Prevalence and Antibiotic Resistance of Staphylococcus aureus and Escherichia coli Isolated from Bovine Raw Milk in Lebanon: A study on Antibiotic Usage, Antibiotic Residues, and Assessment of Human Health Risk Using the One Health Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Questionnaire-Based Interviews with the Farm Stakeholders
2.3. Sample Collection
2.4. Determination of Antibiotic Residues
2.4.1. Dairy Sample Preparation and Analysis of Antibiotics Using the Liquid Chromatography with Tandem Mass Spectrometry (LC-MS-MS) Method
2.4.2. Liquid Chromatography Conditions
- A = 1 mM heptafluorobutyric acid and 0.5% formic acid in water
- B = 0.5% formic acid in acetonitrile/methanol (1/1)
- C = 2% methanol in water
- D = acetone/acetonitrile/isopropanol (20/40/40).
- Solvent 1: acetonitrile/water (20/80)
- Solvent 2: acetone/acetonitrile/isopropanol—20/40/40
2.4.3. Mass Spectrometry Conditions
2.5. Estimation of Hazard Quotient and Exposure Risk Assessment among All Age Categories
2.5.1. Risk Assessment
Acceptable Daily Intake (ADI) and Maximum Residue Limits (MRLs) of Antibiotics
Exposure Assessment of Antibiotic Residues in Milk
2.5.2. Assessment of Hazard Quotient (HQ)
2.6. Isolation of Antibiotic-Resistant Bacteria
2.6.1. Sample Preparation
2.6.2. Evaluation of the Number of the Mesophilic Flora according to NF ISO 4833
2.6.3. Evaluation of the Number of E. coli according to the RAPID’ E. coli Method NF SDP07/1-07/92
2.6.4. Evaluation of the Number of S. aureus Coagulase Positive ISO6881-1
2.6.5. Confirmation of E. coli and S. aureus
2.6.6. Antibiotic Resistance of E. coli and S. aureus Isolates Using the Disk Diffusion Method
3. Results
3.1. Questionnaire-Based Interviews with the Farm Stakeholders
3.2. Antibiotic Residues
3.3. Risk and Exposure Assessment
3.3.1. Deterministic Approach
3.3.2. Probabilistic Approach
3.4. Isolation of Antibiotic-Resistant Bacteria
3.5. Antibiotic Susceptibility Testing
4. Discussion
4.1. Comparison with Other Countries
4.2. Risk Assessment to the Exposure of the Lebanese Population to Antibiotic Residues from Raw Milk
4.3. Microbiological Quality of Milk
5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization; ABR. Presidential Advisory Council on Combating Antibiotic-Resistant Bacteria (PACCARB). In Proceedings of the 19th PACCARB Virtual Public Meeting, Online, 30 November 2021; Available online: https://www.federalregister.gov/documents/2021/09/03/2021-19027/meetings-of-the-presidential-advisory-council-on-combating-antibiotic-resistant-bacteria (accessed on 26 September 2022).
- Woolhouse, M.; Ward, M.; Van Bunnik, B.; Farrar, J. Antimicrobial resistance in humans, livestock and the wider environment. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20140083. [Google Scholar] [CrossRef]
- Dairy Products. Explore Lebanon’s Cheese Making Heritage and Dairy Industries Offering Distinct Styles and High-Quality Products. Available online: https://lebanonexports.gov.lb/products/diary-honey-product/ (accessed on 2 October 2022).
- FAOSTAT. Food Balance. Milk Excluding Butter. Available online: https://www.fao.org/faostat/en/#compare (accessed on 26 September 2022).
- FAOSTAT. Food Supply and Food Consumption. Milk and Whole Fresh Cow Milk. Available online: https://www.fao.org/faostat/en/#data/SCL (accessed on 26 September 2022).
- Nasreddine, L.; Chamieh, M.C.; Ayoub, J.; Hwalla, N.; Sibai, A.-M.; Naja, F. Sex disparities in dietary intake across the lifespan: The case of Lebanon. Nutr. J. 2020, 19, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jomaa, L.; Hwalla, N.; Chokor, F.A.Z.; Naja, F.; O’Neill, L.; Nasreddine, L. Food consumption patterns and nutrient intakes of infants and young children amidst the nutrition transition: The case of Lebanon. Nutr. J. 2022, 21, 34. [Google Scholar] [CrossRef] [PubMed]
- Jomaa, L.; Nasreddine, L.; Naja, F.; Chehade, L.; Hwalla, N. Sustainable, Healthy and Affordable Diets for Children in Lebanon: A Call for Action in Dire Times. Sustainability 2021, 13, 13245. [Google Scholar] [CrossRef]
- Nasreddine, L.; Naja, F.; Chamieh, M.C.; Adra, N.; Sibai, A.-M.; Hwalla, N. Trends in overweight and obesity in Lebanon: Evidence from two national cross-sectional surveys (1997 and 2009). BMC Public Health 2012, 12, 798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Virto, M.; Santamarina-García, G.; Amores, G.; Hernández, I. Antibiotics in Dairy Production: Where Is the Problem? Dairy 2022, 3, 541–564. [Google Scholar] [CrossRef]
- Munsch-Alatossava, P.; Alatossava, T. Quality and Safety of Bovine Raw Milk: Present Challenges and Technological Solutions; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Perin, L.M.; Pereira, J.G.; Bersot, L.S.; Nero, L.A. The Microbiology of Raw Milk. In Raw Milk; Elsevier: Amsterdam, The Netherlands, 2019; pp. 45–64. [Google Scholar] [CrossRef]
