Daniellia oliveri (Rolfe) Hutch and Dalziel: Antimicrobial Activities, Cytotoxicity Evaluation, and Phytochemical Identification by GC-MS
Abstract
:1. Introduction
2. Results
2.1. Antibacterial and Antifungal Activities
2.2. Cytotoxicity Activities
2.3. Phytochemical Investigation
3. Discussion
3.1. Antibacterial, Antifungal, and Cytotoxicity Activities
3.2. Phytochemical Investigation
4. Materials and Methods
4.1. Materials
4.1.1. Plant Materials
4.1.2. Chemicals
4.1.3. Bacterial and Fungal Strains
4.1.4. Eukaryotic Cell
4.2. Methods
4.2.1. Extraction and Fractionation
4.2.2. Antibacterial and Antifungal Tests
4.2.3. Cytotoxicity Tests
4.2.4. Parameters of the GC-MS
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). WHO Global Report on Traditional and Complementary Medicine 2019. 2019. Available online: https://www.who.int/publications/i/item/978924151536 (accessed on 14 July 2022).
- Sen, S.; Chakraborty, R. Revival, modernization, and integration of Indian traditional herbal medicine in clinical practice: Importance, challenges, and future. J. Tradit. Complement. Med. 2017, 7, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Gerullis, H.; Wawroschek, F.; Köhne, C.-H.; Ecke, T.H. Vinflunine in the treatment of advanced urothelial cancer: Clinical evidence and experience. Ther. Adv. Urol. 2017, 9, 28–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization (WHO). Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report, 180 p. 2021. Available online: https://www.who.int/publications/i/item/9789240027336https://apps.who.int/iris/rest/bitstreams/1350455/retrieve (accessed on 14 July 2022).
- Seebaluck-Sandoram, R.; Mahomoodally, F.M. Chapter 5-Management of Infectious Diseases in Africa. In Medicinal Spices and Vegetables from Africa, 1st ed.; Kuete, V., Ed.; Therapeutic Potential Against Metabolic, Inflammatory, Infectious and Systemic Diseases; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2017; pp. 133–151. [Google Scholar]
- Louw, C.A.M.; Regnier, T.J.C.; Korsten, L. Medicinal bulbous plants of South Africa and their traditional relevance in the control of infectious diseases. J. Ethnopharmacol. 2002, 82, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Ndhlala, A.R.; Amoo, S.O.; Ncube, B.; Moyo, M.; Nair, J.J.; Van Staden, J. Antibacterial, Antifungal, and Antiviral Activities of African Medicinal Plants. In Medicinal Plant Research in Africa-Pharmacology and Chemistry, 1st ed.; Kuete, V., Ed.; Elsevier: Aalborg, Denmark, 2013; pp. 621–659. [Google Scholar]
- Tura, G.T.; Eshete, W.B.; Tucho, G.T. Antibacterial efficacy of local plants and their contribution to public health in rural Ethiopia. Antimicrob. Resist. Infect. Control. 2017, 28, 76. [Google Scholar] [CrossRef] [Green Version]
- Ugboko, H.U.; Nwinyi, O.C.; Oranusi, S.U.; Fatoki, T.H.; Omonhinmin, C.A. Antimicrobial importance of medicinal plants in Nigeria. Sci. World J. 2020, 2020, 7059323. [Google Scholar] [CrossRef]
- Adeyemo, R.O.; Famuyide, I.M.; Dzoyem, J.P.; McGaw, L.J. Anti-Biofilm, Antibacterial, and Anti-Quorum Sensing Activities of Selected South African Plants Traditionally Used to Treat Diarrhoea. Evid. Based Complement. Alternat. Med. 2022, 2022, 1307801. [Google Scholar] [CrossRef]
- Madureira, A.M.; Ramalhete, C.; Mulhovo, S.; Duarte, A.; Ferreira, M.J. Antibacterial activity of some African medicinal plants used traditionally against infectious diseases. Pharm. Biol. 2012, 50, 481–489. [Google Scholar] [CrossRef] [Green Version]
- Pillay, P.; Naidoo, D.; Maharaj, V.J.; Moodley, N.; Sewnarain, P.; Van Rooyen, S.; Mthembu, X.; Khorombi, E. South African Plants as a Source of Drugs to Treat Infectious Diseases-TB, Malaria and HIV. CSIR-Conference 2008-11. 2008. Available online: https://researchspace.csir.co.za/dspace/handle/10204/2540 (accessed on 14 July 2022).
