Variability of Mycobacterium avium Complex Isolates Drug Susceptibility Testing by Broth Microdilution
Abstract
:1. Introduction
2. The Studies Included in the Review
3. Antibacterial Drugs
3.1. Macrolides
3.2. Ethambutol
3.3. Rifampicin
3.4. Fluoroquinolones
3.5. Isoniazid
3.6. Amikacin
3.7. Linezolid
3.8. Other Drugs
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tortoli, E. On the Valid Publication of Names of Mycobacteria. Eur. Respir. J. 2019, 54, 1901623. [Google Scholar] [CrossRef] [PubMed]
- Chaptal, M.; Andrejak, C.; Bonifay, T.; Beillard, E.; Guillot, G.; Guyomard-Rabenirina, S.; Demar, M.; Trombert-Paolantoni, S.; Jacomo, V.; Mosnier, E.; et al. Epidemiology of Infection by Pulmonary Non-Tuberculous Mycobacteria in French Guiana 2008-2018. PLoS Negl. Trop. Dis. 2022, 16, e0010693. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Yan, J.; Liao, X.; Wang, C.; Wang, C.; Jiang, G.; Dong, L.; Wang, F.; Huang, H.; Wang, G.; et al. Trends and Species Diversity of Non-Tuberculous Mycobacteria Isolated From Respiratory Samples in Northern China, 2014–2021. Front. Public Health 2022, 10, 923968. [Google Scholar] [CrossRef]
- Lee, Y.-M.; Kim, M.-J.; Kim, Y.-J. Increasing Trend of Nontuberculous Mycobacteria Isolation in a Referral Clinical Laboratory in South Korea. Med. Kaunas Lith. 2021, 57, 720. [Google Scholar] [CrossRef] [PubMed]
- Donohue, M.J.; Wymer, L. Increasing Prevalence Rate of Nontuberculous Mycobacteria Infections in Five States, 2008–2013. Ann. Am. Thorac. Soc. 2016, 13, 2143–2150. [Google Scholar] [CrossRef] [PubMed]
- Brode, S.K.; Marchand-Austin, A.; Jamieson, F.B.; Marras, T.K. Pulmonary versus Nonpulmonary Nontuberculous Mycobacteria, Ontario, Canada. Emerg. Infect. Dis. 2017, 23, 1898–1901. [Google Scholar] [CrossRef]
- Jeon, D. Infection Source and Epidemiology of Nontuberculous Mycobacterial Lung Disease. Tuberc. Respir. Dis. 2019, 82, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Winthrop, K.L.; Marras, T.K.; Adjemian, J.; Zhang, H.; Wang, P.; Zhang, Q. Incidence and Prevalence of Nontuberculous Mycobacterial Lung Disease in a Large U.S. Managed Care Health Plan, 2008–2015. Ann. Am. Thorac. Soc. 2020, 17, 178–185. [Google Scholar] [CrossRef]
- Schildkraut, J.A.; Zweijpfenning, S.M.H.; Nap, M.; He, K.; Dacheva, E.; Overbeek, J.; Tostmann, A.; Wertheim, H.F.L.; Hoefsloot, W.; van Ingen, J. The Epidemiology of Nontuberculous Mycobacterial Pulmonary Disease in the Netherlands. ERJ Open Res. 2021, 7, 00207–02021. [Google Scholar] [CrossRef]
- Wu, U.-I.; Holland, S.M. Host Susceptibility to Non-Tuberculous Mycobacterial Infections. Lancet Infect. Dis. 2015, 15, 968–980. [Google Scholar] [CrossRef]
- Lake, M.A.; Ambrose, L.R.; Lipman, M.C.I.; Lowe, D.M. “Why Me, Why Now?” Using Clinical Immunology and Epidemiology to Explain Who Gets Nontuberculous Mycobacterial Infection. BMC Med. 2016, 14, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henkle, E.; Winthrop, K.L. Immune Dysfunction and Nontuberculous Mycobacterial Disease. In Nontuberculous Mycobacterial Disease; Griffith, D.E., Ed.; Respiratory Medicine; Springer International Publishing: Cham, Switzerland, 2019; pp. 111–130. ISBN 978-3-319-93472-3. [Google Scholar]
- Drummond, W.K.; Kasperbauer, S.H. Nontuberculous Mycobacteria: Epidemiology and the Impact on Pulmonary and Cardiac Disease. Thorac. Surg. Clin. 2019, 29, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Eliseev, P.; Hinderaker, S.G.; Heldal, E.; Tarasova, I.; Grjibovski, A.; Mariandyshev, A. Diagnosis and Treatment of Patients with Pulmonary Nontuberculous Mycobacterial Diseases in Arkhangelsk, Russia. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2019, 73, 358–361. [Google Scholar] [CrossRef] [PubMed]