- Krishnamoorthy, P.; Suresh, K.; Jayamma, K.; Shome, B.; Patil, S.; Amachawadi, R. An Understanding of the Global Status of Major Bacterial Pathogens of Milk Concerning Bovine Mastitis: A Systematic Review and Meta-Analysis (Scientometrics). Pathogens 2021, 10, 545. [Google Scholar] [CrossRef]
- Kaniyamattam, K.; Hertl, J.; Tauer, L.; Grohn, Y. Economics of reducing antibiotic usage for pathogen-specific clinical mastitis through genomic selection and disease management. Prev. Vet. Med. 2022, 204, 105642. [Google Scholar] [CrossRef] [PubMed]
- Vierbauch, T.; Peinhopf-Petz, W.; Wittek, T. Effects of milking, over-milking and vacuum levels on front and rear quarter teats in dairy cows. J. Dairy Res. 2021, 88, 396–400. [Google Scholar] [CrossRef]
- Kabrite, S.; Bou-Mitri, C.; Fares, J.E.H.; Hassan, H.F.; Boumosleh, J.M. Identification and dietary exposure assessment of tetracycline and penicillin residues in fluid milk, yogurt, and labneh: A cross-sectional study in Lebanon. Vet. World 2019, 12, 527–534. [Google Scholar] [CrossRef] [Green Version]
- Founou, L.L.; Founou, R.C.; Essack, S. Antibiotic Resistance in the Food Chain: A Developing Country-Perspective. Front. Microbiol. 2016, 7, 1881. [Google Scholar] [CrossRef]
- Tiseo, K.; Huber, L.; Gilbert, M.; Robinson, T.P.; Van Boeckel, T.P. Global Trends in Antimicrobial Use in Food Animals from 2017 to 2030. Antibiotics 2020, 9, 918. [Google Scholar] [CrossRef] [PubMed]
- World Bank. Drug-Resistant Infections: A Threat to Our Economic Future; World Bank: Washington, DC, USA, 2017; Available online: http://www.worldbank.org/en/topic/health/publication/drug-resistant-infections-a-threat-to-our-economic-future (accessed on 4 October 2022).
- Molineri, A.I.; Camussone, C.; Zbrun, M.V.; Archilla, G.S.; Cristiani, M.; Neder, V.; Calvinho, L.; Signorini, M. Antimicrobial resistance of Staphylococcus aureus isolated from bovine mastitis: Systematic review and meta-analysis. Prev. Vet. Med. 2021, 188, 105261. [Google Scholar] [CrossRef]
- Stapleton, P.D.; Taylor, P.W. Methicillin Resistance in Staphylococcus Aureus: Mechanisms and Modulation. Sci. Prog. 2002, 85 Pt 1, 57–72. [Google Scholar] [CrossRef]
- Zaatout, N.; Hezil, D. A meta-analysis of the global prevalence of methicillin-resistant Staphylococcus aureus (MRSA) isolated from clinical and subclinical bovine mastitis. J. Appl. Microbiol. 2021, 132, 140–154. [Google Scholar] [CrossRef]
- Sawa, T.; Kooguchi, K.; Moriyama, K. Molecular diversity of extended-spectrum β-lactamases and carbapenemases, and antimicrobial resistance. J. Intensiv. Care 2020, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Skočková, A.; Bogdanovičová, K.; Koláčková, I.; Karpíšková, R. Antimicrobial-Resistant and Extended-Spectrum β-Lactamase–Producing Escherichia coli in Raw Cow’s Milk. J. Food Prot. 2015, 78, 72–77. [Google Scholar] [CrossRef]
- World Health Organization. Global Action Plan on Antibiotics Resistance. Available online: https://apps.who.int/iris/handle/10665/193736 (accessed on 26 September 2022).
- IACG. No Time to Wait: Securing the Future from Drug-Resistant Infections. Report to the Secretary-General of the United Nations. Available online: https://www.who.int/docs/default-source/documents/no-time-to-wait-securing-the-future-from-drug-resistant-infections-en.pdf (accessed on 26 September 2022).
- UNSDG. United Nations Sustainable Development Cooperation Framework—Internal Guidance. Available online: https://unsdg.un.org/sites/default/files/2019-10/UN-Cooperation-Framework-Internal-Guidance-Final-June-2019_1.pdf (accessed on 26 September 2022).
- WHO. Call to Action on Antibiotics Resistance 2021. Available online: https://www.who.int/news/item/30-07-2021-call-to-action-on-antibiotics-resistance-2021 (accessed on 26 September 2022).
- Antibiotics Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet Lond. Engl. 2022, 399, 629–655. [Google Scholar] [CrossRef]
- FAO. Strategic Framework 2022–2031, Rome. October 2021. Available online: https://www.fao.org/pwb (accessed on 26 September 2022).
- BAU—Beirut Arab University. Shortage of Infant Milk in Lebanon Alternatives and Solutions. Available online: https://www.bau.edu.lb/Public-Relations/News/Shortage-of-Infant-Milk-in-Lebanon-Alternatives-and-Solutions (accessed on 4 October 2022).
- Union of Arab Banks. World Bank: Food Prices in Lebanon Highest in MENA. Available online: https://uabonline.org/ar/world-bank-food-prices-in-lebanon-highest-in-mena/ (accessed on 4 October 2022).
- FAO; WHO. Maximum Residue Limits (MRLs) and Risk Management Recommendations (RMRs) for Residues of Veterinary Drugs in Foods. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXM%2B2%252FMRL2e.pdf (accessed on 19 September 2022).
