Emergence of Colistin-Resistant Acinetobacter junii in China
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phenotypic Characterization of AJ6079
2.2. Genome Analysis of AJ6079
3. Materials and Methods
3.1. Bacterial Strains and Antimicrobial Susceptibility Test
3.2. Whole Genome Sequencing and Bioinformatic Analysis
3.3. Transmission Electron Microscope (TEM)
3.4. Growth Curve Assay
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Applications
References
- Wong, D.; Nielsen, T.B.; Bonomo, R.A.; Pantapalangkoor, P.; Luna, B.; Spellberg, B. Clinical and Pathophysiological Overview of Acinetobacter Infections: A Century of Challenges. Clin. Microbiol. Rev. 2017, 30, 409–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, H.-Y.; Cheng, A.; Liu, C.-Y.; Huang, Y.-T.; Lee, Y.-C.; Liao, C.-H.; Hsueh, P.-R. Bacteremia caused by Acinetobacter junii at a medical center in Taiwan, 2000–2010. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 2737–2743. [Google Scholar] [CrossRef] [PubMed]
- Hejnar, P.; Kolár, M.; Hájek, V. Characteristics of Acinetobacter strains (phenotype classification, antibiotic susceptibility and production of beta-lactamases) isolated from haemocultures from patients at the Teaching Hospital in Olomouc. Acta Univ. Palacki. Olomuc. Fac. Med. 1999, 142, 73–77. [Google Scholar] [PubMed]
- Pormohammad, A.; Mehdinejadiani, K.; Gholizadeh, P.; Nasiri, M.J.; Mohtavinejad, N.; Dadashi, M.; Karimaei, S.; Safari, H.; Azimi, T. Global prevalence of colistin resistance in clinical isolates of Acinetobacter baumannii: A systematic review and meta-analysis. Microb. Pathog. 2020, 139, 103887. [Google Scholar] [CrossRef] [PubMed]
- Trebosc, V.; Gartenmann, S.; Tötzl, M.; Lucchini, V.; Schellhorn, B.; Pieren, M.; Lociuro, S.; Gitzinger, M.; Tigges, M.; Bumann, D.; et al. Dissecting Colistin Resistance Mechanisms in Extensively Drug-Resistant Acinetobacter baumannii Clinical Isolates. mBio 2019, 10, e01083-19. [Google Scholar] [CrossRef] [Green Version]
- Olaitan, A.; Morand, S.; Rolain, J.-M. Mechanisms of polymyxin resistance: Acquired and intrinsic resistance in bacteria. Front. Microbiol. 2014, 5, 643. [Google Scholar] [CrossRef] [Green Version]
- Arroyo, L.A.; Herrera, C.M.; Fernandez, L.; Hankins, J.V.; Trent, M.S.; Hancock, R.E.W. The pmrCAB Operon Mediates Polymyxin Resistance in Acinetobacter baumannii ATCC 17978 and Clinical Isolates through Phosphoethanolamine Modification of Lipid A. Antimicrob. Agents Chemother. 2011, 55, 3743–3751. [Google Scholar] [CrossRef] [Green Version]
- Macnair, C.R.; Stokes, J.M.; Carfrae, L.A.; Fiebig-Comyn, A.A.; Coombes, B.K.; Mulvey, M.R.; Brown, E.D. Overcoming mcr-1 mediated colistin resistance with colistin in combination with other antibiotics. Nat. Commun. 2018, 9, 458. [Google Scholar] [CrossRef] [Green Version]
- Martins-Sorenson, N.; Snesrud, E.; Xavier, D.E.; Cacci, L.C.; Iavarone, A.T.; McGann, P.; Riley, L.W.; Moreira, B.M. A novel plasmid-encoded mcr-4.3 gene in a colistin-resistant Acinetobacter baumannii clinical strain. J. Antimicrob. Chemother. 2020, 75, 60–64. [Google Scholar] [CrossRef]
- Singletary, L.A.; Karlinsey, J.E.; Libby, S.J.; Mooney, J.P.; Lokken, K.L.; Tsolis, R.M.; Byndloss, M.X.; Hirao, L.A.; Gaulke, C.A.; Crawford, R.W.; et al. Loss of Multicellular Behavior in Epidemic African Nontyphoidal Salmonella enterica Serovar Typhimurium ST313 Strain D23580. mBio 2016, 7, e02265. [Google Scholar] [CrossRef]
- Abellón-Ruiz, J.; Kaptan, S.S.; Baslé, A.; Claudi, B.; Bumann, D.; Kleinekathöfer, U.; Berg, B.V.D. Structural basis for maintenance of bacterial outer membrane lipid asymmetry. Nat. Microbiol. 2017, 2, 1616–1623. [Google Scholar] [CrossRef] [Green Version]