- Tittikpina, N.K.; Atakpama, W.; Pereki, H.; Nasim, M.J.; Wesam, A.; Fontanay, S.; Nana, F.; Ejike, C.E.C.C.; Kirsch, G.; Duval, R.E.; et al. “Capiture” plants with interesting biological activities: A case to go. Open Chem. 2017, 15, 208–218. [Google Scholar] [CrossRef] [Green Version]
- Tittikpina, N.K.; Nana, F.; Fontanay, S.; Philippot, S.; Batawila, K.; Akpagana, K.; Kirsch, G.; Chaimbault, P.; Jacob, C.; Duval, R.E. Antibacterial activity and cytotoxicity of Pterocarpus erinaceus Poir extracts, fractions, and isolated compounds. J. Ethnopharmacol. 2018, 212, 200–207. [Google Scholar] [CrossRef]
- Janniger, K.C.; Schwartz, R.A.; Szepietowski, J.C. Reich. Intertrigo and Common Secondary Skin Infections. Am. Fam. Physician 2005, 72, 833–838. Available online: https://www.aafp.org/afp/2005/0901/afp20050901p833.pdf (accessed on 14 July 2022).
- Kombaté, K.; Dagnra, A.Y.; Saka, B.; Mouhari-Toure, A.; Akakpo, S.; Tchangaï-Walla, K.; Pitché, P. Prevalence of methicillin-resistant Staphylococcus aureus in community-acquired skin infections in Lomé, Togo. Med. Trop. 2011, 71, 68–70. [Google Scholar]
- Gachkar, L.; Yadegari, D.; Rezaei, M.B.; Taghizadeh, M.; Astaneh, S.A.; Rasooli, I. Chemical and biological characteristics of Cuminum cyminum and Rosmarinus officinalis essential oils. Food Chem. 2007, 102, 898–904. [Google Scholar] [CrossRef]
- Ahmadu, A.; Haruna, A.K.; Garba, M.; Ehinmidu, J.O.; Sarker, S.D. Phytochemical and antimicrobial activities of the Daniellia oliveri leaves. Fitoterapia 2004, 75, 729–732. [Google Scholar] [CrossRef] [PubMed]
- Ahmadu, A.A.; Agunu, A.; Enhimidu, J.O.; Magiatis, P.; Skaltsounis, A.L. Antibacterial, anti-diarrheal activity of Daniellia oliveri and Ficus sycomorus and their constituents. Planta Med. 2007, 73, 172. [Google Scholar] [CrossRef]
- Temitope, O.O.; Fasusi, O.A.; Ogunmodede, A.F.; Thonda, A.O.; Oladejo, B.O.; Yusuf-Babatunde, A.M.; Ige, O.O. Phytochemical composition and antimicrobial activity of Daniella oliveri extracts on selected clinical microorganisms. IJBCRR 2012, 14, 1–13. [Google Scholar] [CrossRef] [PubMed]
- El-Mahmood, A.M.; Doughari, J.H.; Chanji, F.J. In vitro antibacterial activities of crude extracts of Nauclea latifolia and Daniella oliveri. Sci. Res. Essays. 2008, 3, 102–105. Available online: https://academicjournals.org/article/article1380356422_El-Mahmood%20et%20al.pdf (accessed on 14 July 2022).
- Sahakyan, N.; Petrosyan, M.; Koss-Mikołajczyk, I.; Bartoszek, A.; Sad, T.G.; Nasim, M.J.; Vanidze, M.; Kalandia, A.; Jacob, C.; Trchounian, A. The Caucasian flora: A still-to-be-discovered rich source of antioxidants. Free Radic. Res. 2019, 53, 1153–1162. [Google Scholar] [CrossRef]
- Coker, M.E.; Ogundele, O.S. Evaluation of the anti-fungal properties of extracts of Daniella oliveri. Afr. J. Biomed. Res. 2016, 19, 55–60. Available online: http://www.bioline.org.br/pdf?md16008 (accessed on 14 July 2022).