- Falkinham, J.O. Ecology of Nontuberculous Mycobacteria. Microorganisms 2021, 9, 2262. [Google Scholar] [CrossRef]
- Morimoto, K.; Aono, A.; Murase, Y.; Sekizuka, T.; Kurashima, A.; Takaki, A.; Sasaki, Y.; Igarashi, Y.; Chikamatsu, K.; Goto, H.; et al. Prevention of Aerosol Isolation of Nontuberculous Mycobacterium from the Patient’s Bathroom. ERJ Open Res. 2018, 4, 00150–02017. [Google Scholar] [CrossRef] [Green Version]
- Nishiuchi, Y.; Iwamoto, T.; Maruyama, F. Infection Sources of a Common Non-Tuberculous Mycobacterial Pathogen, Mycobacterium avium Complex. Front. Med. 2017, 4, 27. [Google Scholar] [CrossRef] [Green Version]
- Boonjetsadaruhk, W.; Kaewprasert, O.; Nithichanon, A.; Ananta, P.; Chaimanee, P.; Salao, K.; Phoksawat, W.; Laohaviroj, M.; Sirichoat, A.; Fong, Y.; et al. High Rate of Reinfection and Possible Transmission of Mycobacterium avium Complex in Northeast Thailand. One Health Amst. Neth. 2022, 14, 100374. [Google Scholar] [CrossRef]
- Dartois, V.; Dick, T. Drug Development Challenges in Nontuberculous Mycobacterial Lung Disease: TB to the Rescue. J. Exp. Med. 2022, 219, e20220445. [Google Scholar] [CrossRef]
- Haworth, C.S.; Banks, J.; Capstick, T.; Fisher, A.J.; Gorsuch, T.; Laurenson, I.F.; Leitch, A.; Loebinger, M.R.; Milburn, H.J.; Nightingale, M.; et al. British Thoracic Society Guideline for the Management of Non-Tuberculous Mycobacterial Pulmonary Disease (NTM-PD). BMJ Open Respir. Res. 2017, 4, e000242. [Google Scholar] [CrossRef] [Green Version]
- Kwon, Y.S.; Koh, W.J.; Daley, C.L. Treatment of Mycobacterium avium Complex Pulmonary Disease. Tuberc. Respir. Dis. 2019, 82, 15–26. [Google Scholar] [CrossRef]
- Daley, C.L.; Iaccarino, J.M.; Lange, C.; Cambau, E.; Wallace, R.J.; Andrejak, C.; Böttger, E.C.; Brozek, J.; Griffith, D.E.; Guglielmetti, L.; et al. Treatment of Nontuberculous Mycobacterial Pulmonary Disease: An Official ATS/ERS/ESCMID/IDSA Clinical Practice Guideline. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2020, 71, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Zo, S.; Kim, H.; Kwon, O.J.; Jhun, B.W. Antibiotic Maintenance and Redevelopment of Nontuberculous Mycobacteria Pulmonary Disease after Treatment of Mycobacterium avium Complex Pulmonary Disease. Microbiol. Spectr. 2022, 10, e0108822. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Susceptibility Testing of Mycobacteria, Nocardia Spp., and Other Aerobic Actinomycetes., 3rd ed.; CLSI standard M24; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Babady, N.E.; Hall, L.; Abbenyi, A.T.; Eisberner, J.J.; Brown-Elliott, B.A.; Pratt, C.J.; McGlasson, M.C.; Beierle, K.D.; Wohlfiel, S.L.; Deml, S.M.; et al. Evaluation of Mycobacterium avium Complex Clarithromycin Susceptibility Testing Using SLOMYCO Sensititre Panels and JustOne Strips. J. Clin. Microbiol. 2010, 48, 1749–1752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikolayevskyy, V.; Maurer, F.P.; Holicka, Y.; Taylor, L.; Liddy, H.; Kranzer, K. Novel External Quality Assurance Scheme for Drug Susceptibility Testing of Non-Tuberculous Mycobacteria: A Multicentre Pilot Study. J. Antimicrob. Chemother. 2019, 74, 1288–1294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EUCAST European Committee on Antimicrobial Susceptibility Testing. Data from the EUCAST MIC Distribution Website. Available online: https://mic.eucast.org/search/ (accessed on 10 October 2022).
