Molecular Epidemiology of Antimicrobial Resistance and Virulence Profiles of Escherichia coli, Salmonella spp., and Vibrio spp. Isolated from Coastal Seawater for Aquaculture
Abstract
:1. Introduction
2. Results
2.1. Bacterial Confirmation and Identification of Virulence Factors
2.2. Serotyping of S. enterica subsp. enterica and V. cholerae
2.3. Phenotypic Resistance
2.4. ESBL Production
2.5. Genotypic Resistance
2.6. Association between Phenotypic and Genotypic Characterization of Resistance
3. Discussion
4. Materials and Methods
4.1. Seawater Sample Collection and Bacterial Isolation
4.2. Serotyping of S. enterica subsp. enterica and V. cholerae
4.3. Antimicrobial Susceptibility Testing
4.4. Determination of ESBL Production
4.5. Genotypic Characterization of AMR and Virulence Genes by Polymerase Chain Reaction (PCR)
Gene | Primer | Oligonucleotide Sequences (5′-3′) | Product Size (bp) | Reference |
---|---|---|---|---|
Genotype | ||||
blaTEM | blaTEM-F | GCGGAACCCCTATTT | 964 | [68] |
blaTEM-R | TCTAAAGTATATATGAGTAAACTTGGTCTGAC | |||
blaSHV | blaSHV-F | TTCGCCTGTGTATTATCTCCCTG | 854 | [69] |
blaSHV-R | TTAGCGTTGCCAGTGYTG | |||
blaCTX-M | blaCTX-M-F | CGATGTGCAGTACCAGTAA | 585 | [70] |
blaCTX-M-R | AGTGACCAGAATCAGCGG | |||
blaPSE | BlaPSE-F | GCTCGTATAGGTGTTTCCGTTT | 575 | [71] |
blaPSE-R | CGATCCGCAATGTTCCATCC | |||
blaNDM | blaNDM-F | GGTTTGGCGATCTGGTTTTC | 621 | [72] |
blaNDM-R | CGGAATGGCTCATCACGATC | |||
blaOXA | blaOXA-F | ACACAATACATATCAACTTCGC | 813 | [73] |
blaOXA-R | AGTGTGTGTTTAGAATGGTGATC | |||
floR | floR-F | ATGGTGATGCTCGGCGTGGGCCA | 800 | [74] |
floR-R | GCGCCGTTGGCGGTAACAGACACCGTGA | |||
cmlA | cmlA-F | TGGACCGCTATCGGACCG | 641 | [64] |
cmlA-R | CGCAAGACACTTGGGCTGC | |||
ermB | ermB-F | AGACACCTCGTCTAACCTTCGCTC | 640 | [75] |
ermB-R | TCCATGTACTACCATGCCACAGG | |||
qnrS | qnrS-F | GCAAGTTCATTGAACAGGGT | 428 | [76] |
qnrS-R | TCTAAACCGTCGAGTTCGGCG | |||
addA1 | addA1-F | CTCCGCAGTGGATGGCGG | 631 | [64] |
addA1-R | GATCTGCGCGCGAGGCCA | |||
tetA | tetA-F | GCTGTCGGATCGTTTCGG | 658 | [64] |
tetA-R | CATTCCGAGCATGAGTGCC | |||
tetB | tetB-F | CTGTCGCGGCATCGGTCAT | 615 | [64] |
tetB-R | CAGGTAAAGCGATCCCACC | |||
strA | strA-F | TGGCAGGAGGAACAGGAGG | 405 | [64] |
strA-R | AGGTCGATCAGACCCGTGC | |||
sul1 | sul1-F | CGGCGTGGGCTACCTGAACG | 433 | [77] |
sul1-R | GCCGATCGCGTGAAGTTCCG | |||
sul2 | sul2-F | CGGCATCGTCAACATAACCT | 721 | [77] |
sul2-R | TGTGCGGATGAAGTCAGCTC | |||
dfrA1 | dfrA1-F | GGAGTGCCAAAGGTGAACAGC | 367 | [78] |
dfrA1-R | GAGGCGAAGTCTTGGGTAAAAAC | |||
dfrA12 | dfrA12-F | TTCGCAGACTCACTGAGGG | 330 | [79] |
dfrA12-R | CGGTTGAGACAAGCTCGAAT | |||
mcr-1 | mcr-1-F | AGTCCGTTTGTTCTTGTGGC | 320 | [79] |
mcr-1-R | AGATCCTTGGTCTCGGCTTG | |||
mcr-2 | mcr-2-F | CAAGTGTGTTGGTCGCAGTT | 715 | [79] |
mcr-2-R | TCTAGCCCGACAAGCATACC | |||