- The European Agency for the Evaluation of Medicinal Products. Oxytetracycline, Tetracycline, Chlortetracycline; Summary Report (3); 7 Westferry Circus: London, UK, 2000; Available online: https://www.ema.europa.eu/en/documents/mrl-report/oxytetracycline-tetracycline-chlortetracycline-summary-report-3-committee-veterinary-medicinal_en.pdf (accessed on 16 September 2022).
- Aalipour, F.; Mirlohi, M.; Jalali, M.; Azadbakht, L. Dietary exposure to tetracycline residues through milk consumption in Iran. J. Environ. Health Sci. Eng. 2015, 13, 80. [Google Scholar] [CrossRef] [Green Version]
- Rahman, S.; Hassan, M.M.; Chowdhury, S. Determination of antibiotic residues in milk and assessment of human health risk in Bangladesh. Heliyon 2021, 7, e07739. [Google Scholar] [CrossRef]
- Joint FAO/WHO Expert Committee on Food Additives (JECFA). Residue Evaluation of Certain Veterinary Drugs. 75th Meeting. FAO JECFA Monographs 12. Available online: https://www.fao.org/publications/card/en/c/2100d874-826a-49e8-9630-2a98c3f0ca80/ (accessed on 4 October 2022).
- The European Agency for the Evaluation of Medicinal Products. Enrofloxacin Extension to All Food Producing Species; Summary Report (5); 7 Westferry Circus: London, UK, 2002; Available online: https://www.ema.europa.eu/en/documents/mrl-report/enrofloxacin-extension-all-food-producing-species-summary-report-5-committee-veterinary-medicinal_en.pdf (accessed on 16 September 2022).
- EMA. Committee for Veterinary Medicinal Products; Marbofloxacin; Summary Report (3); 7 Westferry Circus: London, UK, 2000; Available online: https://www.ema.europa.eu/en/documents/mrl-report/marbofloxacin-summary-report-2-committee-veterinary-medicinal-products_en.pdf (accessed on 16 September 2022).
- The European Agency for the Evaluation of Medicinal Products. Trimethoprim Extension to All Food Producing Species; Summary Report (3); 7 Westferry Circus: London, UK, 2000; Available online: https://www.ema.europa.eu/en/documents/mrl-report/trimethoprim-extension-all-food-producing-species-summary-report-3-committee-veterinary-medicinal_en.pdf (accessed on 16 September 2022).
- The European Agency for the Evaluation of Medicinal Products. Tilmicosin (Extension to Milk); Summary Report (4); 7 Westferry Circus: London, UK, 2000; Available online: https://www.ema.europa.eu/en/documents/mrl-report/tilmicosin-extension-milk-summary-report-4-committee-veterinary-medicinal-products_en.pdf (accessed on 16 September 2022).
- The European Agency for the Evaluation of Medicinal Products. Kanamycin; Summary Report (2); 7 Westferry Circus: London, UK, 2003; Available online: https://www.ema.europa.eu/en/documents/mrl-report/kanamycin-summary-report-2-committee-veterinary-medicinal-products_en.pdf (accessed on 16 September 2022).
- The European Agency for the Evaluation of Medicinal Products. Danofloxacin (Extension to All Food Producing Species); Summary Report (6); 7 Westferry Circus: London, UK, 2002; Available online: https://www.ema.europa.eu/en/documents/mrl-report/danofloxacin-extension-all-food-producing-species-summary-report-6-committee-veterinary-medicinal_en.pdf (accessed on 16 September 2022).
- Parmar, P.; Lopez-Villalobos, N.; Tobin, J.T.; Murphy, E.; McDonagh, A.; Crowley, S.V.; Kelly, A.L.; Shalloo, L. The Effect of Compositional Changes Due to Seasonal Variation on Milk Density and the Determination of Season-Based Density Conversion Factors for Use in the Dairy Industry. Foods 2020, 9, 1004. [Google Scholar] [CrossRef]
- ICS. 67.100.10; Standards of Raw Milk in Lebanon. LIBNOR: Dekwaneh, Lebanon, 1999.
- Annexe II—Critères Microbiologiques/Produits Laitiers/Producteurs Fermiers/Sécurité de l’Alimentation/Alimentation, Consommation et Commerce/Politiques Publiques/Accueil-Les Services de l’État dans les Pyrénées-Atlantiques. Available online: https://www.pyrenees-atlantiques.gouv.fr/Politiques-publiques/Alimentation-consommation-et-commerce/Securite-de-l-Alimentation/Producteurs-fermiers/Produits-laitiers/Annexe-II-Criteres-microbiologiques (accessed on 16 September 2022).
- Dankar, I.; Hassan, H.; Serhan, M. Knowledge, attitudes, and perceptions of dairy farmers regarding antibiotic use: Lessons from a developing country. J. Dairy Sci. 2022, 105, 1519–1532. [Google Scholar] [CrossRef] [PubMed]
- Yazbeck, N.; Mansour, R.; Salame, H.; Chahine, N.B.; Hoteit, M. The Ukraine–Russia War Is Deepening Food Insecurity, Unhealthy Dietary Patterns and the Lack of Dietary Diversity in Lebanon: Prevalence, Correlates and Findings from a National Cross-Sectional Study. Nutrients 2022, 14, 3504. [Google Scholar] [CrossRef] [PubMed]
- Wehrey, F. The Impact of Russia’s Invasion of Ukraine in the Middle East and North Africa. Available online: https://www.csis.org/analysis/impact-russias-invasion-ukraine-middle-east-and-north-africa (accessed on 4 October 2022).
- CDC. Escherichia coli O157:H7 Infection Associated with Drinking Raw—Washington and Oregon, November and December Milk. 2005. Available online: http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5608a3.htm (accessed on 2 October 2022).
