 1 (0.8) | |
Corynebacterium | 3 (3.0) | 0 | |
Gram-negative | 5 (5.1) | 24 (18.6) | p = 0.002 |
Acinetobacter baumannii | 0 | 1 (0.8) | |
Citrobacter koseri | 0 | 2 (1.6) | |
Enterobacter cloacae | 2 (2.0) | 3 (2.3) | |
Escherichia coli | 1 (1.0) | 6 (4.7) | |
Klebsiella pneumoniae | 0 | 4 (3.1) | |
Klebsiella variicola | 0 | 1 (0.8) | |
Morganella morganii | 0 | 2 (1.6) | |
Pseudomonas aeruginosa | 2 (2.0) | 5 (3.9) | |
Total number | 99 | 129 |
Type of Antibiotic | TKA (n = 99) | THA (n = 129) | p-Value (Significant < 0.05) | ||
---|---|---|---|---|---|
S | R | S | R | ||
Penicillin grp. | |||||
Ampicillin | 14/30 (46.7%) | 16/30 (53.3%) | 14/35 (40.0%) | 21/35 (60.0%) | 0.751 |
Oxacillin | 49/74 (66.2%) | 25/74 (33.8%) | 39/80 (48.8%) | 41/80 (51.3%) | 0.03 |
Penicillin | 35/89 (39.3%) | 54/89 (60.7%) | 29/91 (31.9%) | 62/91 (68.1%) | 0.3 |
Cephalosporins | |||||
Cefazolin | 14/21 (66.7%) | 7/21 (33.3%) | 11/17 (64.7%) | 6/17 (35.3%) | 0.270 |
Cefuroxime | 20/27 (74.1%) | 7/27 (25.9%) | 12/20 (60.0%) | 8/20 (40.0%) | 0.055 |
Fluoroquinolones | |||||
Ciprofloxacin | 62/82 (75.6%) | 20/82 (24.4%) | 52/105 (49.5%) | 53/105 (50.5%) | <0.001 |
Levofloxacin | 24/31 (77.4%) | 7/31 (22.6%) | 24/63 (38.1%) | 39/63 (61.9%) | <0.001 |
Moxifloxacin | 66/85 (77.7%) | 19/85 (22.3%) | 58/101 (57.4%) | 43/101 (42.6%) | 0.005 |
Lincosamide | |||||
Clindamycin | 60/90 (66.7%) | 30/90 (33.3%) | 47/89 (52.8%) | 42/89 (47.2%) | <0.001 |
Sulfonamide | |||||
Co-trimoxazole | 32/40 (80.0%) | 8/40 (20.0%) | 59/90 (65.6%) | 31/90 (34.4%) | <0.001 |
Macrolide | |||||
Erythromycin | 36/62 (58.1%) | 26/62 (41.9%) | 36/77 (46.8%) | 41/77 (53.2%) | 0.373 |
Phosphonic acid | |||||
Fosfomycin | 56/76 (73.7%) | 20/76 (26.3%) | 56/92 (60.9%) | 36/92 (39.1%) | 0.138 |
Fusidane class | |||||
Fusidic acid | 57/74 (77.0%) | 17/74 (23.0%) | 60/80 (75.0%) | 20/80 (25.0%) | 0.121 |
Carbapenem | |||||
Imipenem | 15/15 (100.0%) | 0/15 (0.0%) | 38/41 (92.7%) | 3/41 (7.3%) | 0.010 |
Oxazolidinone | |||||
Linezolid | 63/63 (100.0%) | 0/63 (0.0%) | 88/89 (98.9%) | 1/89 (1.1%) | 0.490 |
Antimycobacterial | |||||
Rifampicin | 49/50 (98.0%) | 1/50 (2.0%) | 56/72 (77.8%) | 16/72 (22.2%) | 0.005 |
Tetracycline grp. | |||||
Tetracycline | 35/36 (97.2%) | 1/36 (2.8%) | 64/72 (88.9%) | 8/72 (11.1%) | 0.009 |
Tigecycline | 61/62 (98.4%) | 1/62 (1.6%) | 102/102 (100.0%) | 0/102 (0.0%) | 0.015 |
Glycopeptides | |||||
Teicoplanin | 60/60 (100.0%) | 0/60 (0.0%) | 82/83 (98.8%) | 1/83 (1.2%) | 0.590 |
Vancomycin | 72/72 (100.0%) | 0/72 (0.0%) | 85/86 (98.8%) | 1/86 (1.2%) | 0.403 |
Type of Antibiotic | TKA (n = 94) | THA (n = 105) | p-Value (Significant < 0.05) | ||
---|---|---|---|---|---|
S | R | S | R | ||
Ampicillin | 14/27 (51.9%) | 13/27 (48.1%) | 13/17 (76.5%) | 4/17 (23.5%) | 0.10 |
Oxacillin | 49/74 (66.2%) | 25/74 (33.8%) | 39/80 (48.8%) | 41/80 (51.3%) | 0.03 |
Penicillin | 35/89 (39.3%) | 54/89 (60.7%) | 29/91 (31.9%) | 62/91 (68.1%) | 0.3 |