- Lin, S.; Hua, W.; Wang, S.; Zhang, Y.; Chen, X.; Liu, H.; Shao, L.; Chen, J.; Zhang, W. In Vitro Assessment of 17 Antimicrobial Agents against Clinical Mycobacterium avium Complex Isolates. BMC Microbiol. 2022, 22, 175. [Google Scholar] [CrossRef] [PubMed]
- Ying, R.; Yang, J.; Sha, W. Antimicrobial Susceptibility Testing Using MYCO Test-System and MIC Distribution of 8 Drugs against Clinical Isolates from Shanghai of Nontuberculous Mycobacteria. bioRxiv 2022. [Google Scholar] [CrossRef]
- Umpeleva, T.; Shul’gina, M.; Vakhrusheva, D.; Eremeeva, N. Antimicrobial susceptibility of Mycobacterium avium complex mycobacteria isolated from patients in Ural Federal District of the Russian Federation. Clin. Microbiol. Antimicrob. Chemother. 2022, 24, 147–154. [Google Scholar] [CrossRef]
- Yu, X.; Huo, F.; Wang, F.; Wen, S.; Jiang, G.; Xue, Y.; Dong, L.; Zhao, L.; Zhu, R.; Huang, H. In Vitro Antimicrobial Activity Comparison of Linezolid, Tedizolid, Sutezolid and Delpazolid Against Slowly Growing Mycobacteria Isolated in Beijing, China. Infect. Drug Resist. 2021, 14, 4689–4697. [Google Scholar] [CrossRef]
- Jaffré, J.; Aubry, A.; Maitre, T.; Morel, F.; Brossier, F.; Robert, J.; Sougakoff, W.; Veziris, N.; CNR-MyRMA (Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux). Rational Choice of Antibiotics and Media for Mycobacterium avium Complex Drug Susceptibility Testing. Front. Microbiol. 2020, 11, 81. [Google Scholar] [CrossRef] [Green Version]
- Andrews, E.R.; Marchand-Austin, A.; Ma, J.; Cronin, K.; Sharma, M.; Brode, S.K.; Marras, T.K.; Jamieson, F.B. Underutilization of Nontuberculous Mycobacterial Drug Susceptibility Testing in Ontario, Canada, 2010–2015. Off. J. Assoc. Med. Microbiol. Infect. Dis. Can. 2020, 5, 77–86. [Google Scholar] [CrossRef]
- Litvinov, V.; Makarova, M.; Galkina, K.; Khachaturiants, E.; Krasnova, M.; Guntupova, L.; Safonova, S. Drug Susceptibility Testing of Slowly Growing Non-Tuberculous Mycobacteria Using Slomyco Test-System. PLoS ONE 2018, 13, e0203108. [Google Scholar] [CrossRef] [PubMed]
- Kwon, B.S.; Kim, M.-N.; Sung, H.; Koh, Y.; Kim, W.-S.; Song, J.-W.; Oh, Y.-M.; Lee, S.-D.; Lee, S.W.; Lee, J.-S.; et al. In Vitro MIC Values of Rifampin and Ethambutol and Treatment Outcome in Mycobacterium avium Complex Lung Disease. Antimicrob. Agents Chemother. 2018, 62, e00491-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurer, F.P.; Pohle, P.; Kernbach, M.; Sievert, D.; Hillemann, D.; Rupp, J.; Hombach, M.; Kranzer, K. Differential Drug Susceptibility Patterns of Mycobacterium Chimaera and Other Members of the Mycobacterium avium-Intracellulare Complex. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2019, 25, 379.e1–379.e7. [Google Scholar] [CrossRef] [Green Version]
- Cho, E.H.; Huh, H.J.; Song, D.J.; Moon, S.M.; Lee, S.-H.; Shin, S.Y.; Kim, C.K.; Ki, C.-S.; Koh, W.-J.; Lee, N.Y. Differences in Drug Susceptibility Pattern between Mycobacterium avium and Mycobacterium intracellulare Isolated in Respiratory Specimens. J. Infect. Chemother. Off. J. Jpn. Soc. Chemother. 2018, 24, 315–318. [Google Scholar] [CrossRef] [PubMed]
- Renvoisé, A.; Bernard, C.; Veziris, N.; Galati, E.; Jarlier, V.; Robert, J. Significant Difference in Drug Susceptibility Distribution between Mycobacterium avium and Mycobacterium intracellulare. J. Clin. Microbiol. 2014, 52, 4439–4440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Wang, Y.; Pang, Y. Antimicrobial Susceptibility and Molecular Characterization of Mycobacterium intracellulare in China. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2014, 27, 332–338. [Google Scholar] [CrossRef]
- Inagaki, T.; Yagi, T.; Ichikawa, K.; Nakagawa, T.; Moriyama, M.; Uchiya, K.; Nikai, T.; Ogawa, K. Evaluation of a Rapid Detection Method of Clarithromycin Resistance Genes in Mycobacterium avium Complex Isolates. J. Antimicrob. Chemother. 2011, 66, 722–729. [Google Scholar] [CrossRef] [Green Version]
- Cavusoglu, C.; Soyler, I.; Akinci, P. Activities of Linezolid against Nontuberculous Mycobacteria. New Microbiol. 2007, 30, 411–414. [Google Scholar]
