Methicillin-Resistant Staphylococcus aureus from Diabetic Foot Infections in a Tunisian Hospital with the First Detection of MSSA CC398-t571
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics and MRSA Prevalence in Ulcer Samples
2.2. Antimicrobial Resistance Pattern of the S. aureus Isolates
2.3. Genotypic Patterns of Antibiotic Resistance among S. aureus Strains
2.4. Molecular Typing of Isolates
2.5. Virulence Profile
3. Discussion
4. Materials and Methods
4.1. Bacteria Collection and Identification
4.2. Antimicrobial Susceptibility Profile of S. aureus Isolates
4.3. Screening of Methicillin-Resistant S. aureus Isolates (MRSA)
4.4. Detection of Antimcrobial Resistannce Genes (ARGs)
4.5. Molecular Typing of Isolates
4.6. Occurrence of Virulence and Immune Evasion Cluster (IEC) Genes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Olsen, J.E.; Christensen, H.; Aarestrup, F.M. Diversity and evolution of blaZ from Staphylococcus aureus and coagulase-negative staphylococci. J. Antimicrob. Chemother. 2006, 57, 450–460. [Google Scholar] [CrossRef] [PubMed]
- Miragaia, M. Factors Contributing to the Evolution of mecA-Mediated β-lactam Resistance in Staphylococci: Update and New Insights From Whole Genome Sequencing (WGS). Front. Microbiol. 2018, 9, 2723. [Google Scholar] [CrossRef] [Green Version]
- Lade, H.; Joo, H.S.; Kim, J.S. Molecular Basis of Non-β-Lactam Antibiotics Resistance in Staphylococcus aureus. Antibiotics 2022, 11, 1378. [Google Scholar] [CrossRef] [PubMed]
- Kwon, K.T.; Armstrong, D.G. Microbiology and antimicrobial therapy for diabetic foot infections. Infect. Chemother. 2018, 50, 11. [Google Scholar] [CrossRef]
- Lin, C.W.; Armstrong, D.G.; Lin, C.H.; Liu, P.H.; Hung, S.Y.; Lee, S.R.; Huang, C.H.; Huang, Y.Y. Nationwide trends in the epidemiology of diabetic foot complications and lower-extremity amputation over an 8-year period. BMJ Open Diabetes Res. Care 2019, 7, e000795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubitschung, K.; Sherwood, A.; Crisologo, A.P.; Bhavan, K.; Haley, R.W.; Wukich, D.K.; Castellino, L.; Hwang, H.; La Fontaine, J.; Chhabra, A.; et al. Pathophysiology and Molecular Imaging of Diabetic Foot Infections. Int. J. Mol. Sci. 2021, 22, 11552. [Google Scholar] [CrossRef]
- Liu, C.; Ponsero, A.J.; Armstrong, D.G.; Lipsky, B.A.; Hurwitz, B.L. The dynamic wound microbiome. BMC Med. 2020, 18, 358. [Google Scholar] [CrossRef]
- Bellazreg, F.; Guigua, A.; Ferjani, A.; Hattab, Z.; Boukadida, J.; Ach, K.; Letaief, R.; Hachfi, W.; Letaief, A. Correlation between superficial and intra-operative specimens in diabetic foot infections: Results of a cross-sectional Tunisian study. Afr. Health Sci. 2019, 19, 2505–2514. [Google Scholar] [CrossRef]
- Moussa, M.B.; Khalfallah, M.; Boubaker, I.B.B.; Nouira, R.; Slim, A.; Jerraya, H.; Dziri, C. Bacteriological and therapeutic profile of diabetic foot infection: A prospective study of 100 patients. Profil bactériologique et thérapeutique du pied diabétique infecté: Étude prospective de 100 patients. Tunis. Med. 2016, 94, 95–101. [Google Scholar]
- Hawkins, B.K.; Barnard, M.; Barber, K.E.; Stover, K.R.; Cretella, D.A.; Wingler, M.J.B.; Wagner, J.L. Diabetic foot infections: A microbiologic review. Foot 2022, 51, 101877. [Google Scholar] [CrossRef]
- Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G., Jr. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef]
- Viswanathan, V.; Pendsey, S.; Radhakrishnan, C.; Rege, T.D.; Ahdal, J.; Jain, R. Methicillin-Resistant Staphylococcus aureus in Diabetic Foot Infection in India: A Growing Menace. Int. J. Low Extrem. Wounds 2019, 18, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Nandhini, P.; Kumar, P.; Mickymaray, S.; Alothaim, A.S.; Somasundaram, J.; Rajan, M. Recent Developments in Methicillin-Resistant Staphylococcus aureus (MRSA) Treatment: A Review. Antibiotics 2022, 11, 606. [Google Scholar] [CrossRef]
- Mansour, W. Tunisian antibiotic resistance problems: Three contexts but one health. Afr. Health Sci. 2018, 18, 1202–1203. [Google Scholar] [CrossRef] [PubMed]
- Hammami, M.; Lahiani, D.; Guemri, B.; Maalej, M.; Elleuch, E.; Hammami, B.; Jemaa, M.B. Les infections du pied diabétique: Étude de 136 cas. Ann. Endocrinol. 2015, 76, 552. [Google Scholar] [CrossRef]
- Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; Eichenberger, E.M.; Shah, P.P.; Carugati, M.; Holland, T.L.; Fowler, V.G., Jr. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019, 17, 203–218. [Google Scholar] [CrossRef] [PubMed]
- Eleftheriadou, I.; Tentolouris, N.; Argiana, V.; Jude, E.; Boulton, A.J. Methicillin-resistant Staphylococcus aureus in diabetic foot infections. Drugs 2010, 70, 1785–1797. [Google Scholar] [CrossRef] [PubMed]
- Anafo, R.B.; Atiase, Y.; Dayie, N.T.K.D.; Kotey, F.C.N.; Tetteh-Quarcoo, P.B.; Duodu, S.; Osei, M.-M.; Alzahrani, K.J.; Donkor, E.S. Methicillin-Resistant Staphylococcus aureus (MRSA) Infection of Diabetic Foot Ulcers at a Tertiary Care Hospital in Accra, Ghana. Pathogens 2021, 10, 937. [Google Scholar] [CrossRef]
- Kananizadeh, P.; Moghadam, S.O.; Sadeghi, Y.; Foroushani, A.R.; Adibi, H.; Pourmand, M.R. Molecular Characteristics of Methicillin-Resistant Staphylococcus aureus (MRSA) Isolated from Diabetic Foot Infection. Iran. J. Pathol. 2019, 14, 329–337. [Google Scholar] [CrossRef] [Green Version]
- Anwar, K.; Hussein, D.; Salih, J. Antimicrobial Susceptibility Testing and Phenotypic Detection of MRSA Isolated from Diabetic Foot Infection. Int. J. Gen. Med. 2020, 13, 1349–1357. [Google Scholar] [CrossRef] [PubMed]
- Belefquih, B.; Frikh, M.; Benlahlou, Y.; Maleb, A.; Jadid, L.; Bssaibis, F.; Ghazouani, M.; Chagar, B.; Lamsaouri, J.; Lemnououer, A.; et al. Diabetic Foot Infection in Morocco: Microbiological Profile. Wounds 2016, 28, 89–98. [Google Scholar]
- Saltoglu, N.; Ergonul, O.; Tulek, N.; Yemisen, M.; Kadanali, A.; Karagoz, G.; Batirel, A.; Ak, O.; Sonmezer, C.; Eraksoy, H.; et al. Turkish Society of Clinical Microbiology and Infectious Diseases, Diabetic Foot Infections Study Group. Influence of multidrug resistant organisms on the outcome of diabetic foot infection. Int. J. Infect. Dis. 2018, 70, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Al-Bakri, A.G.; Bulatova, N.R.; Younes, N.A.; Othman, G.; Jaber, D.; Schleimer, N.; Kriegeskorte, A.; Becker, K. Characterization of staphylococci sampled from diabetic foot ulcer of Jordanian patients. J. Appl. Microbiol. 2021, 131, 2552–2566. [Google Scholar] [CrossRef]