- Kabore, A.; Tamboura, H.H.; Traore, A.; Traore, A.; Meda, R.; Kiendrebeogo, M.; Belem, A.M.G.; Sawadogo, L. Phytochemical analysis and acute toxicity of two medicinal plants (Anogeissus leiocarpus and Daniellia oliveri) used in traditional veterinary medicine in Burkina Faso. Arch. Appl. Sci. Res. 2010, 2, 47–52. [Google Scholar]
- Atolania, O.; Olatunji, G.A. Isolation and evaluation of anti-glycation potential of polyalthic acid (furano-terpene) from Daniella oliveri. J. Pharm. Anal. 2014, 4, 407–411. [Google Scholar] [CrossRef] [Green Version]
- Dai, D.N.; Thanh, B.V.; Anh, L.D.N.; Ban, N.K.; Thang, T.D.; Ogunwande, I.A. Composition of Stem Bark Essential Oils of Three Vietnamese Essential Oils of Three Vietnamese Species of Kadsura (Schisandraceae). Rec. Nat. Prod. 2015, 9, 386–393. Available online: https://acgpubs.org/doc/2018080720444449-RNP_E0_1306-045.pdf (accessed on 14 July 2022).
- Haeuser, J.; Hall, S.F.; Oehlschlager, A.C.; Ourisson, G. The structure and stereochemistry of oliveric acid. Tetrahedron. 1970, 26, 3461–3465. [Google Scholar] [CrossRef]
- Muanda, F.; Koné, D.; Dicko, A.; Soulimani, R.; Younos, C. Phytochemical Composition and Antioxidant Capacity of Three Malian Medicinal Plant Parts. Evid. Based Complement. Alternat. Med. 2011, 2011, 674320. [Google Scholar] [CrossRef]
- Chacón-Morales, P.; Amaro-Luis, J.M. Bahsas. Isolation and characterization of (+)-mellein, the first isocoumarin, reported in Stevia genus. Avances en. Química 2013, 8, 145–151. Available online: https://www.redalyc.org/articulo.oa?id=93330145007 (accessed on 14 July 2022).
- Dutra, L.M.; Bomfim, L.M.; Rocha, S.L.A.; Nepel, A.; Soares, M.B.P.; Barison, A.; Costa, E.V.; Bezerra, D.P. Ent-Kaurane diterpenes from the stem bark of Annona vepretorum (Annonaceae) and cytotoxic evaluation. Bioorg. Med. Chem. Lett. 2014, 24, 3315–3320. [Google Scholar] [CrossRef]
- Vázquez, L.H.; Palazon, J.; Navarro-Ocaña, A. Chapter 23-The Pentacyclic Triterpenes α, β-amyrins: A review of sources and biological activities, In Phytochemicals-A Global Perspective of Their Role in Nutrition and Health; Rao, V., Ed.; In Tech Europe: London, UK, 2012; pp. 487–502. [Google Scholar] [CrossRef] [Green Version]
- Dini, A.; Migliuolo, G.; Rastrelli, L.; Saturnino, P.; Schettino, O. Chemical composition of Lepidium meyenii. Food Chem. 1994, 49, 347–349. [Google Scholar] [CrossRef]
- Dean, L.L.; Sanders, T.H. Hexacosanoic acid and other very long-chain fatty acids in peanut seed oil. Plant Genetic Resources: Characterization and Utilization. Plant Genet. Resour. 2009, 7, 252–256. [Google Scholar] [CrossRef]
- Churchward, C.P.; Alany, R.G.; Snyder, L.A.S. Alternative antimicrobials: The properties of fatty acids and monoglycerides. Crit. Rev. Microbiol. 2018, 44, 561–570. [Google Scholar] [CrossRef] [Green Version]
- Burčová, Z.; Krepsa, F.; Greifová, M.; Jablonský, M.; Házb, A.; Schmidt, S.; Šurinab, I. Antibacterial and antifungal activity of phytosterols and methyldehydroabietate of Norway spruce bark extracts. J. Ethnopharmacol. 2018, 282, 18–24. [Google Scholar] [CrossRef]
- Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules 2019, 24, 2471. [Google Scholar] [CrossRef] [Green Version]
- Chung, P.Y. Novel targets of pentacyclic triterpenoids in Staphylococcus aureus: A systematic review. Phytomedicine 2020, 73, 152933. [Google Scholar] [CrossRef]
- Sycz, Z.; Tichaczek-Goska, D.; Wojnicz, D. Anti-Planktonic and Anti-Biofilm Properties of Pentacyclic Triterpenes-Asiatic Acid and Ursolic Acid as Promising Antibacterial Future Pharmaceuticals. Biomolecules 2022, 12, 98. [Google Scholar] [CrossRef] [PubMed]
- Ganjun, Y.; Yingying, G.; Yi, H.; Lai, S.; Yifei, S.; Seng, C. Antibacterial activity and mechanism of plant flavonoids to gram-positive bacteria predicted from their lipophilicities. Sci. Rep. 2021, 11, 10471. [Google Scholar] [CrossRef]
- Casillas-Vargas, G.; Ocasio-Malav´e, C.; Medina, S.; Morales-Guzm´an, C.; Del Valle, R.G.; Carballeira, N.M.; Sanabria-Ríos, D.J. Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. Progr. Lipid Res. 2021, 82, 101093. [Google Scholar] [CrossRef]
- Fontanay, S.; Grare, M.; Mayer, J.; Finance, C.; Duval, R.E. Ursolic, oleanolic and betulinic acids: Antibacterial spectra and selectivity indexes. J. Ethnopharmacol. 2008, 120, 272–276. [Google Scholar] [CrossRef]
- Tittikpina, N.K.; Sandjo, L.P.; Nana, F.; Vaillant, V.; Fontanay, S.; Philippot, S.; Diop, Y.M.; Batawila, K.; Akpagana, K.; Kirsch, G.; et al. Investigation of the antifungal activity of Pterocarpus erinaceus led to the identification of two new diarylpropanoids from its roots. Phytochem. Lett. 2019, 32, 110–114. [Google Scholar] [CrossRef]
- Cos, P.; Vlietinck, A.J.; Vanden Berghe, D.; Maes, L. Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol. 2006, 106, 290–302. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 3rd ed.; approved standard M27-A3; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 8th ed.; approved standard M7-A8; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2009. [Google Scholar]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
E. faecalis | S. aureus | P. aeruginosa | A. baumannii | E. coli | K. pneumoniae | E. cloacae | C. albicans | |
---|---|---|---|---|---|---|---|---|
Leaves | 32 | 256 | >256 (74%) | >256 (87%) | >256 (88%) | >256 (78%) | >256 (75%) | >256 |
Bark | 16 | 128 | 256 | >256 (84%) | 256 | >256 (75%) | >256 (86%) | >256 |
Roots | 64 | 256 | >256 (59%) | >256 (50%) | >256 (44%) | >256 (58%) | >256 (37%) | >256 |
Fraction | E. faecalis | S. aureus | P. aeruginosa | A. baumannii | E. coli | K. pneumoniae | E. cloacae | |
---|---|---|---|---|---|---|---|---|
Leaves | Petroleum ether | 256 | 256 | 256 | 256 | 256 | >256 | 256 |
Dichloromethane | >256 | 256 | >256 (72%) | >256 (82%) | >256 (85%) | >256 (82%) | >256 (59%) | |
Acetate | >256 (78%) | 256 | >256 (63%) | >256 (71%) | >256 (86%) | >256 (52%) | >256 (69%) | |
Butanol | 64 | 128 | 128 | 256 | 256 | 256 | 256 | |
Water | 64 | 256 | >256 | >256 (83.5%) | 256 | >256 (63%) | >256 (90%) | |