- American Medical Association. Position on Milk and Human Health. Available online: http://www.ama-assn.org/apps/pf_new/pf_online?f_n=browse&doc=policyfiles/HnE/H-150.980.HTM&&s_t=&st_p=&nth=1&prev_pol=policyfiles/HnE/H-145.999.HTM&nxt_pol=policyfiles/HnE/H-150.946.HTM& (accessed on 4 October 2022).
- American Academy of Pediatrics. Position on Unpasteurized Milk and Cheese. Available online: http://aapredbook.aappublications.org/cgi/content/full/2006/1/A.VII (accessed on 4 October 2022).
- U.S. Government Printing Office. CFR Section 1240.61 Mandatory Pasteurization for All Milk and Milk Products in Final Package Form Intended for Direct Human Consumption. Available online: http://a257.g.akamaitech.net/7/257/2422/10apr20061500/edocket.access.gpo.gov/cfr_2006/aprqtr/21cfr1240.61.htm (accessed on 4 October 2022).
- FDA. On the Safety of Raw Milk. Available online: http://www.cfsan.fda.gov/~ear/milksafe.html (accessed on 4 October 2022).
- FDA. FDA Raw Milk Position Statement. Available online: http://www.cfsan.fda.gov/~ear/mi-03-4.html (accessed on 4 October 2022).
- Melse-Boonstra, A. Bioavailability of Micronutrients From Nutrient-Dense Whole Foods: Zooming in on Dairy, Vegetables, and Fruits. Front. Nutr. 2020, 7, 101. [Google Scholar] [CrossRef] [PubMed]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef] [Green Version]
- Savarino, A.; Terio, V.; Barrasso, R.; Ceci, E.; Panseri, S.; Chiesa, L.M.; Bonerba, E. Occurrence of antibiotic residues in Apulian honey: Potential risk of environmental pollution by antibiotics. Ital. J. Food Saf. 2020, 9, 8678. [Google Scholar] [CrossRef] [Green Version]
- Nikolić, N.; Mirecki, S.; Blagojević, M. Presence of Inhibitory Substances in Raw Milk in the Area of Montenegro. Prerade Mlijeka 2011, 61, 182–187. [Google Scholar]
- Mokh, S.; El Hawari, K.; Rahim, H.A.; Al Iskandarani, M.; Jaber, F. Antimicrobial residues survey by LC-MS in food-producing animals in Lebanon. Food Addit. Contam. Part B 2020, 13, 121–129. [Google Scholar] [CrossRef]
- Zeina, K.; Pamela, A.K.; Fawwak, S. Quantification of Antibiotic Residues and Determination of Antimicrobial Resistance Profiles of Microorganisms Isolated from Bovine Milk in Lebanon. Food Nutr. Sci. 2013, 4, 1–9. [Google Scholar] [CrossRef]
- Das, Y.K.; Yavuz, O.; Atmaca, E.; Aksoy, A. Tetracycline Antibiotics in Raw Cow’s Milk Produced in Samsun Province, Turkey. Fresenius Environ. Bull. 2019, 28, 5982–5988. [Google Scholar]
- Chiesa, L.M.; De Castelli, L.; Nobile, M.; Martucci, F.; Mosconi, G.; Fontana, M.; Castrica, M.; Arioli, F.; Panseri, S. Analysis of antibiotic residues in raw bovine milk and their impact toward food safety and on milk starter cultures in cheese-making process. LWT 2020, 131, 109783. [Google Scholar] [CrossRef]
- Abbasi, M.M.; Babaei, H.; Ansarin, M.; Nourdadgar, A.-O.; Nemati, M. Simultaneous Determination of Tetracyclines Residues in Bovine Milk Samples by Solid Phase Extraction and HPLC-FL Method. Adv. Pharm. Bull. 2011, 1, 34–39. [Google Scholar] [CrossRef]
- El-Makarem, H.S.A.; El-Leboudy, A.A.; Mahmoud, N.E. Antibiotics Residues of Some Famous Antibiotics in Raw Milk of Different Species Sold at Local Markets. Alex. J. Vet. Sci. 2020, 64, 72–77. [Google Scholar]
- Abebew, D.; Belihu, K.; Zewde, G. Detection and Determination of Oxytetracycline and Penicillin G Antibiotic Residue Levels in Bovine Bulk Milk from Nazareth Dairy Farms, Ethiopia. Ethiop. Vet. J. 2014, 18, 1–15. [Google Scholar] [CrossRef]
- Moudgil, P.; Bedi, J.S.; Aulakh, R.S.; Gill, J.P.S. Antibiotic residues and mycotoxins in raw milk in Punjab (India): A rising concern for food safety. J. Food Sci. Technol. 2019, 56, 5146–5151. [Google Scholar] [CrossRef]
- Fritz, J.W.; Zuo, Y. Simultaneous determination of tetracycline, oxytetracycline, and 4-epitetracycline in milk by high-performance liquid chromatography. Food Chem. 2007, 105, 1297–1301. [Google Scholar] [CrossRef]
- Patel, N.M.; Kumar, R.; Savalia, C.V.; Desai, D.N.; Kalyani, I.H. Dietary Exposure and Risk Assessment of Antibiotics Residues in Marketed Bovine Raw Milk. J. Entomol. Zool. Stud. 2020, 8, 1823–1827. [Google Scholar]
- Bilandžić, N.; Solomun Kolanović, B.; Varenina, I.; Jurković, Z. Concentrations of Veterinary Drug Residues in Milk from Individual Farms in Croatia. Prerade Mlijeka 2011, 61, 260–267. [Google Scholar]
- Najim, N.H.; Kurashi, A.S.M.A. Detection of Antibiotic Residues in Locally Raw Milk by Using High Performance Liquid Chromatography at Different Seasons and the Effect of Heat Treatment on Their Concentration. Iraqi J. Vet. Med. 2017, 41, 131–136. [Google Scholar]
- Freitas, R.; Nero, L.; Carvalho, A. Technical note: Enumeration of mesophilic aerobes in milk: Evaluation of standard official protocols and Petrifilm aerobic count plates. J. Dairy Sci. 2009, 92, 3069–3073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LACTIMED. Developing the Typical Dairy Products of the Beqaa and Baalbeck-Hermel. Available online: https://www.iamm.ciheam.org/ress_doc/opac_css/doc_num.php?explnum_id=14000 (accessed on 3 November 2022).