- Djahmi, N.; Messad, N.; Nedjai, S.; Moussaoui, A.; Mazouz, D.; Richard, J.L.; Sotto, A.; Lavigne, J.P. Molecular epidemiology of Staphylococcus aureus strains isolated from inpatients with infected diabetic foot ulcers in an Algerian University Hospital. Clin. Microbiol. Infect. 2013, 19, E398–E404. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, K.E.; Boeckh, S.; Stacey, H.J.; Jones, J.D. The microbiology of diabetic foot infections: A meta-analysis. BMC Infect. Dis. 2021, 21, 770. [Google Scholar] [CrossRef] [PubMed]
- Katayama, Y.; Takeuchi, F.; Ito, T.; Ma, X.X.; Ui-Mizutani, Y.; Kobayashi, I.; Hiramatsu, K. Identification in Methicillin-Susceptible Staphylococcus hominis of an Active Primordial Mobile Genetic Element for the Staphylococcal Cassette Chromosome mec of Methicillin-Resistant Staphylococcus aureus. J. Bacteriol. 2003, 185, 2711–2722. [Google Scholar] [CrossRef] [Green Version]
- Antonanzas, F.; Lozano, C.; Torres, C. Economic features of antibiotic resistance: The case of methicillin-resistant Staphylococcus aureus. Pharmacoeconomics 2015, 33, 285–325. [Google Scholar] [CrossRef] [PubMed]
- Shettigar, K.; Murali, T.S. Virulence factors and clonal diversity of Staphylococcus aureus in colonization and wound infection with emphasis on diabetic foot infection. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 2235–2246. [Google Scholar] [CrossRef]
- Cuny, C.; Strommenger, B.; Witte, W.; Stanek, C. Clusters of Infections in Horses with MRSA ST1, ST254, and ST398 in a Veterinary Hospital. Microb. Drug Resist. 2008, 14, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Battisti, A.; Franco, A.; Merialdi, G.; Hasman, H.; Iurescia, M.; Lorenzetti, R.; Feltrin, F.; Zini, M.; Aarestrup, F.M. Heterogeneity among methicillin-resistant Staphylococcus aureus from Italian pig finishing holdings. Vet. Microbiol. 2010, 142, 361–366. [Google Scholar] [CrossRef]
- Parisi, A.; Caruso, M.; Normanno, G.; Latorre, L.; Sottili, R.; Miccolupo, A.; Fraccalvieri, R.; Santagada, G. Prevalence, antimicrobial susceptibility and molecular typing of methicillin-resistant Staphylococcus aureus (MRSA) in bulk tank milk from southern Italy. Food Microbiol. 2016, 58, 36–42. [Google Scholar] [CrossRef]
- Franco, A.; Hasman, H.; Iurescia, M.; Lorenzetti, R.; Stegger, M.; Pantosti, A.; Feltrin, F.; Ianzano, A.; Porrero, M.C.; Liapi, M.; et al. Molecular characterization of spa type t127, sequence type 1 methicillin-resistant Staphylococcus aureus from pigs. J. Antimicrob. Chemother. 2011, 66, 1231–1235. [Google Scholar] [CrossRef] [PubMed]
- Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front. Microbiol. 2019, 10, 539. [Google Scholar] [CrossRef] [PubMed]
- Benito, D.; Lozano, C.; Rezusta, A.; Ferrer, I.; Vasquez, M.A.; Ceballos, S.; Zarazaga, M.; Revillo, M.J.; Torres, C. Characterization of tetracycline and methicillin resistant Staphylococcus aureus strains in a Spanish hospital: Is livestock-contact a risk factor in infections caused by MRSA CC398? Int. J. Med. Microbiol. 2014, 304, 1226–1232. [Google Scholar] [CrossRef]
- Cuny, C.; Layer, F.; Köck, R.; Werner, G.; Witte, W. Methicillin susceptible Staphylococcus aureus (MSSA) of clonal complex CC398, t571 from infections in humans are still rare in Germany. PLoS ONE 2013, 8, e83165. [Google Scholar] [CrossRef] [PubMed]
- Bouiller, K.; Gbaguidi-Haore, H.; Hocquet, D.; Cholley, P.; Bertrand, X.; Chirouze, C. Clonal complex 398 methicillin-susceptible Staphylococcus aureus bloodstream infections are associated with high mortality. Clin. Microbiol. Infect. 2016, 22, 451–455. [Google Scholar] [CrossRef] [Green Version]