mcr-3 | mcr-3-F | AAATAAAAATTGTTCCGCTTATG | 929 | [79] |
mcr-3-R | AATGGAGATCCCCGTTTTT | |||
Integrons | ||||
int1 | int1-F | CCTGCACGGTTCGAATG | 497 | [80] |
Int1-R | TCGTTTGTTCGCCCAGC | |||
int2 | int2-F | GGCAGACAGTTGCAAGACAA | 247 | [80] |
int2-R | AAGCGATTTTCTGCGTGTTT | |||
int3 | int3-F | CCGGTTCAGTCTTTCCTCAA | 155 | [80] |
int3-R | GAGGCGTGTACTTGCCTCAT | |||
Integrative and conjugative elements | ||||
intsxt | intSXT-F | GCTGGATAGGTTAAGGGCGG | 592 | [80] |
intSXT-R | CTCTATGGGCACTGTCCACATTG | |||
Virulence genes of E. coli | ||||
stx1 | stx-1-F | CAACACTGGATGATCTCAG | 349 | [81] |
stx-1-R | CCCCCTCAACTGCTAATA | |||
stx2 | stx-2-F | ATCAGTCGTCACTCACTGGT | 110 | [81] |
stx-2-R | CTGCTGTCACAGTGACAAA | |||
Species-specific and virulence genes of S. enterica subsp. enterica | ||||
invA | invA-F | GTGAAATTATCGCCACGTTCGGGCAA | 284 | [82] |
invA-R | TCATCGCACCGTCAAAGGAACC | |||
Species-specific * and virulence genes of V. parahaemolyticus | ||||
tlh * | tlh-F | AAAGCGGATTATGCAGAAGCACTG | 450 | [83] |
tlh-R | GCTACTTTCTAGCATTTTCTCTGC | |||
tdh | tdh-F | GTAAAGGTCTCTGACTTTTGGAC | 269 | [83] |
tdh-R | TGGAATAGAACCTTCATCTTCACC | |||
trh | trh-F | TTGGCTTCGATATTTTCAGTATCT | 500 | [83] |
trh-R | CATAACAAACATATGCCCATTTCCG | |||
Species-specific * and virulence genes of V. cholerae | ||||
ompW * | ompW-F | CACCAAGAAGGTGACTTTATTGTG | 588 | [42] |
ompW-R | GAACTTATAACCACCCGCG | |||
ctx | ctx-F | CAGTCAGGTGGTCTTATGCCAAGAGG | 167 | [84] |
ctx-R | CCCACTAAGTGGGCACTTCTCAAACT |
4.6. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Neill, J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations, Review on Antimicrobial Resistance, Chaired by Jim O’Neill, December 2014; Wellcome Trust: London, UK, 2016. [Google Scholar]
- Sriram, A.; Kalanxhi, E.; Kapoor, G.; Craig, J.; Balasubramanian, R.; Brar, S.; Criscuolo, N.; Hamilton, A.; Klein, E.; Tseng, K. The State of the World’s Antibiotics 2021: A Global Analysis of Antimicrobial Resistance and Its Drivers; The Center for Disease Dynamics, Economics & Policy: Washington, DC, USA, 2021. [Google Scholar]
- Kusi, J.; Ojewole, C.O.; Ojewole, A.E.; Nwi-Mozu, I. Antimicrobial resistance development pathways in surface waters and public health implications. Antibiotics 2022, 11, 821. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Malak, H.A.; Abulreesh, H.H. Environmental antimicrobial resistance and its drivers: A potential threat to public health. J. Glob. Antimicrob. Resist. 2021, 27, 101–111. [Google Scholar]
- The United Nations Environment Programme (UNEP). Antimicrobial Resistance from Environmental Pollution among Biggest Emerging Health Threats, Says UN Environment. Available online: https://www.unep.org/news-and-stories/press-release/antimicrobial-resistance-environmental-pollution-among-biggest (accessed on 6 October 2022).