- Kobashi, Y.; Yoshida, K.; Miyashita, N.; Niki, Y.; Oka, M. Relationship between Clinical Efficacy of Treatment of Pulmonary Mycobacterium avium Complex Disease and Drug-Sensitivity Testing of Mycobacterium avium Complex Isolates. J. Infect. Chemother. Off. J. Jpn. Soc. Chemother. 2006, 12, 195–202. [Google Scholar] [CrossRef]
- Rastogi, N.; Goh, K.S. Effect of PH on Radiometric MICs of Clarithromycin against 18 Species of Mycobacteria. Antimicrob. Agents Chemother. 1992, 36, 2841–2842. [Google Scholar] [CrossRef] [Green Version]
- Meier, A.; Kirschner, P.; Springer, B.; Steingrube, V.A.; Brown, B.A.; Wallace, R.J.; Böttger, E.C. Identification of Mutations in 23S RRNA Gene of Clarithromycin-Resistant Mycobacterium intracellulare. Antimicrob. Agents Chemother. 1994, 38, 381–384. [Google Scholar] [CrossRef] [PubMed]
- Nash, K.A.; Inderlied, C.B. Genetic Basis of Macrolide Resistance in Mycobacterium avium Isolated from Patients with Disseminated Disease. Antimicrob. Agents Chemother. 1995, 39, 2625–2630. [Google Scholar] [CrossRef] [Green Version]
- Christianson, S.; Grierson, W.; Wolfe, J.; Sharma, M.K. Rapid Molecular Detection of Macrolide Resistance in the Mycobacterium avium Complex: Are We There Yet? J. Clin. Microbiol. 2013, 51, 2425–2426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mougari, F.; Bouziane, F.; Crockett, F.; Nessar, R.; Chau, F.; Veziris, N.; Sapriel, G.; Raskine, L.; Cambau, E. Selection of Resistance to Clarithromycin in Mycobacterium Abscessus Subspecies. Antimicrob. Agents Chemother. 2017, 61, e00943-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huh, H.J.; Kim, S.-Y.; Shim, H.J.; Kim, D.H.; Yoo, I.Y.; Kang, O.-K.; Ki, C.-S.; Shin, S.Y.; Jhun, B.W.; Shin, S.J.; et al. GenoType NTM-DR Performance Evaluation for Identification of Mycobacterium avium Complex and Mycobacterium Abscessus and Determination of Clarithromycin and Amikacin Resistance. J. Clin. Microbiol. 2019, 57, e00516-19. [Google Scholar] [CrossRef] [Green Version]
- Kaya, F.; Ernest, J.P.; LoMauro, K.; Gengenbacher, M.; Madani, A.; Aragaw, W.W.; Zimmerman, M.D.; Sarathy, J.P.; Alvarez, N.; Daudelin, I.; et al. A Rabbit Model to Study Antibiotic Penetration at the Site of Infection for Nontuberculous Mycobacterial Lung Disease: Macrolide Case Study. Antimicrob. Agents Chemother. 2022, 66, e0221221. [Google Scholar] [CrossRef]
- Bakker-Woudenberg, I.A.J.M.; van Vianen, W.; van Soolingen, D.; Verbrugh, H.A.; van Agtmael, M.A. Antimycobacterial Agents Differ with Respect to Their Bacteriostatic versus Bactericidal Activities in Relation to Time of Exposure, Mycobacterial Growth Phase, and Their Use in Combination. Antimicrob. Agents Chemother. 2005, 49, 2387–2398. [Google Scholar] [CrossRef] [Green Version]
- Wallace, R.J.; Brown, B.A.; Griffith, D.E.; Girard, W.; Tanaka, K. Reduced Serum Levels of Clarithromycin in Patients Treated with Multidrug Regimens Including Rifampin or Rifabutin for Mycobacterium avium-M. Intracellulare Infection. J. Infect. Dis. 1995, 171, 747–750. [Google Scholar] [CrossRef]
- Pollock, J.; Chalmers, J.D. The Immunomodulatory Effects of Macrolide Antibiotics in Respiratory Disease. Pulm. Pharmacol. Ther. 2021, 71, 102095. [Google Scholar] [CrossRef]
- Adachi, Y.; Tsuyuguchi, K.; Kobayashi, T.; Kurahara, Y.; Yoshida, S.; Kagawa, T.; Hayashi, S.; Suzuki, K. Effective Treatment for Clarithromycin-Resistant Mycobacterium avium Complex Lung Disease. J. Infect. Chemother. Off. J. Jpn. Soc. Chemother. 2020, 26, 676–680. [Google Scholar] [CrossRef]
- van Ingen, J.; Boeree, M.J.; van Soolingen, D.; Mouton, J.W. Resistance Mechanisms and Drug Susceptibility Testing of Nontuberculous Mycobacteria. Drug Resist. Updat. Rev. Comment. Antimicrob. Anticancer Chemother. 2012, 15, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Maurer, F.P.; Rüegger, V.; Ritter, C.; Bloemberg, G.V.; Böttger, E.C. Acquisition of Clarithromycin Resistance Mutations in the 23S RRNA Gene of Mycobacterium Abscessus in the Presence of Inducible Erm(41). J. Antimicrob. Chemother. 2012, 67, 2606–2611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buriánková, K.; Doucet-Populaire, F.; Dorson, O.; Gondran, A.; Ghnassia, J.-C.; Weiser, J.; Pernodet, J.-L. Molecular Basis of Intrinsic Macrolide Resistance in the Mycobacterium Tuberculosis Complex. Antimicrob. Agents Chemother. 