- Mama, O.M.; Aspiroz, C.; Ruiz-Ripa, L.; Ceballos, S.; Iñiguez-Barrio, M.; Cercenado, E.; Azcona, J.M.; López-Cerero, L.; Seral, C.; López-Calleja, A.I.; et al. Study Group of clinical S. aureus CC398. Prevalence and Genetic Characteristics of Staphylococcus aureus CC398 Isolates From Invasive Infections in Spanish Hospitals, Focusing on the Livestock-Independent CC398-MSSA Clade. Front. Microbiol. 2021, 12, 623108. [Google Scholar] [CrossRef]
- Senneville, E.; Briere, M.; Neut, C.; Messad, N.; Lina, G.; Richard, J.-L.; Sotto, A.; Lavigne, J.-P.; The French Study Group on the Diabetic Foot. First report of the predominance of clonal complex 398 Staphylococcus aureus strains in osteomyelitis complicating diabetic foot ulcers: A national French study. Clin. Microbiol. Infect. 2014, 20, O274–O277. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Kim, K.H.; Kim, H.B.; Kim, N.J.; Kim, E.C.; Oh, M.D.; Choe, K.W. Outcome of vancomycin treatment in patients with methicillin-susceptible Staphylococcus aureus bacteremia. Antimicrob. Agents Chemother. 2008, 52, 192–197. [Google Scholar] [CrossRef] [Green Version]
- Shettigar, K.; Jain, S.; Bhat, D.V.; Acharya, R.; Ramachandra, L.; Satyamoorthy, K.; Murali, T.S. Virulence determinants in clinical Staphylococcus aureus from monomicrobial and polymicrobial infections of diabetic foot ulcers. J. Med. Microbiol. 2016, 65, 1392–1404. [Google Scholar] [CrossRef]
- Sotto, A.; Lina, G.; Richard, J.L.; Combescure, C.; Bourg, G.; Vidal, L.; Jourdan, N.; Etienne, J.; Lavigne, J.P. Virulence potential of Staphylococcus aureus strains isolated from diabetic foot ulcers: A new paradigm. Diabetes Care 2008, 31, 2318–2324. [Google Scholar] [CrossRef] [Green Version]
- Post, V.; Wahl, P.; Uckay, I.; Ochsner, P.; Zimmerli, W.; Corvec, S.; Loiez, C.; Richards, R.G.; Moriarty, T.F. Phenotypic and genotypic characterisation of Staphylococcus aureus causing musculoskeletal infections. Int. J. Med. Microbiol. 2014, 304, 565–576. [Google Scholar] [CrossRef]
- Sina, H.; Ahoyo, T.A.; Moussaoui, W.; Keller, D.; Bankolé, H.S.; Barogui, Y.; Stienstra, Y.; Kotchoni, S.O.; Prévost, G.; Baba-Moussa, L. Variability of antibiotic susceptibility and toxin production of Staphylococcus aureus strains isolated from skin, soft tissue, and bone related infections. BMC Microbiol. 2013, 13, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brakstad, O.G.; Aasbakk, K.; Maeland, J.A. Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J. Clin. Microbiol. 1992, 30, 1654–1660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing Twenty-Third Informational Supplement; CLSI Document; CLSI: Orlando, FL, USA, 2020; p. M100-S23. [Google Scholar]
- Gómez-Sanz, E.; Torres, C.; Lozano, C.; Fernández-Pérez, R.; Aspiroz, C.; Ruiz-Larrea, F.; Zarazaga, M. Detection, Molecular Characterization, and Clonal Diversity of Methicillin-Resistant Staphylococcus aureus CC398 and CC97 in Spanish Slaughter Pigs of Different Age Groups. Foodborne Pathog. Dis. 2010, 7, 1269–1277. [Google Scholar] [CrossRef]