Cefazolin | 14/20 (70.0%) | 6/20 (30%) | 11/17 (64.7%) | 6/17 (35.3%) | 0.73 |
Cefuroxime | 18/24 (75.0%) | 6/24 (25.0%) | 3/5 (60%) | 2/5 (40%) | 0.49 |
Ciprofloxacin | 57/77 (74.0%) | 20/77 (15.4%) | 35/81 (43.2%) | 46/81 (56.8%) | <0.001 |
Levofloxacin | 23/29 (79.3) | 6/29 (20.7%) | 24/63 (38.1%) | 39/63 (61.9%) | <0.001 |
Moxifloxacin | 65/84 (77.4%) | 19/84 (22.6%) | 46/83 (55.4%) | 37/83 (44.6%) | 0.003 |
Clindamycin | 60/90 (66.7%) | 30/90 (33.3%) | 47/89 (52.8%) | 42/89 (47.2%) | 0.06 |
Co-trimoxazole | 30/37 (81.1%) | 7/37 (18.9%) | 46/71 (64.8%) | 25/71 (35.2%) | 0.08 |
Erythromycin | 36/61 (59.0%) | 25/61 (41.0%) | 36/77 (46.8%) | 41/77 (53.2%) | 0.15 |
Fosfomycin | 55/73 (75.3%) | 18/73 (24.7%) | 48/79 (60.8%) | 31/79 (39.2%) | 0.06 |
Fucidin acid | 57/74 (77.0%) | 17/74 (23.0%) | 60/80 (75.0%) | 20/80 (25.0%) | 0.77 |
Imipenem | 10/10 (100.0%) | 0/10 (0.0%) | 19/20 (95.0%) | 1/20 (5.0%) | 0.47 |
Linezolid | 62/62 (100.0%) | 0/62 (0.0%) | 88/89 (98.9%) | 1/89 (1.1%) | 0.4 |
Rifampicin | 48/49 (98.0%) | 1/49 (2.0%) | 56/72 (77.8%) | 16/72 (22.2%) | 0.002 |
Tetracycline | 34/35 (97.1%) | 1/35 (2.9%) | 64/72 (88.9%) | 8/72 (11.1%) | 0.15 |
Tigecycline | 60/60 (100.0%) | 0/60 (0.0%) | 89/89 (100.0%) | 0/89 (0.0%) | NA |
Teicoplanin | 59/59 (100.0%) | 0/59 (0.0%) | 82/83 (98.8%) | 1/83 (1.2%) | NA |
Vancomycin | 71/71 (100.0%) | 0/71 (0.0%) | 85/86 (98.8%) | 1/86 (1.2%) | 0.36 |
Type of Antibiotic | TKA (n = 5) | THA (n = 24) | p-Value (Significant < 0.05) | ||
---|---|---|---|---|---|
S | R | S | R | ||
Ampicillin | 0/3 (0.0%) | 3/3 (100.0%) | 1/18 (5.6%) | 17/18 (94.4%) | 0.68 |
Oxacillin | NA | NA | NA | NA | NA |
Penicillin | NA | NA | NA | NA | NA |
Cefazolin | 0/1 (0.0%) | 1/1 (100.0%) | NA | NA | NA |
Cefuroxime | 2/3 (66.7%) | 1/3 (33.3%) | 9/15 (60%) | 6/15 (40%) | 0.83 |
Ciprofloxacin | 5/5 (100.0%) | 0/5 (0.0%) | 17/24 (70.8%) | 7/24 (29.2%) | 0.17 |
Levofloxacin | 1/2 (50.0%) | 1/2 (50.0%) | NA | NA | NA |
Moxifloxacin | 1/1 (100.0%) | 0/1 (0.0%) | 12/18 (66.7%) | 6/18 (33.3%) | 0.49 |
Clindamycin | NA | NA | NA | NA | NA |
Co-trimoxazole | 2/3 (66.7%) | 1/3 (33.3%) | 13/19 (68.4%) | 6/19 (31.6%) | 0.95 |
Erythromycin | 0/1 (0.0%) | 1/1 (100.0%) | NA | NA | NA |
Fosfomycin | 1/3 (33.3%) | 2/3 (66.7%) | 8/13 (61.5%) | 5/13 (38.5%) | 0.37 |
Fucidin acid | NA | NA | NA | NA | NA |
Imipenem | 5/5 (100.0%) | 0/5 (0.0%) | 19/21 (90.5%) | 2/21 (9.5%) | NA |
Linezolid | 1/1 (100.0%) | 0/1 (0.0%) | NA | NA | NA |
Rifampicin | 1/1 (100.0%) | 0/1 (0.0%) | NA | NA | NA |
Tetracycline | 1/1 (100.0%) | 0/1 (0.0%) | NA | NA | NA |
Tigecycline | 1/2 (50.0%) | 1/2 (50.0%) | 13/13 (100.0%) | 0/13 (0.0%) | 0.01 |
Teicoplanin | 1/1 (100.0%) | 0/1 (0.0%) | NA | NA | NA |
Vancomycin | 1/1 (100.0%) | 0/1 (0.0%) | NA | NA | NA |
Type of Antibiotic | 2007–2016 (n = 90) | 2017–2020 (n = 138) | p-Value (Significant < 0.05) | ||
---|---|---|---|---|---|
S | R | S | R | ||
Penicillin grp. | |||||