- Centers for Disease Control and Prevention. ESBL-Producing Enterobacteriaceae in Healthcare Settings. 2019. Available online: https://www.cdc.gov/hai/organisms/ESBL.html (accessed on 4 October 2022).
- Tekiner, I.H.; Özpınar, H. Occurrence and characteristics of extended spectrum beta-lactamases-producing Enterobacteriaceae from foods of animal origin. Braz. J. Microbiol. 2016, 47, 444–451. [Google Scholar] [CrossRef] [Green Version]
- Odenthal, S.; Akineden, Ö.; Usleber, E. Extended-spectrum β-lactamase producing Enterobacteriaceae in bulk tank milk from German dairy farms. Int. J. Food Microbiol. 2016, 238, 72–78. [Google Scholar] [CrossRef]
- Kadariya, J.; Smith, T.C.; Thapaliya, D. Staphylococcus aureus and Staphylococcal Food-Borne Disease: An Ongoing Challenge in Public Health. BioMed Res. Int. 2014, 2014, 827965. [Google Scholar] [CrossRef] [Green Version]
- Babak, V.; Schlegelová, J.; Vlková, H. Interpretation of the results of antimicrobial susceptibility analysis of Escherichia coli isolates from bovine milk, meat and associated foodstuffs. Food Microbiol. 2005, 22, 353–358. [Google Scholar] [CrossRef]
- Rahi, A.; Kazemeini, H.; Jafariaskari, S.; Seif, A.; Hosseini, S.; Dehkordi, F.S. Genotypic and Phenotypic-Based Assessment of Antibiotic Resistance and Profile of Staphylococcal Cassette Chromosome mec in the Methicillin-Resistant Staphylococcus aureus Recovered from Raw Milk. Infect. Drug Resist. 2020, 13, 273–283. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.; Sharma, S.; Dahiya, D.K.; Khan, A.; Mathur, M.; Sharma, A. Coagulase gene polymorphism, enterotoxigenecity, biofilm production, and antibiotic resistance in Staphylococcus aureus isolated from bovine raw milk in North West India. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 65. [Google Scholar] [CrossRef] [Green Version]
- Riva, A.; Borghi, E.; Cirasola, D.; Colmegna, S.; Borgo, F.; Amato, E.; Pontello, M.M.; Morace, G. Methicillin-Resistant Staphylococcus aureus in Raw Milk: Prevalence, SCCmec Typing, Enterotoxin Characterization, and Antimicrobial Resistance Patterns. J. Food Prot. 2015, 78, 1142–1146. [Google Scholar] [CrossRef] [Green Version]
- Chamoun, K.; Farah, M.; Araj, G.; Daoud, Z.; Moghnieh, R.; Salameh, P.; Saade, D.; Mokhbat, J.; Abboud, E.; Hamze, M.; et al. Surveillance of antimicrobial resistance in Lebanese hospitals: Retrospective nationwide compiled data. Int. J. Infect. Dis. 2016, 46, 64–70. [Google Scholar] [CrossRef] [Green Version]
- Jones, G.M. Preventing Drug Residues in Milk and Cull Dairy Cows. Available online: https://vtechworks.lib.vt.edu/bitstream/handle/10919/48406/404-403_pdf.pdf?sequence=1 (accessed on 3 October 2022).