- Harmsen, D.; Claus, H.; Witte, W.; Rothganger, J.; Claus, H.; Turnwald, D.; Vogel, U. Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J. Clin. Microbial. 2003, 41, 5442–5448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stegger, M.; Lindsay, J.A.; Moodley, A.; Skov, R.; Broens, E.M.; Guardabassi, L. Rapid PCR detection of Staphylococcus aureus clonal complex 398 by targeting the restriction-modification system carrying sau1-hsdS1. J. Clin. Microbiol. 2011, 49, 732–734. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; McClure, J.A.; Elsayed, S.; Louie, T.; Conly, J.M. Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol. 2005, 43, 5026–5050. [Google Scholar] [CrossRef] [Green Version]
- Shopsin, B.; Mathema, B.; Alcabes, P.; Said-Salim, B.; Lina, G.; Matsuka, A.; Martinez, J.; Kreiswirth, B.N. Prevalence of agr specificity groups among Staphylococcus aureus strains colonizing children and their guardians. J. Clin. Microbial. 2003, 41, 456–459. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Ripa, L.; Alcalá, L.; Simón, C.; Gómez, P.; Mama, O.M.; Rezusta, A.; Zarazaga, M.; Torres, C. Diversity of Staphylococcus aureus clones in wild mammals in Aragon, Spain, with detection of MRSA ST130-mecC in wild rabbits. J. Appl. Microbiol. 2019, 127, 284–291. [Google Scholar] [CrossRef]
- Van Wamel, W.J.B.; Rooijakkers, S.H.M.; Ruyken, M.; Van Kessel, K.P.M.; Van Strijp, J.A.G. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on b-hemolysin-converting bacteriophages. J. Bacteriol. 2006, 188, 1310–1315. [Google Scholar] [CrossRef] [PubMed]
Case Number | The Reason Why the Patient Entered the Center | Sex | Age (Years) | Country | Type of Diabetes/Duration (Years) |
---|---|---|---|---|---|
1 | Infected plantar perforating disease of the right foot | M | 62 | Tunisia | II/30 |
2 | 4th left toe infection | M | 53 | Libya | II/5 |
3 | Phlegmon of the sole of the right foot | M | 55 | Tunisia | II/12 |
4 | Superinfection of the right transmetatarsal amputation stump | M | 67 | Libya | II/10–19 |
5 | Left big toe infection | M | 77 | Libya | II/20 |
6 | Infected plantar perforating disease of the right Charcot foot | M | 60 | Libya | II/10–19 |
7 | Gangrene of the 4th and 5th right toe | F | 68 | Libya | I/20 |
8 | Phlegmon of the left foot | M | 50 | Tunisia | I/28 |
9 | Patient with sepsis (left heel infection) | M | 55 | Libya | II/10 |
10 | 2nd right toe infection | M | 55 | Libya | II/20 |
11 | Left 4th toe stump infection | M | 68 | Algeria | II/20 |
12 | Right hallux gangrene | F | 68 | Libya | II/30 |
13 | Phlegmon of the plantar surface of the left foot | F | 79 | Libya | II/19 |
14 | Right foot infection | M | 84 | Tunisia | II/10 |
15 | Patient with sepsis (right plant gangrene) | M | 71 | Tunisia | II/20 |
16 | Infected plantar perforating disease of the right foot | M | 58 | Algeria | II/21 |
17 | Left foot phlegmon | F | 66 | Tunisia | II/27 |
18 | Gangrene of the 2nd right toe | F | 77 | Algeria | II/30 |
19 | Right big toe infection | M | 67 | Libya | II/+30 |
20 | Left foot infection with purulent discharge | M | 69 | Lybia | II/25 |
21 | Right hallux gangrene | M | 64 | Tunisia | II/25 |
22 | Superinfection of the 4th right toe | M | 80 | Lybia | II/30 |
23 | Left hallux infection | M | 62 | Libya | II/19 |
24 | Infected intertrigo inter toe of the 3rd and 4th space of the right foot | F | 51 | Libya | II/+20 |
25 | Left big toe infection | F | 64 | Tunisia | II/18 |