Ampicillin | 14/33 (42.4%) | 19/33 (57.6%) | 14/32 (43.8%) | 18/32 (56.2%) | 0.91 |
Oxacillin | 40/67 (59.7%) | 27/67 (40.3%) | 48/87 (55.2%) | 39/87 (44.8%) | 0.57 |
Penicillin | 33/81 (40.7%) | 48/81 (59.3%) | 31/99 (31.3%) | 68/99 (68.7%) | 0.19 |
Cephalosporins | |||||
Cefuroxime | 21/30 (70.0%) | 9/30 (30.0%) | 11/17 (64.7%) | 6/17 (35.3%) | 0.71 |
Fluoroquinolones | |||||
Ciprofloxacin | 51/72 (70.8%) | 21/72 (29.2%) | 63/115 (54.8%) | 52/115 (45.2%) | 0.03 |
Moxifloxacin | 57/77 (74.0%) | 20/77 (26.0%) | 67/109 (61.5%) | 42/109 (38.5%) | 0.07 |
Lincosamide | |||||
Clindamycin | 52/80 (65.0%) | 28/80 (35.0%) | 55/99 (55.6%) | 44/99 (44.4%) | 0.20 |
Sulfonamide | |||||
Co-trimoxazole | 20/29 (69.0%) | 9/29 (31.0%) | 71/101 (70.3%) | 30/101 (29.7%) | 0.89 |
Macrolide | |||||
Erythromycin | 26/51 (51.0%) | 25/51 (49.0%) | 46/88 (52.3%) | 42/88 (47.7%) | 0.88 |
Phosphonic acid | |||||
Fosfomycin | 45/70 (64.3%) | 25/70 (35.7%) | 67/98 (68.4%) | 31/98 (31.4%) | 0.58 |
Fusidane class | |||||
Fusidic acid | 53/67 (79.1%) | 14/67 (20.9%) | 64/87 (73.6%) | 23/87 (26.4%) | 0.43 |
Oxazolidinone | |||||
Linezolid | 49/49 (100.0%) | 0 | 102/103 (99.0%) | 1 (1.0%) | 0.49 |
Antimycobacterial | |||||
Rifampicin | 35/36 (97.2%) | 1/36 (2.8%) | 70/86 (81.4%) | 16/86 (18.6%) | 0.02 |
Tetracycline grp. | |||||
Tetracycline | 23/24 (95.8%) | 1/24 (4.2%) | 76/84 (90.5%) | 8/84 (9.5%) | 0.40 |
Tigecycline | 51/52 (98.1%) | 1 (1.9%) | 112/112 (100.0%) | 0 | 0.14 |
Glycopeptides | |||||
Teicoplanin | 48/48 (100.0%) | 0 | 94/95 (99.0%) | 1/95 (1.0%) | 0.48 |
Vancomycin | 57/57 (100.0%) | 0 | 100/101 (99.0%) | 1/101 (1.0%) | 0.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stevoska, S.; Himmelbauer, F.; Stiftinger, J.; Stadler, C.; Pisecky, L.; Gotterbarm, T.; Klasan, A. Significant Difference in Antimicrobial Resistance of Bacteria in Septic Revision between Total Knee Arthroplasty and Total Hip Arthroplasty. Antibiotics 2022, 11, 249. https://doi.org/10.3390/antibiotics11020249
Stevoska S, Himmelbauer F, Stiftinger J, Stadler C, Pisecky L, Gotterbarm T, Klasan A. Significant Difference in Antimicrobial Resistance of Bacteria in Septic Revision between Total Knee Arthroplasty and Total Hip Arthroplasty. Antibiotics. 2022; 11(2):249. https://doi.org/10.3390/antibiotics11020249
Chicago/Turabian StyleStevoska, Stella, Felix Himmelbauer, Julian Stiftinger, Christian Stadler, Lorenz Pisecky, Tobias Gotterbarm, and Antonio Klasan. 2022. "Significant Difference in Antimicrobial Resistance of Bacteria in Septic Revision between Total Knee Arthroplasty and Total Hip Arthroplasty" Antibiotics 11, no. 2: 249. https://doi.org/10.3390/antibiotics11020249
APA StyleStevoska, S., Himmelbauer, F., Stiftinger, J., Stadler, C., Pisecky, L., Gotterbarm, T., & Klasan, A. (2022). Significant Difference in Antimicrobial Resistance of Bacteria in Septic Revision between Total Knee Arthroplasty and Total Hip Arthroplasty. Antibiotics, 11(2), 249. https://doi.org/10.3390/antibiotics11020249