- Sachi, S.; Ferdous, J.; Sikder, M.; Hussani, S. Antibiotic residues in milk: Past, present, and future. J. Adv. Vet. Anim. Res. 2019, 6, 315–332. [Google Scholar] [CrossRef]
- Madougou, A.M.; Douny, C.; Moula, N.; Scippo, M.-L.; Delcenserie, V.; Daube, G.; Hamani, M.; Korsak, N. Survey on the presence of antibiotic residues in raw milk samples from six sites of the dairy pool of Niamey, Niger. Vet. World 2019, 12, 1970–1974. [Google Scholar] [CrossRef] [Green Version]
- Velazquez-Meza, M.E.; Galarde-López, M.; Carrillo-Quiróz, B.; Alpuche-Aranda, C.M. Antimicrobial resistance: One Health approach. Vet. World 2022, 15, 743–749. [Google Scholar] [CrossRef] [PubMed]
Governorate | Collection Date | Number (%) of Collected Samples | Number of Cattle per Farm per Governorate | Number of Subsistence Systems (1 to 3 Cows) a | Number of Diverse Systems (4 to 6 Cows) b | Number of Specialized Dairy Cattle Systems (7 or More Cows) c |
---|---|---|---|---|---|---|
Beqaa and Baalbeck–Hermel | August 2018 March 2019 July 2019 August 2019 September 2019 | 121 (60.5%) | 21 | 14 | 22 | 83 |
North Lebanon d | April 2018 August 2019 | 22 (11%) | 21 | 0 | 2 | 9 |
South Lebanon e | July 2019 | 26 (13%) | 15 | 0 | 1 | 21 |
Mount Lebanon | July 2019 | 31 (15.5%) | 17 | 1 | 5 | 23 |
Total | 200 | 74 | 15 | 30 | 136 |
Compound | CCα (µg.kg−1) Decision Limit | CCβ (µg.kg−1) Detection Capability | Recovery % | CV Intraday % | CV Interday % |
---|---|---|---|---|---|
Enrofloxacin | 0.11 | 0.24 | 97 | 11 | 13 |
Marbofloxacin | 0.14 | 0.25 | 96 | 10 | 12 |
Trimethoprim | 0.25 | 0.33 | 95 | 10 | 14 |
Gentamicin | 0.23 | 0.31 | 96 | 11 | 16 |
Sulfamethazin | 0.11 | 0.23 | 95 | 10 | 12 |
Oxytetracycline | 0.10 | 0.24 | 97 | 10 | 14 |
Florfenicol | 0.22 | 0.32 | 95 | 15 | 18 |
Tilmicosin | 0.13 | 0.25 | 95 | 8 | 12 |
Spectinomycin | 0.35 | 0.51 | 95 | 13 | 18 |
Penicillin G | 0.15 | 0.30 | 96 | 12 | 16 |
Amoxicillin | 0.51 | 0.65 | 95 | 15 | 18 |
Spiramycin | 0.12 | 0.25 | 95 | 11 | 13 |
Colistin | 0.20 | 0.30 | 95 | 10 | 13 |
Kanamycin | 0.50 | 0.70 | 95 | 9 | 12 |
Danofloxacin | 0.13 | 0.27 | 95 | 11 | 13 |
Tylosin | 0.15 | 0.25 | 96 | 12 | 15 |
Disease | Number of Infected Cattle | Governorate |
---|---|---|
Cowpox–septicemia | 7 | Mount Lebanon |
FMD a | 16 | Beqaa + Baalbeck–Hermel |
Hepatitis | 25 | South |
Hepatitis–mastitis | 56 | South |
Hepatitis–mastitis–respiratory infection | 41 | South |
Hoof disease | 24 | Mount Lebanon |
Non-specific infections | 14 | Mount Lebanon |
Mastitis–hoof disease | 40 | Beqaa + Baalbeck–Hermel |
Antibiotic | Positive Samples N (%) | Minimum Value (μg/kg) | Maximum Value (μg/kg) | Mean * ± SD a (μg/kg) | MRL b Value (μg/kg) | No. of Samples Exceeding MRLs | References |
---|---|---|---|---|---|---|---|
Oxytetracycline | 16 (8) | 5.19 | 123.73 | 31.51 ± 13.23 | 100 | 1 | [34] |
Colistin | 4 (2) | 2.15 | 8.33 | 4.56 ± 0.73 | 50 | 0 | [33] |
Tylosin | 8 (4) | 3.07 | 5.75 | 4.44 ± 0.89 | 100 | 0 | [33] |
Gentamycin | 2 (1) | 5.33 | 5.67 | 5.5 ± 0.55 | 200 | 0 | [33] |
Enrofloxacin | 0 (0) | ND | ND | ND | 100 ** | ND | [38] |
Marbofloxacin | 0 (0) | ND | ND | ND | 75 | ND | [39] |
Trimethoprim | 0 (0) | ND | ND | ND | 50 | ND | [40] |
Sulfamethazin | 0 (0) | ND | ND | ND | 25 | ND | [33] |
Florfenicol | 0 (0) | ND | ND | ND | - | ND | - |
Tilmicosin | 0 (0) | ND | ND | ND | 40 | ND | [41] |
Spectinomycin | 0 (0) | ND | ND | ND | 200 | ND | [33] |
Penicillin G | 0 (0) | ND | ND | ND | 4 | ND | [33] |
Amoxicillin | 0 (0) | ND | ND | ND | 4 | ND | [33] |
Spiramycin | 0 (0) | ND | ND | ND | 200 | ND | [33] |
Kanamycin | 0 (0) | ND | ND | ND | 100 | ND | [42] |
Danofloxacin | 0 (0) | ND | ND | ND | 100 | ND | [43] |
Governorate | Oxytetracycline N (%) | Gentamicin N (%) | Colistin N (%) | Tylosin N (%) | Total Number of Contaminated Samples N (%) | Total Number of Contaminated Samples Collected from Each Governorate N (%) |