2004, 48, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Chittum, H.S.; Champney, W.S. Ribosomal Protein Gene Sequence Changes in Erythromycin-Resistant Mutants of Escherichia Coli. J. Bacteriol. 1994, 176, 6192–6198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaman, S.; Fitzpatrick, M.; Lindahl, L.; Zengel, J. Novel Mutations in Ribosomal Proteins L4 and L22 That Confer Erythromycin Resistance in Escherichia Coli. Mol. Microbiol. 2007, 66, 1039–1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, J.I.; Eady, E.A.; Cove, J.H.; Cunliffe, W.J.; Baumberg, S.; Wootton, J.C. Inducible Erythromycin Resistance in Staphylococci Is Encoded by a Member of the ATP-Binding Transport Super-Gene Family. Mol. Microbiol. 1990, 4, 1207–1214. [Google Scholar] [CrossRef]
- Fierro, J.F.; Hardisson, C.; Salas, J.A. Involvement of Cell Impermeability in Resistance to Macrolides in Some Producer Streptomycetes. J. Antibiot. 1988, 41, 142–144. [Google Scholar] [CrossRef] [Green Version]
- Zimmerman, M.; Lestner, J.; Prideaux, B.; O’Brien, P.; Dias-Freedman, I.; Chen, C.; Dietzold, J.; Daudelin, I.; Kaya, F.; Blanc, L.; et al. Ethambutol Partitioning in Tuberculous Pulmonary Lesions Explains Its Clinical Efficacy. Antimicrob. Agents Chemother. 2017, 61, e00924-17. [Google Scholar] [CrossRef] [Green Version]
- Nosova, E.Y.; Zimenkov, D.V.; Khakhalina, A.A.; Isakova, A.I.; Krylova, L.Y.; Makarova, M.V.; Galkina, K.Y.; Krasnova, M.A.; Safonova, S.G.; Litvinov, V.I.; et al. A Comparison of the Sensititre MycoTB Plate, the Bactec MGIT 960, and a Microarray-Based Molecular Assay for the Detection of Drug Resistance in Clinical Mycobacterium Tuberculosis Isolates in Moscow, Russia. PLoS ONE 2016, 11, e0167093. [Google Scholar] [CrossRef] [Green Version]
- WHO. Technical Report on Critical Concentrations for Drug Susceptibility Testing of Medicines Used in the Treatment of Drug-Resistant Tuberculosis; World Health Organization: Geneva, Switzerland, 2018; p. 106. [Google Scholar]
- Niward, K.; Davies Forsman, L.; Bruchfeld, J.; Chryssanthou, E.; Carlström, O.; Alomari, T.; Carlsson, B.; Pohanka, A.; Mansjö, M.; Jonsson Nordvall, M.; et al. Distribution of Plasma Concentrations of First-Line Anti-TB Drugs and Individual MICs: A Prospective Cohort Study in a Low Endemic Setting. J. Antimicrob. Chemother. 2018, 73, 2838–2845. [Google Scholar] [CrossRef]
- Griffith, D.E.; Aksamit, T.R. Managing Mycobacterium avium Complex Lung Disease with a Little Help from My Friend. Chest 2021, 159, 1372–1381. [Google Scholar] [CrossRef]
- Moon, S.M.; Park, H.Y.; Kim, S.-Y.; Jhun, B.W.; Lee, H.; Jeon, K.; Kim, D.H.; Huh, H.J.; Ki, C.-S.; Lee, N.Y.; et al. Clinical Characteristics, Treatment Outcomes, and Resistance Mutations Associated with Macrolide-Resistant Mycobacterium avium Complex Lung Disease. Antimicrob. Agents Chemother. 2016, 60, 6758–6765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antimycobacterial Susceptibility Testing Group Updating the Approaches to Define Susceptibility and Resistance to Anti-Tuberculosis Agents: Implications for Diagnosis and Treatment. Eur. Respir. J. 2022, 59, 2200166. [CrossRef] [PubMed]
- Kim, H.-J.; Lee, J.S.; Kwak, N.; Cho, J.; Lee, C.-H.; Han, S.K.; Yim, J.-J. Role of Ethambutol and Rifampicin in the Treatment of Mycobacterium avium Complex Pulmonary Disease. BMC Pulm. Med. 2019, 19, 212. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.M.; Yoo, I.Y.; Huh, H.J.; Lee, N.Y.; Jhun, B.W. Intermittent Treatment with Azithromycin and Ethambutol for Noncavitary Mycobacterium avium Complex Pulmonary Disease. Antimicrob. Agents Chemother. 2019, 64, e01787-19. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, N.; Haas, W.; Richter, E.; Bauer, T.; Boes, L.; Castell, S.; Hauer, B.; Magdorf, K.; Matthiessen, W.; Mauch, H.; et al. Recommendations of the German Central Committee against Tuberculosis (DZK) and the German Respiratory Society (DGP) for the Diagnosis and Treatment of Non-Tuberculous Mycobacterioses. Pneumol. Stuttg. Ger. 2016, 70, 250–276. [Google Scholar] [CrossRef]