26 | Phlegmon of the flexor sheaths of the left foot | M | 43 | Tunisia | II/14 |
27 | Infected right foot | M | 47 | Libya | II/4 months |
28 | Infected left foot | M | 43 | Tunisia | II/10 |
29 | Infected right heel | F | 53 | Libya | II/20 |
30 | Charcot infection of the left foot | M | 59 | Tunisia | II/10 |
31 | Right hallux gangrene | M | 45 | Tunisia | I/30 |
32 | Phlegmon and plantar perforating disease of the right and left foot | M | 46 | Tunisia | II/15 |
33 | Right hallux infection | M | 67 | Algeria | II/10 |
34 | 3rd left toe gangrene | M | 56 | Libya | II/25 |
35 | 3rd left toe infection | M | 92 | Tunisia | II/30 |
36 | Left big toe gangrene | M | 74 | Tunisia | II/26 |
37 | Infected ulceration of the 2nd right and left toe | F | 69 | Libya | II/15 |
38 | Phlegmon in the sole of the left foot | M | 42 | Chad | II/10 |
39 | Right big toe gangrene | M | 67 | Tunisia | II/25 |
40 | Infection of the big toe and the 3rd left toe | M | 63 | Libya | I /50 |
41 | 2nd left toe infection | F | 58 | Libya | II/10–19 |
42 | Superinfection of the amputation stump of the right hallux | F | 71 | Guinea | II/1 |
43 | Left hallux infection | M | 52 | Libya | II/36 |
44 | 5th left toe gangrene | M | 53 | Libya | II/20 |
45 | Left hallux flexor sheath phlegmon | M | 74 | Tunisia | II 10 |
46 | Left big toe gangrene | M | 39 | Libya | II/20 |
47 | Plantar perforating disease on Charcot foot of the left foot | M | 66 | Libya | II/36 |
48 | Gangrene of the 1st and 3rd left toe | M | 57 | Tunisia | II/25 |
49 | Right foot infection | M | 80 | Tunisia | II/15 |
50 | Infected ulceration of the 5th right toe | M | 60 | Tunisia | II/36 |
51 | Right 2nd toe gangrene | M | 52 | Tunisia | II/20 |
52 | Superinfection of the left heel | M | 58 | Tunisia | diabetes secondary to acute pancreatitis/23 |
53 | Left 2nd toe gangrene | F | 43 | Tunisia | II/10 |
54 | Infected ulceration of the plantar surface of the right hallux | M | 65 | Tunisia | II/20 |
55 | Right foot phlegmon | M | 68 | Tunisia | II/20 |
56 | Left 5th toe infection | M | 64 | Tunisia | II/15 |
57 | Right foot transmetatarsal amputation stump infection | M | 64 | Tunisia | II/40 |
58 | Superinfection of the amputation stump of the right 1st ray | M | 60 | Tunisia | I/19 |
59 | Left heel infection | F | 62 | Tunisia | I/30 |
60 | Left big toe infection | F | 58 | Tunisia | II/20 |
61 | Phlegmon of the 4th left toe | M | 81 | Tunisia | II/+20 |
62 | Right hallux gangrene | F | 66 | Tunisia | II/25 |
63 | Right heel infection | F | 67 | Tunisia | II/37 |
64 | Left foot infection | M | 72 | Libya | II/25 |
Antibiotic (Disc Charge) | All Isolates (Total = 15) n (%) | MRSA (Total = 6) n (%) | MSSA (Total = 9) n (%) |
---|---|---|---|
penicillin | 14 (93.3%) | 6 (100%) | 8 (88.9%) |
cefoxitin | 6 (40%) | 6 (100%) | 0 |
tobramycin | 3 (20%) | 3 (50%) | 0 |
gentamicin | 3 (20%) | 3 (50%) | 0 |
ciprofloxacin | 2 (13.3%) | 2 (33.3%) | 0 |
levofloxacin | 2 (13.3%) | 2 (33.3%) | 0 |
trimethoprim–sulfamethoxazole | 2 (13.3%) | 2 (33.3%) | 0 |
clindamycin | 1 (6.7%) | 1 (16.7%) | 0 |
erythromycin | 2 (13.3%) | 0 | 2 (22.2%) |
fusidic acid | 11 (73.3%) | 6 (100%) | 5 (55.6%) |
tetracycline | 4 (26.7%) | 4 (66.7%) | 0 |
minocycline | 1 (6.7%) | 1 (16.7%) | 0 |
mupirocin | 1 (6.7%) | 1 (16.7%) | 0 |
chloramphenicol | 1 (6.7%) | 1 (16.7%) | 0 |