---|---|---|---|---|---|---|
Beqaa and Baalbeck–Hermel | 9 (30) | 2 (6.7) | 4 (13.3) | 7 (23.3) | 22/30 (73.3) | 22/121 (18.2) |
North Lebanon | 2 (6.7) | 0 | 0 | 0 | 2/30 (6.7) | 2/22 (9.1) |
South Lebanon | 2 (6.7) | 0 | 0 | 0 | 2/30 (6.7) | 2/26 (7.7) |
Mount Lebanon | 3 (10) | 0 | 0 | 1 (3.3) | 4/30 (13.25) | 4/31 (12.9) |
Total | 16/30 (53.3) | 2/30 (6.7) | 4/30 (13.3) | 8/30 (26.7) | 30/30 (100) | 30/200 |
Age Group | Weight (kg) | g/day | kg/day | Oxytetracycline | Colistin | Tylosin | Gentamycin | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EDI | HQ | % ADI | EDI | HQ | % ADI | EDI | HQ | % ADI | EDI | HQ | % ADI | |||||
Early childhood (≤5) | Males | 13.41 | 110.95 | 1.11 | 2.61 | 0.09 | 8.69 | 0.38 | 0.05 | 5.39 | 0.37 | 0.01 | 1.22 | 0.46 | 0.02 | 2.28 |
Females | 12.75 | 110.95 | 1.11 | 2.74 | 0.09 | 9.14 | 0.40 | 0.06 | 5.67 | 0.39 | 0.01 | 1.29 | 0.48 | 0.02 | 2.39 | |
Middle childhood and adolescents (6–19.9 years) | Males | 52 | 110.95 | 1.11 | 0.67 | 0.02 | 2.24 | 0.10 | 0.01 | 1.39 | 0.09 | 0.003 | 0.32 | 0.12 | 0.01 | 0.59 |
Females | 48.4 | 110.95 | 1.11 | 0.72 | 0.02 | 2.41 | 0.10 | 0.01 | 1.49 | 0.10 | 0.003 | 0.34 | 0.13 | 0.01 | 0.63 | |
Adults (20–59.9) | Males | 60 | 110.95 | 1.11 | 0.58 | 0.02 | 1.94 | 0.08 | 0.01 | 1.20 | 0.08 | 0.003 | 0.27 | 0.10 | 0.01 | 0.51 |
Females | 60 | 110.95 | 1.11 | 0.58 | 0.02 | 1.94 | 0.08 | 0.01 | 1.20 | 0.08 | 0.003 | 0.27 | 0.10 | 0.01 | 0.51 | |
Elderly (≥60 years) | Males | 78.88 | 110.95 | 1.11 | 0.44 | 0.01 | 1.48 | 0.06 | 0.01 | 0.92 | 0.06 | 0.002 | 0.21 | 0.08 | 0.004 | 0.39 |
Females | 71.68 | 110.95 | 1.11 | 0.49 | 0.02 | 1.63 | 0.07 | 0.01 | 1.01 | 0.07 | 0.002 | 0.23 | 0.09 | 0.004 | 0.43 |
Age Group | Weight (kg) | g/day | kg/day | Oxytetracycline | Colistin | Tylosin | Gentamycin | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EDI | HQ | % ADI | EDI | HQ | % ADI | EDI | HQ | % ADI | EDI | HQ | % ADI | |||||
Early Childhood (≤5) | Males | 13.41 | 110.95 | 1.11 | 1.62 | 0.05 | 5.40 | 0.23 | 0.33 | 3.35 | 0.228 | 7.6 × 10−3 | 0.76 | 0.28 | 0.01 | 1.41 |
Females | 12.75 | 110.95 | 1.11 | 1.70 | 0.06 | 5.68 | 0.25 | 0.035 | 3.52 | 0.240 | 8 × 10−3 | 0.80 | 0.30 | 0.02 | 1.49 | |
Middle childhood and adolescents (6–19.9 years) | Males | 52 | 110.95 | 1.11 | 0.037 | 1.23 × 10−3 | 0.123 | 0.005 | 7.14 × 10−4 | 0.08 | 0.005 | 1.67 × 10−4 | 0.02 | 0.006 | 3 × 10−4 | 0.03 |
Females | 48.4 | 110.95 | 1.11 | 0.040 | 1.33 × 10−3 | 0.132 | 0.006 | 8.57 × 10−4 | 0.08 | 0.006 | 2 × 10−4 | 0.02 | 0.007 | 3.5 × 10−4 | 0.03 | |
Adults (20–59.9) | Males | 60 | 110.95 | 1.11 | 0.014 | 4.67 × 10−4 | 0.047 | 0.002 | 2.86 × 10−4 | 0.03 | 0.002 | 6.67 × 10−5 | 0.01 | 0.002 | 1 × 10−4 | 0.01 |
Females | 60 | 110.95 | 1.11 | 0.019 | 6.32 × 10−4 | 0.062 | 0.003 | 4.29 × 10−4 | 0.04 | 0.003 | 1 × 10−4 | 0.01 | 0.003 | 1.5 × 10−4 | 0.02 | |
Elderly (≥60 years) | Males | 78.88 | 110.95 | 1.11 | 0.013 | 4.33 × 10−4 | 0.043 | 0.002 | 2.86 × 10−4 | 0.03 | 0.002 | 6.67 × 10−5 | 0.01 | 0.002 | 1 × 10−4 | 0.01 |
Females | 71.68 | 110.95 | 1.11 | 0.020 | 6.67 × 10−4 | 0.065 | 0.003 | 4.29 × 10−4 | 0.04 | 0.003 | 1 × 10−4 | 0.01 | 0.003 | 1.5 × 10−4 | 0.02 |
Samples | No. of Cattle/Farm | Date of Collection | Disease | Governorates a | Oxytetracycline Mean (μg/kg) | Colistin Mean (μg/kg) | Tylosin Mean (μg/kg) | Gentamicin Mean (μg/kg) | Mesophilic Flora at 30 °C (CFU/mL) | E. coli at 42 °C (CFU/mL) | S. aureus at 37 °C (CFU/mL) |
---|---|---|---|---|---|---|---|---|---|---|---|
B126 | 45 | Jul-19 | No | B-H | ND | ND | 3.4 | ND | 0.80 × 105 | ND | ND |
B27 | 10 | Jul-19 | No | B-H | ND | ND | ND | 5.67 | 1.56 × 105 | 2 × 102 | ND |
B120 | 7 | Jul-19 | No | B-H | ND | 8.33 | ND | ND | 3.60 × 105 | ND | ND |
B11 | 7 | Jul-19 | No | B-H | ND | 5.47 | ND | ND | 1.20 × 105 | ND | ND |