- Hajikhani, B.; Nasiri, M.J.; Adkinson, B.C.; Azimi, T.; Khalili, F.; Goudarzi, M.; Dadashi, M.; Murthi, M.; Mirsaeidi, M. Comparison of Rifabutin-Based Versus Rifampin-Based Regimens for the Treatment of Mycobacterium avium Complex: A Meta-Analysis Study. Front. Pharmacol. 2021, 12, 693369. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Jhun, B.W.; Moon, S.M.; Shin, S.H.; Jeon, K.; Kwon, O.J.; Yoo, I.Y.; Huh, H.J.; Ki, C.-S.; Lee, N.Y.; et al. Mutations in GyrA and GyrB in Moxifloxacin-Resistant Mycobacterium avium Complex and Mycobacterium Abscessus Complex Clinical Isolates. Antimicrob. Agents Chemother. 2018, 62, e00527-18. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, D.; Srivastava, S.; Meek, C.; Leff, R.; Hall, G.S.; Gumbo, T. Moxifloxacin Pharmacokinetics/Pharmacodynamics and Optimal Dose and Susceptibility Breakpoint Identification for Treatment of Disseminated Mycobacterium avium Infection. Antimicrob. Agents Chemother. 2010, 54, 2534–2539. [Google Scholar] [CrossRef] [Green Version]
- Morimoto, K.; Namkoong, H.; Hasegawa, N.; Nakagawa, T.; Morino, E.; Shiraishi, Y.; Ogawa, K.; Izumi, K.; Takasaki, J.; Yoshiyama, T.; et al. Macrolide-Resistant Mycobacterium avium Complex Lung Disease: Analysis of 102 Consecutive Cases. Ann. Am. Thorac. Soc. 2016, 13, 1904–1911. [Google Scholar] [CrossRef]
- Reingewertz, T.H.; Meyer, T.; McIntosh, F.; Sullivan, J.; Meir, M.; Chang, Y.-F.; Behr, M.A.; Barkan, D. Differential Sensitivity of Mycobacteria to Isoniazid Is Related to Differences in KatG-Mediated Enzymatic Activation of the Drug. Antimicrob. Agents Chemother. 2020, 64, e01899-19. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Technical Report on Critical Concentrations for Drug Susceptibility Testing of Isoniazid and the Rifamycins (Rifampicin, Rifabutin and Rifapentine); World Health Organization: Geneva, Switzerland, 2021; ISBN 978-92-4-001728-3. [Google Scholar]
- Naik, S.P.; Samsonoff, W.A.; Ruck, R.E. Effects of Surface-Active Agents on Drug Susceptibility Levels and Ultrastructure of Mycobacterium avium Complex Organisms Isolated from AIDS Patients. Diagn. Microbiol. Infect. Dis. 1988, 11, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.V.; Srinivasan, S.; Gangadharam, P.R. In Vitro and in Vivo Synergistic Effect of Isoniazid with Streptomycin and Clofazimine against Mycobacterium avium Complex (MAC). Tuber. Lung Dis. Off. J. Int. Union Tuberc. Lung Dis. 1994, 75, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Kondo, J.; François, B.; Russell, R.J.M.; Murray, J.B.; Westhof, E. Crystal Structure of the Bacterial Ribosomal Decoding Site Complexed with Amikacin Containing the Gamma-Amino-Alpha-Hydroxybutyryl (Haba) Group. Biochimie 2006, 88, 1027–1031. [Google Scholar] [CrossRef]
- WHO. Rapid Communication: Key Changes to the Treatment of Drug-Resistant Tuberculosis; World Health Organization: Geneva, Switzerland, 2018; Volume WHO/CDS/TB/2018.18. [Google Scholar]
- Recht, M.I.; Puglisi, J.D. Aminoglycoside Resistance with Homogeneous and Heterogeneous Populations of Antibiotic-Resistant Ribosomes. Antimicrob. Agents Chemother. 2001, 45, 2414–2419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raaijmakers, J.; Schildkraut, J.A.; Hoefsloot, W.; van Ingen, J. The Role of Amikacin in the Treatment of Nontuberculous Mycobacterial Disease. Expert Opin. Pharmacother. 2021, 22, 1961–1974. [Google Scholar] [CrossRef]
- Brown-Elliott, B.A.; Iakhiaeva, E.; Griffith, D.E.; Woods, G.L.; Stout, J.E.; Wolfe, C.R.; Turenne, C.Y.; Wallace, R.J. In Vitro Activity of Amikacin against Isolates of Mycobacterium avium Complex with Proposed MIC Breakpoints and Finding of a 16S RRNA Gene Mutation in Treated Isolates. J. Clin. Microbiol. 2013, 51, 3389–3394. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-Y.; Kim, D.H.; Moon, S.M.; Song, J.Y.; Huh, H.J.; Lee, N.Y.; Shin, S.J.; Koh, W.-J.; Jhun, B.W. Association between 16S RRNA Gene Mutations and Susceptibility to Amikacin in Mycobacterium avium Complex and Mycobacterium Abscessus Clinical Isolates. Sci. Rep. 2021, 11, 6108. [Google Scholar] [CrossRef]