- Sabnis, A.; Hagart, K.L.; Klöckner, A.; Becce, M.; Evans, L.E.; Furniss, R.C.D.; Mavridou, D.A.; Murphy, R.; Stevens, M.M.; Davies, J.C.; et al. Colistin kills bacteria by targeting lipopolysaccharide in the cytoplasmic membrane. eLife 2021, 10, e65836. [Google Scholar] [CrossRef]
- Mitra, S.; Basu, S.; Rath, S.; Sahu, S.K. Colistin resistance in Gram-negative ocular infections: Prevalence, clinical outcome and antibiotic susceptibility patterns. Int. Ophthalmol. 2020, 40, 1307–1317. [Google Scholar] [CrossRef]
- Gerson, S.; Betts, J.W.; Lucaßen, K.; Nodari, C.S.; Wille, J.; Josten, M.; Göttig, S.; Nowak, J.; Stefanik, D.; Roca, I.; et al. Investigation of Novel pmrB and eptA Mutations in Isogenic Acinetobacter baumannii Isolates Associated with Colistin Resistance and Increased Virulence in Vivo. Antimicrob. Agents Chemother. 2019, 63, e01586-18. [Google Scholar] [CrossRef] [Green Version]
- Lunha, K.; Thet, K.T.; Ngudsuntia, A.; Charoensri, N.; Lulitanond, A.; Tavichakorntrakool, R.; Wonglakorn, L.; Faksri, K.; Chanawong, A. PmrB mutations including a novel 10-amino acid repeat sequence insertion associated with low-level colistin resistance in carbapenem-resistant Acinetobacter baumannii. Infect. Genet. Evol. 2020, 85, 104577. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, J.-Y.; Lee, H.; Park, M.; Kang, K.; Lim, S.-K.; Shin, D.; Ko, K.S. Comparison of Fitness Cost and Virulence in Chromosome- and Plasmid-Mediated Colistin-Resistant Escherichia coli. Front. Microbiol. 2020, 11, 798. [Google Scholar] [CrossRef]
- Mathur, P.; Veeraraghavan, B.; Ragupathi, N.K.D.; Inbanathan, F.Y.; Khurana, S.; Bhardwaj, N.; Kumar, S.; Sagar, S.; Gupta, A. Multiple mutations in lipid-A modification pathway & novel fosA variants in colistin-resistant Klebsiella pneumoniae. Future Sci. OA 2018, 4, FSO319. [Google Scholar] [CrossRef] [Green Version]
- Carretero-Ledesma, M.; García-Quintanilla, M.; Martín-Peña, R.; Pulido, M.R.; Pachón, J.; McConnell, M.J. Phenotypic changes associated with Colistin resistance due to Lipopolysaccharide loss in Acinetobacter baumannii. Virulence 2018, 9, 930–942. [Google Scholar] [CrossRef] [Green Version]
- Girardello, R.; Visconde, M.; Cayô, R.; de Figueiredo, R.C.B.Q.; Mori, M.A.D.S.; Lincopan, N.; Gales, A.C. Diversity of polymyxin resistance mechanisms among Acinetobacter baumannii clinical isolates. Diagn. Microbiol. Infect. Dis. 2016, 87, 37–44. [Google Scholar] [CrossRef]
- Saleh, N.M.; Hesham, M.S.; Amin, M.A.; Mohamed, R.S. Acquisition of Colistin Resistance Links Cell Membrane Thickness Alteration with a Point Mutation in the lpxD Gene in Acinetobacter baumannii. Antibiotics 2020, 9, 164. [Google Scholar] [CrossRef]
- Badger, J.; Chie-Leon, B.; Logan, C.; Sridhar, V.; Sankaran, B.; Zwart, P.H.; Nienaber, V. Structure determination of LpxA from the lipopolysaccharide-synthesis pathway of Acinetobacter baumannii. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2012, 68, 1477–1481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhaskar, B.V.; Babu, T.M.C.; Rammohan, A.; Zheng, G.Y.; Zyryanov, G.V.; Gu, W. Structure-Based Virtual Screening of Pseudomonas aeruginosa LpxA Inhibitors using Pharmacophore-Based Approach. Biomolecules 2020, 10, 266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stracquadanio, S.; Bonomo, C.; Marino, A.; Bongiorno, D.; Privitera, G.F.; Bivona, D.A.; Mirabile, A.; Bonacci, P.G.; Stefani, S. Acinetobacter baumannii and Cefiderocol, between Cidality and Adaptability. Microbiol. Spectr. 2022, 10, e0234722. [Google Scholar] [CrossRef] [PubMed]
- The Tigecycline Criteria for Enterobacteriaceae from the US Food and Drug Administration. Available online: https://www.fda.gov/drugs/development-resources/tigecycline-injection-products (accessed on 22 November 2022).