B19 | 30 | Jul-19 | No | B-H | 7.35 | ND | ND | ND | 1.13 × 105 | ND | ND |
B72 | 4 | Jul-19 | No | B-H | ND | ND | 5 | ND | 1.76 × 105 | ND | ND |
B56 | 5 | Jul-19 | No | B-H | 50.17 | ND | ND | ND | 0.76 × 105 | ND | ND |
B51 | 30 | Jul-19 | No | B-H | 11.06 | ND | ND | ND | 0.48 × 105 | 3.4 × 102 | ND |
B37 | 16 | Jul-19 | No | B-H | ND | ND | 4.08 | ND | 2.08 × 105 | ND | ND |
B314 | 5 | Sep-19 | No | B-H | 14.36 | ND | ND | ND | 1.20 × 105 | ND | ND |
B143 | 70 | Jul-19 | No | B-H | 75.98 | ND | ND | ND | 2.16 × 105 | 3 × 102 | 5 × 102 |
B159 | 14 | Aug-19 | No | B-H | ND | ND | ND | 5.33 | 2.36 × 105 | ND | ND |
B171 | 40 | Aug-19 | No | B-H | 10.39 | ND | ND | ND | 2.80 × 105 | ND | ND |
B253 | 8 | Jul-19 | No | B-H | ND | ND | 5.03 | ND | 3 × 104 | ND | ND |
B252 | 22 | Sep-19 | No | B-H | ND | 2.28 | ND | ND | 2.80 × 105 | ND | ND |
B200 | 17 | Aug-19 | No | B-H | 61.21 | ND | ND | ND | 3.20 × 105 | ND | ND |
B254 | 25 | Sep-19 | No | B-H | 16.1 | ND | 5.75 | ND | 2.24 × 105 | ND | ND |
B240 | 40 | Aug-19 | No | B-H | ND | ND | 3.95 | ND | 2.12 × 105 | ND | ND |
B258 | 19 | Sep-19 | No | B-H | ND | ND | 3.07 | ND | 2 × 104 | ND | ND |
B234 | 25 | Aug-19 | No | B-H | 24.63 | ND | ND | ND | 0.80 × 105 | ND | 160 |
B188 | 8 | Aug-19 | No | B-H | 6.65 | ND | ND | ND | 1.68 × 105 | ND | ND |
ML12 | 25 | Jul-19 | No | ML | ND | ND | 5.24 | ND | 2.20 × 105 | ND | ND |
ML55 | 8 | Jul-19 | No | ML | 8.52 | ND | ND | ND | 0.88 × 105 | ND | ND |
ML37 | 6 | Jul-19 | No | ML | 21.27 | ND | ND | ND | 2.08 × 105 | ND | ND |
ML28 | 10 | Jul-19 | No | ML | 9.82 | ND | ND | ND | 2.40 × 105 | ND | 8.4 × 102 |
N114 | 18 | Aug-19 | No | N | 72.32 | ND | ND | ND | 3.20 × 105 | ND | ND |
N108 | 10 | Aug-19 | No | N | 42.18 | ND | ND | ND | 2.40 × 105 | ND | ND |
S79 | 18 | Jul-19 | No | S | 6.28 | ND | ND | ND | 2.20 × 105 | ND | ND |
B83 | 35 | Jul-19 | No | B-H | 123.73 | ND | ND | ND | 1.40 × 105 | 4 × 102 | ND |
B156 | 20 | Jul-19 | No | B-H | ND | 2.15 | ND | ND | 2.40 × 105 | ND | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoteit, M.; Yaghi, J.; El Khoury, A.; Daou, R.; Hindieh, P.; Assaf, J.C.; Al Dawi, J.; El Khoury, J.; Al Jawaldeh, A. Prevalence and Antibiotic Resistance of Staphylococcus aureus and Escherichia coli Isolated from Bovine Raw Milk in Lebanon: A study on Antibiotic Usage, Antibiotic Residues, and Assessment of Human Health Risk Using the One Health Approach. Antibiotics 2022, 11, 1815. https://doi.org/10.3390/antibiotics11121815
Hoteit M, Yaghi J, El Khoury A, Daou R, Hindieh P, Assaf JC, Al Dawi J, El Khoury J, Al Jawaldeh A. Prevalence and Antibiotic Resistance of Staphylococcus aureus and Escherichia coli Isolated from Bovine Raw Milk in Lebanon: A study on Antibiotic Usage, Antibiotic Residues, and Assessment of Human Health Risk Using the One Health Approach. Antibiotics. 2022; 11(12):1815. https://doi.org/10.3390/antibiotics11121815
Chicago/Turabian StyleHoteit, Maha, Joseph Yaghi, Andre El Khoury, Rouaa Daou, Pamela Hindieh, Jean Claude Assaf, Jana Al Dawi, Jennifer El Khoury, and Ayoub Al Jawaldeh. 2022. "Prevalence and Antibiotic Resistance of Staphylococcus aureus and Escherichia coli Isolated from Bovine Raw Milk in Lebanon: A study on Antibiotic Usage, Antibiotic Residues, and Assessment of Human Health Risk Using the One Health Approach" Antibiotics 11, no. 12: 1815. https://doi.org/10.3390/antibiotics11121815
APA StyleHoteit, M., Yaghi, J., El Khoury, A., Daou, R., Hindieh, P., Assaf, J. C., Al Dawi, J., El Khoury, J., & Al Jawaldeh, A. (2022). Prevalence and Antibiotic Resistance of Staphylococcus aureus and Escherichia coli Isolated from Bovine Raw Milk in Lebanon: A study on Antibiotic Usage, Antibiotic Residues, and Assessment of Human Health Risk Using the One Health Approach. Antibiotics, 11(12), 1815. https://doi.org/10.3390/antibiotics11121815