- Griffith, D.E.; Eagle, G.; Thomson, R.; Aksamit, T.R.; Hasegawa, N.; Morimoto, K.; Addrizzo-Harris, D.J.; O’Donnell, A.E.; Marras, T.K.; Flume, P.A.; et al. Amikacin Liposome Inhalation Suspension for Treatment-Refractory Lung Disease Caused by Mycobacterium avium Complex (CONVERT). A Prospective, Open-Label, Randomized Study. Am. J. Respir. Crit. Care Med. 2018, 198, 1559–1569. [Google Scholar] [CrossRef]
- Dryden, M.S. Linezolid Pharmacokinetics and Pharmacodynamics in Clinical Treatment. J. Antimicrob. Chemother. 2011, 66 (Suppl. 4), iv7–iv15. [Google Scholar] [CrossRef] [Green Version]
- Brown-Elliott, B.A.; Crist, C.J.; Mann, L.B.; Wilson, R.W.; Wallace, R.J. In Vitro Activity of Linezolid against Slowly Growing Nontuberculous Mycobacteria. Antimicrob. Agents Chemother. 2003, 47, 1736–1738. [Google Scholar] [CrossRef] [PubMed]
- Brown-Elliott, B.A.; Wallace, R.J. In Vitro Susceptibility Testing of Tedizolid against Nontuberculous Mycobacteria. J. Clin. Microbiol. 2017, 55, 1747–1754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraser, I.; Macintosh, I.; Wilkins, E.G. Prophylactic Effect of Co-Trimoxazole for Mycobacterium avium Complex Infection: A Previously Unreported Benefit. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 1994, 19, 211. [Google Scholar] [CrossRef]
- Muhammed Ameen, S.; Rolain, J.-M.; Le Poullain, M.-N.; Roux, V.; Raoult, D.; Drancourt, M. Serum Concentration of Co-Trimoxazole during a High-Dosage Regimen. J. Antimicrob. Chemother. 2014, 69, 757–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown-Elliott, B.A.; Woods, G.L. Antimycobacterial Susceptibility Testing of Nontuberculous Mycobacteria. J. Clin. Microbiol. 2019, 57, e00834-19. [Google Scholar] [CrossRef] [PubMed]
- Griffith, D.E.; Winthrop, K.L. You Gotta Make Me See, What Does It Mean to Have an MIC? Chest 2021, 159, 462–464. [Google Scholar] [CrossRef]
- Garcia Carvalho, N.F.; Pedace, C.S.; Barbosa de Almeida, A.R.; Dos Santos Simeão, F.C.; Chimara, E. Evaluation of Drug Susceptibility in Nontuberculous Mycobacteria Using the SLOMYCO and RAPMYCO Sensititre Plates. Int. J. Mycobacteriol. 2021, 10, 379–387. [Google Scholar] [CrossRef]
- Li, Y.; Liu, C.; Ma, A.; He, W.; Qiu, Q.; Zhao, Y.; Li, Y. Identification and Drug Susceptibility Testing of the Subspecies of Mycobacterium avium Complex Clinical Isolates in Mainland China. J. Glob. Antimicrob. Resist. 2022, 31, 90–97. [Google Scholar] [CrossRef]
- Keen, E.C.; Choi, J.; Wallace, M.A.; Azar, M.; Mejia-Chew, C.R.; Mehta, S.B.; Bailey, T.C.; Caverly, L.J.; Burnham, C.-A.D.; Dantas, G. Comparative Genomics of Mycobacterium avium Complex Reveals Signatures of Environment-Specific Adaptation and Community Acquisition. mSystems 2021, 6, e0119421. [Google Scholar] [CrossRef]
- Cangelosi, G.A.; Do, J.S.; Freeman, R.; Bennett, J.G.; Semret, M.; Behr, M.A. The Two-Component Regulatory System MtrAB Is Required for Morphotypic Multidrug Resistance in Mycobacterium avium. Antimicrob. Agents Chemother. 2006, 50, 461–468. [Google Scholar] [CrossRef] [Green Version]
- Cangelosi, G.A.; Palermo, C.O.; Bermudez, L.E. Phenotypic Consequences of Red-White Colony Type Variation in Mycobacterium avium. Microbiol. Read. Engl. 2001, 147, 527–533. [Google Scholar] [CrossRef] [PubMed]
- van Ingen, J.; Egelund, E.F.; Levin, A.; Totten, S.E.; Boeree, M.J.; Mouton, J.W.; Aarnoutse, R.E.; Heifets, L.B.; Peloquin, C.A.; Daley, C.L. The Pharmacokinetics and Pharmacodynamics of Pulmonary Mycobacterium avium Complex Disease Treatment. Am. J. Respir. Crit. Care Med. 2012, 186, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Eng, R.H.; Padberg, F.T.; Smith, S.M.; Tan, E.N.; Cherubin, C.E. Bactericidal Effects of Antibiotics on Slowly Growing and Nongrowing Bacteria. Antimicrob. Agents Chemother. 1991, 35, 1824–1828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, A.J.; Wang, S.; Meredith, H.R.; Zhuang, B.; Dai, Z.; You, L. Robust, Linear Correlations between Growth Rates and β-Lactam-Mediated Lysis Rates. Proc. Natl. Acad. Sci. USA. 2018, 115, 4069–4074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rastogi, N.; David, H.L. Growth and Cell Division of Mycobacterium avium. J. Gen. Microbiol. 