- Zerbino, D.R.; Birney, E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008, 18, 821–829. [Google Scholar] [CrossRef] [Green Version]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [Green Version]
- Rapid Annotation using Subsystem Technology Server. Available online: https://rast.nmpdr.org (accessed on 22 November 2022).
- Ribosomal Multilocus Sequence Typing Server. Available online: https://pubmlst.org/species-id (accessed on 22 November 2022).
- ResFinder Server. Available online: https://cge.food.dtu.dk/services/ResFinder/ (accessed on 22 November 2022).
- The Virulence Factor Database (VFDB). Available online: http://www.mgc.ac.cn/VFs/main.htm (accessed on 22 November 2022).
- Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015, 31, 3691–3693. [Google Scholar] [CrossRef] [Green Version]
- Overbeek, R.; Begley, T.; Butler, R.M.; Choudhuri, J.V.; Chuang, H.Y.; Cohoon, M.; de Crécy-Lagard, V.; Diaz, N.; Disz, T.; Edwards, R.; et al. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 2005, 33, 5691–5702. [Google Scholar] [CrossRef] [Green Version]
- The Basic Local Alignment Search Tool (BLAST) Server. Available online: http://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 22 November 2022).
- Wang, Z.; Li, H.; Zhang, J.; Wang, H. Co-Occurrence of blaOXA-23 in the Chromosome and Plasmid: Increased Fitness in Carbapenem-Resistant Acinetobacter baumannii. Antibiotics 2021, 10, 1196. [Google Scholar] [CrossRef]
MIC (mg/L) | Imipenem | Meropenem | Colistin | Tigecycline | Ceftazidime | Amikacin | Trimethoprim/ Sulfamethoxazole | Eravacycline | Levofloxacin | Minocycline |
---|---|---|---|---|---|---|---|---|---|---|
AJ6079 | ≤0.25 (S) | ≤0.25 (S) | 4 (R) | 0.125 (S) | 1 (S) | 2 (S) | 1 (S) | ≤0.032 (S) | ≤0.125 (S) | ≤0.125 (S) |
AOR27 | ≤0.25 (S) | ≤0.25 (S) | 0.5 (S) | 0.125 (S) | 0.5 (S) | 2 (S) | ≤ 0.125 (S) | ≤0.032 (S) | ≤0.125 (S) | ≤0.125 (S) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Fan, X.; Wang, S.; Li, S.; Gao, Y.; Wang, H.; Li, H. Emergence of Colistin-Resistant Acinetobacter junii in China. Antibiotics 2022, 11, 1693. https://doi.org/10.3390/antibiotics11121693
Wang Z, Fan X, Wang S, Li S, Gao Y, Wang H, Li H. Emergence of Colistin-Resistant Acinetobacter junii in China. Antibiotics. 2022; 11(12):1693. https://doi.org/10.3390/antibiotics11121693
Chicago/Turabian StyleWang, Zhiren, Xuanyang Fan, Shuyi Wang, Shuguang Li, Yue Gao, Hui Wang, and Henan Li. 2022. "Emergence of Colistin-Resistant Acinetobacter junii in China" Antibiotics 11, no. 12: 1693. https://doi.org/10.3390/antibiotics11121693
APA StyleWang, Z., Fan, X., Wang, S., Li, S., Gao, Y., Wang, H., & Li, H. (2022). Emergence of Colistin-Resistant Acinetobacter junii in China. Antibiotics, 11(12), 1693. https://doi.org/10.3390/antibiotics11121693