Bark | Petroleum ether | 128 | 256 | >256 | >256 | >256 (74%) | 256 | >256 (46%) |
Dichloromethane | 256 | 256 | >256 | >256 (67%) | >256 (71%) | >256 (67.24%) | 256 | |
Acetate | 64 | 128 | >256 (79.5%) | 256 | 256 | >256 (78%) | >256 (76%) | |
Butanol | 64 | 128 | 256 | 256 | >256 (82.5%) | >256 (70.5%) | 256 | |
Water | 64 | 128 | 128 | >256 (85%) | 256 | 256 | 256 | |
Roots | Petroleum ether | 32 | >256 (70%) | >256 (75%) | >256 (20%) | >256 (68%) | >256 (19%) | >256 (39%) |
Dichloromethane | 32 | 128 | >256 (84%) | >256 (15%) | >256 (63%) | >256 (33%) | >256 (32%) | |
Acetate | 64 | 64 | 128 | >256 (45%) | >256 (57%) | >256 (36%) | >256 (38.5%) | |
MeOH remaining | 128 | 128 | >256 (74%) | >256 (79.5%) | >256 (55%) | >256 (75.5%) | >256 (38.5%) | |
ATB | 2 | <1 | 8 | 8 | 4 | 1 | 4 |
Fraction | S. aureus | MRSA | S. epidermidis | ||||
---|---|---|---|---|---|---|---|
MIC | PI50 | MIC | PI50 | MIC | PI50 | ||
Leaves | Petroleum ether | 256 | ND | >256 | ND | >256 | ND |
Butanol | 128 | 1 | 128 | 1 | 128 | 1 | |
Water | 256 | 1 | 128 | 1 | 64 | 1 | |
Bark | Petroleum ether | 256 | ND | 256 | ND | 128 | ND |
Dichloromethane | 256 | ND | >256 63.54% | ND | 256 | ND | |
Acetate | 128 | ND | 128 | ND | 256 | ND | |
Butanol | 128 | 1 | 128 | 1 | 64 | 1 | |
Water | 128 | 1 | 128 | 1 | 64 | 1 | |
Roots | Dichloromethane | 128 | ND | 128 | ND | 256 | ND |
Acetate | 64 | ND | >256 | ND | >256 | ND | |
MeOH | 128 | ND | 64 | ND | >256 | ND |
Plant Part | Extracts | IC50 |
---|---|---|
Leaves | Methanol | >256 |
Butanol | >256 | |
Water | >256 | |
Bark | MeOH | >256 |
Petroleum ether | 198.02 ± 0.19 | |
Ethyl acetate | >256 | |
Butanol | 81.18 ± 0.07 | |
Water | 76.96 ± 0.06 | |
Roots | MeOH | >256 |
Dichloromethane | 161.15 ± 0.18 | |
MeOH final | 210.67 ± 0.23 |
n° | RT | RSI % | Area % | Name |
---|---|---|---|---|
1 | 5.27 | 94 | 15.2 | δ-Cadinene |
2 | 6.05 | - | 3.7 | INH |
3 | 9.19 | - | 4.9 | INH |
4 | 9.75 | - | 5.7 | INH |
5 | 9.93 | 96 | 70.5 | Daniellic acid |
n° | RT | RSI % | Area % | Name |
---|---|---|---|---|
1 | 3.53 | - | 0.6 | INH |
2 | 5.49 | 91 | 2.2 | Mellein |
3 | 5.74 | - | 0.59 | INH (terpenoid) |
4 | 5.90 | - | 0.85 | INH (terpenoid) |
5 | 7.59 | 95 | 1.67 | Palmitic acid |
6 | 8.45 | 92 | 3.31 | Linoleic acid |
7 | 8.54 | 86 | 0.49 | Oleic acid |
8 | 13.37 | 72 | 1.17 | Stigmasterol |
9 | 13.73 | 78 | 3.49 | γ-sistosterol |
n° | RT | RSI % | Area % | Name |
---|---|---|---|---|
1 | 3.55 | 94 | 0.81 | Glycerol |
2 | 3.84 | 95 | 0.66 | Succinic acid |
3–4 | 4.07 * | 78 | 0.26 | Fumaric acid + INH |
5 | 5.31 | 91 | 0.35 | Vanillin |
6–7 | 5.44 * | 87–90 | 0.42 | 3-hydroxybenzoic acid + p-tyrosol |
8 | 5.81 | 92 | 0.50 | 4-hydroxybenzoic acid |
9 | 6.86 | 93 | 1.02 | Protocatechuic acid |
10 | 7.03 | 88 | 0.50 | Myristic acid |
11 | 7.27 | 87 | 0.48 | Syringic acid |
12 | 7.45 | 94 | 0.50 | Palmitic acid (methyl ester) |
13 | 7.53 | 93 | 1.42 | n-Pentadecanoic acid |
14 | 8.02 | 94 | 10.02 | Palmitic acid |
15 | 8.25 | 82 | 0.35 | Ferrulic acid |