1981, 126, 77–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pullan, S.T.; Allnutt, J.C.; Devine, R.; Hatch, K.A.; Jeeves, R.E.; Hendon-Dunn, C.L.; Marsh, P.D.; Bacon, J. The Effect of Growth Rate on Pyrazinamide Activity in Mycobacterium Tuberculosis—Insights for Early Bactericidal Activity? BMC Infect. Dis. 2016, 16, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, M.; Dai, X. On the Intrinsic Constraint of Bacterial Growth Rate: M. Tuberculosis’s View of the Protein Translation Capacity. Crit. Rev. Microbiol. 2018, 44, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Zweijpfenning, S.M.H.; Kops, S.E.P.; Boeree, M.J.; Kuipers, S.; van Ingen, J.; Hoefsloot, W.; Magis-Escurra, C. Treatment of Severe Mycobacterium avium Complex Pulmonary Disease with Adjunctive Amikacin and Clofazimine versus Standard Regimen Alone: A Retrospective Study. ERJ Open Res. 2021, 7, 00466–02021. [Google Scholar] [CrossRef]
- Brown-Elliott, B.A.; Philley, J.V.; Griffith, D.E.; Thakkar, F.; Wallace, R.J. In Vitro Susceptibility Testing of Bedaquiline against Mycobacterium avium Complex. Antimicrob. Agents Chemother. 2017, 61, e01798-16. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.H.; Jhun, B.W.; Moon, S.M.; Kim, S.-Y.; Jeon, K.; Kwon, O.J.; Huh, H.J.; Lee, N.Y.; Shin, S.J.; Daley, C.L.; et al. In Vitro Activity of Bedaquiline and Delamanid against Nontuberculous Mycobacteria, Including Macrolide-Resistant Clinical Isolates. Antimicrob. Agents Chemother. 2019, 63, e00665-19. [Google Scholar] [CrossRef] [Green Version]
- Martin, A.; Godino, I.T.; Aguilar-Ayala, D.A.; Mathys, V.; Lounis, N.; Villalobos, H.R. In Vitro Activity of Bedaquiline against Slow-Growing Nontuberculous Mycobacteria. J. Med. Microbiol. 2019, 68, 1137–1139. [Google Scholar] [CrossRef] [PubMed]
- Litvinov, V.; Makarova, M.; Kudlay, D.; Nikolenko, N.; Mikhailova, J. In Vitro Activity of Bedaquiline against Mycobacterium avium Complex. J. Med. Microbiol. 2021, 70. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Gao, X.; Li, C.; Luo, J.; Wen, S.; Zhang, T.; Ma, Y.; Dong, L.; Wang, F.; Huang, H. In Vitro Activities of Bedaquiline and Delamanid against Nontuberculous Mycobacteria Isolated in Beijing, China. Antimicrob. Agents Chemother. 2019, 63, e00031-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, Y.; Zheng, H.; Tan, Y.; Song, Y.; Zhao, Y. In Vitro Activity of Bedaquiline against Nontuberculous Mycobacteria in China. Antimicrob. Agents Chemother. 2017, 61, e02627-16. [Google Scholar] [CrossRef]
Study | PMID or ID | Method | Max Number of Isolates Tested | Reference | |
---|---|---|---|---|---|
M. avium | M. intracellulare | ||||
EUCAST (10 October 2022) | - | 1271 | 399 | [27] | |
Lin, 2022 | 35804298 | SLOMYCO | 13 | 81 | [28] |
Ying, 2022 | biorXiv DOI: 10.1101/2022.05.03.490561 | SLOMYCO | 24 | 122 | [29] |
Umpeleva, 2022 | DOI:10.36488/cmac.2022.2.147-154 | SLOMYCO | 33 | 34 | [30] |
Yu, 2021 | 34785916 | CLSI | 41 | 48 | [31] |
Jaffré, 2020 | 32140138 | SLOMYCO | 80 | 40 | [32] |
Andrews, 2020 | NA | SLOMYCO | 212 | 50 | [33] |
Litvinov, 2018 | 30222736 | SLOMYCO | 161 | 16 | [34] |
Kwon, 2018 | 30012759 | SLOMYCO | 126 | 148 | [35] |
Maurer, 2019 | 29906595 | SLOMYCO | 333 | 77 | [36] |
Cho, 2018 | 29223615 | CLSI | 1006 | 823 | [37] |
Renvoisé, 2014 | 25274991 | SLOMYCO | 186 | 154 | [38] |
Zhao, 2014 | 25131955 | CLSI | 52 | [39] | |
Inagaki, 2011 | 21393190 | CLSI | 167 | 78 | [40] |
Cavusoglu, 2007 | 18080676 | CLSI | 5 | 8 | [41] |
Kobashi, 2006 | 16944258 | In-house | 30 | 22 | [42] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zimenkov, D. Variability of Mycobacterium avium Complex Isolates Drug Susceptibility Testing by Broth Microdilution. Antibiotics 2022, 11, 1756. https://doi.org/10.3390/antibiotics11121756
Zimenkov D. Variability of Mycobacterium avium Complex Isolates Drug Susceptibility Testing by Broth Microdilution. Antibiotics. 2022; 11(12):1756. https://doi.org/10.3390/antibiotics11121756
Chicago/Turabian StyleZimenkov, Danila. 2022. "Variability of Mycobacterium avium Complex Isolates Drug Susceptibility Testing by Broth Microdilution" Antibiotics 11, no. 12: 1756. https://doi.org/10.3390/antibiotics11121756
APA StyleZimenkov, D. (2022). Variability of Mycobacterium avium Complex Isolates Drug Susceptibility Testing by Broth Microdilution. Antibiotics, 11(12), 1756. https://doi.org/10.3390/antibiotics11121756