linezolid | 0 | 0 | 0 |
tigecycline | 0 | 0 | 0 |
vancomycin | 0 | 0 | 0 |
teicoplanin | 0 | 0 | 0 |
rifampicin | 1 (6.7%) | 1 (16.7%) | 0 |
Strain | Sample Type | Molecular Typing | Antimicrobial Resistance | Virulence Genes | IEC f | ||||
---|---|---|---|---|---|---|---|---|---|
Spa Type | CC c | Agr-Type | SCCmec-Type | Phenotype e | Genotype | ||||
X3653 a | Aspiration | t311 | CC5 | IV | V | PEN, FOX, CIP, LVX, FA | mecA, blaZ | E | |
X3655 | Aspiration | t037 | CC8 | IV | IV b | PEN, FOX, SXT, FA, TET, CHL | mecA, blaZ, tet(M), fexA | G | |
X3656 | Deep swab | t127 | CC1 | III | ND d | PEN, FOX, TOB, GEN, SXT, FA, TET, MUP | mecA, blaZ, tet(L), tet(K), aac6′-aph2” | lukS/F-PV | D |
X3657 | Deep swab | t15077 | III | ND | PEN, FOX, FA | mecA | E | ||
X3659 | Deep swab | t688 | CC5 | III | III | PEN, FOX, TOB, GEN, CIP, LVX, FA, TET, MIN, RIF | mecA, blaZ, tet(M), tet(K), aac6′-aph2” | D | |
X3654 | Deep swab | t084 | CC15 | II | V | PEN, FOX, TOB, GEN, FA, TET | mecA, blaZ, tet(K), aac6′-aph2”, ant4′-la | C | |
X3694 | Deep swab | t127 | CC1 | III | - | PEN, FA | blaZ | D | |
X3695 | Deep swab | NC b | III | - | PEN | blaZ | - | ||
X3697 | Tissue biopsy | t118 | III | - | PEN, ERY, FA, | blaZ, erm(B), msr(A) | eta | - | |
X3698 | Tissue biopsy | t355 | III | - | PEN | blaZ | lukS/F-PV | E | |
X3693 | Tissue biopsy | t091 | III | - | PEN | blaZ | G | ||
X3699 | Deep swab | t012 | CC12 | III | - | PEN, ERY, CLI * | blaZ, erm(A), erm(B), msr(A) | tst | A |
X3700 | Tissue biopsy | t223 | CC22 | III | - | PEN, FA | blaZ | B | |
X3692 | Tissue biopsy | t571 | CC39 | III | - | FA | - | C | |
X3696 a | Deep swab | t127 | CC1 | I | - | PEN, FA | - | D |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arfaoui, A.; Sallem, R.B.; Fernández-Fernández, R.; Eguizábal, P.; Dziri, R.; Abdullahi, I.N.; Sayem, N.; Ben Khelifa Melki, S.; Ouzari, H.-I.; Torres, C.; et al. Methicillin-Resistant Staphylococcus aureus from Diabetic Foot Infections in a Tunisian Hospital with the First Detection of MSSA CC398-t571. Antibiotics 2022, 11, 1755. https://doi.org/10.3390/antibiotics11121755
Arfaoui A, Sallem RB, Fernández-Fernández R, Eguizábal P, Dziri R, Abdullahi IN, Sayem N, Ben Khelifa Melki S, Ouzari H-I, Torres C, et al. Methicillin-Resistant Staphylococcus aureus from Diabetic Foot Infections in a Tunisian Hospital with the First Detection of MSSA CC398-t571. Antibiotics. 2022; 11(12):1755. https://doi.org/10.3390/antibiotics11121755
Chicago/Turabian StyleArfaoui, Ameni, Rym Ben Sallem, Rosa Fernández-Fernández, Paula Eguizábal, Raoudha Dziri, Idris Nasir Abdullahi, Noureddine Sayem, Salma Ben Khelifa Melki, Hadda-Imen Ouzari, Carmen Torres, and et al. 2022. "Methicillin-Resistant Staphylococcus aureus from Diabetic Foot Infections in a Tunisian Hospital with the First Detection of MSSA CC398-t571" Antibiotics 11, no. 12: 1755. https://doi.org/10.3390/antibiotics11121755
APA StyleArfaoui, A., Sallem, R. B., Fernández-Fernández, R., Eguizábal, P., Dziri, R., Abdullahi, I. N., Sayem, N., Ben Khelifa Melki, S., Ouzari, H. -I., Torres, C., & Klibi, N. (2022). Methicillin-Resistant Staphylococcus aureus from Diabetic Foot Infections in a Tunisian Hospital with the First Detection of MSSA CC398-t571. Antibiotics, 11(12), 1755. https://doi.org/10.3390/antibiotics11121755