16 | 8.30 | 92 | 0.35 | Linoleic acid (methyl ester) |
17 | 8.32 | 91 | 0.41 | 6-Octadecenoic acid (methyl ester). |
18 | 8.36 | 76 | 0.89 | 9,12-Octadecadienoic acid (methyl ester) |
19 | 8.71 | 87 | 0.46 | Hexadecane-1,2-diol |
20 | 8.81 | 95 | 9.44 | Linoleic acid |
21 | 8.83 | 94 | 10.23 | Octadecenoic acid |
22 | 8.94 | 96 | 2.97 | Stearic acid |
23 | 9.78 | 91 | 0.89 | Arachidic acid |
24 | 10.20 | 94 | 1.16 | Gadoleic acid |
25 | 10.32 | 94 | 0.69 | Mono palmitin isomer |
26 | 10.55 | 92 | 0.70 | Behenic acid |
27 | 10.97 | 89 | 1.06 | Mono olein isomer |
28 | 11.28 | 91 | 2.16 | Lignoceric acid |
29 | 11.41 | 77 | 0.90 | epicatechin |
30 | 11.52 | 79 | 0.35 | catechin |
31 | 11.82 | - | 0.66 | INH |
32 | 11.94 | - | 0.75 | INH |
33 | 11.65 | 85 | 0.99 | Pentacosanoic acid |
34 | 12.04 | 92 | 1.37 | Hexacosanoic acid |
35 | 12.21 | - | 0.68 | INH |
36 | 12.61 | 85 | 0.81 | 24-lignoceric acid |
37 | 13.26 | 91 | 1.47 | Campesterol |
38 | 13.40 | 92 | 1.81 | Stigmasterol |
39 | 13.61 | - | 0.61 | INH |
40 | 13.77 | 93 | 5.42 | β-sitosterol |
41 | 14.52 | 88 | 1.61 | Lupeol |
42 | 14.56 | 91 | 10.79 | β-Amyrin |
43 | 14.69 | 85 | 1.35 | Sitosterone |
Plant | Part | Mass (kg) of Powder Material | Mass of Raw Extract Obtained | Mass of Raw Extract Preserved for Biological and Chemical tests | Mass of Ether Petroleum Fraction Obtained | Mass of DichloroMethane Fraction Obtained | Mass of Ethyl Acetate Fraction Obtained | Mass of Butanol Obtained | Mass of Water Fraction Obtained |
---|---|---|---|---|---|---|---|---|---|
D. oliveri | Leaves | 3 | 419.8 g | 4.6 g | 6.7 g | 33.4 g | 7.1 g | 99.9 g | 165.5 g |
Stem barks | 3 | 468.9 g | 11.3 g | 0.4 g | 1.6 g | 56.6 g | 49.9 g | 150.9 g | |
Roots | 3 | 126.9 g | 4.8 g | 3.5 g | 8.7 g | 1 g | - | 101.5 g (final methanol fraction) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tittikpina, N.K.; Kirsch, G.; Duval, R.E.; Chaimbault, P.; Jacob, C. Daniellia oliveri (Rolfe) Hutch and Dalziel: Antimicrobial Activities, Cytotoxicity Evaluation, and Phytochemical Identification by GC-MS. Antibiotics 2022, 11, 1699. https://doi.org/10.3390/antibiotics11121699
Tittikpina NK, Kirsch G, Duval RE, Chaimbault P, Jacob C. Daniellia oliveri (Rolfe) Hutch and Dalziel: Antimicrobial Activities, Cytotoxicity Evaluation, and Phytochemical Identification by GC-MS. Antibiotics. 2022; 11(12):1699. https://doi.org/10.3390/antibiotics11121699
Chicago/Turabian StyleTittikpina, Nassifatou Koko, Gilbert Kirsch, Raphaël Emmanuel Duval, Patrick Chaimbault, and Claus Jacob. 2022. "Daniellia oliveri (Rolfe) Hutch and Dalziel: Antimicrobial Activities, Cytotoxicity Evaluation, and Phytochemical Identification by GC-MS" Antibiotics 11, no. 12: 1699. https://doi.org/10.3390/antibiotics11121699
APA StyleTittikpina, N. K., Kirsch, G., Duval, R. E., Chaimbault, P., & Jacob, C. (2022). Daniellia oliveri (Rolfe) Hutch and Dalziel: Antimicrobial Activities, Cytotoxicity Evaluation, and Phytochemical Identification by GC-MS. Antibiotics, 11(12), 1699. https://doi.org/10.3390/antibiotics11121699