- Szekeres, E.; Chiriac, C.M.; Baricz, A.; Szőke-Nagy, T.; Lung, I.; Soran, M.L.; Rudi, K.; Dragos, N.; Coman, C. Investigating antibiotics, antibiotic resistance genes, and microbial contaminants in groundwater in relation to the proximity of urban areas. Environ. Pollut. 2018, 236, 734–744. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Jackson, C.R.; Frye, J.G. The prevalence and antimicrobial resistance phenotypes of Salmonella, Escherichia coli and Enterococcus sp. in surface water. Lett. Appl. Microbiol. 2020, 71, 3–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Cao, M.; Yuan, D.; Zhang, Y.; He, Q. Hydrogeological characterization and environmental effects of the deteriorating urban karst groundwater in a karst trough valley: Nanshan, SW China. Hydrogeol. J. 2018, 26, 1487–1497. [Google Scholar] [CrossRef]
- Nadimpalli, M.L.; Marks, S.J.; Montealegre, M.C.; Gilman, R.H.; Pajuelo, M.J.; Saito, M.; Tsukayama, P.; Njenga, S.M.; Kiiru, J.; Swarthout, J.; et al. Urban informal settlements as hotspots of antimicrobial resistance and the need to curb environmental transmission. Nat. Microbiol. 2020, 5, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Yin, G.; Liu, M.; Chen, C.; Jiang, Y.; Hou, L.; Zheng, Y. A systematic review of antibiotics and antibiotic resistance genes in estuarine and coastal environments. Sci. Total Environ. 2021, 777, 146009. [Google Scholar] [CrossRef]
- Miłobedzka, A.; Ferreira, C.; Vaz-Moreira, I.; Calderón-Franco, D.; Gorecki, A.; Purkrtova, S.; Bartacek, J.; Dziewit, L.; Singleton, C.M.; Nielsen, P.H.; et al. Monitoring antibiotic resistance genes in wastewater environments: The challenges of filling a gap in the one-health cycle. J. Hazard. Mater. 2022, 424, 127407. [Google Scholar] [CrossRef]
- Brooks, B.W.; Conkle, J.L. Commentary: Perspectives on aquaculture, urbanization and water quality. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2019, 217, 1–4. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, H.J.; Myung, G.E.; Choi, E.J.; Kim, I.A.; Jeong, Y.I.; Park, G.J.; Soh, S.M. Distribution of pathogenic Vibrio species in the coastal seawater of South Korea (2017–2018). Osong Public Health Res. Perspect. 2019, 10, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Jeamsripong, S.; Khant, W.; Chuanchuen, R. Distribution of phenotypic and genotypic antimicrobial resistance and virulence genes in Vibrio parahaemolyticus isolated from cultivated oysters and estuarine water. FEMS Microbiol. Ecol. 2020, 96, fi-aa081. [Google Scholar] [CrossRef]
- Eklund, M.; Leino, K.; Siitonen, A. Clinical Escherichia coli strains carrying stx genes: Stx variants and stx-positive virulence profiles. J. Clin. Microb. 2002, 40, 4585–4593. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority. Pathogenicity assessment of Shiga toxin-producing Escherichia coli (STEC) and the public health risk posed by contamination of food with STEC. EFSA J. 2020, 18, 5967. [Google Scholar] [CrossRef]
- Rahn, K.; De Grandis, S.A.; Clarke, R.C.; McEwen, S.A.; Galán, J.E.; Ginocchio, C.; Curtiss, R.; Gyles, C.L. Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol. Cell. Probes. 1992, 6, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elghany, S.M.; Fathy, T.M.; Zakaria, A.I.; Imre, K.; Morar, A.; Herman, V.; Pașcalău, R.; Șmuleac, L.; Morar, D.; Imre, M.; et al. Prevalence of multidrug-resistant Salmonella enterica serovars in buffalo meat in Egypt. Foods 2022, 11, 2924. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Chaturvedi, A.N. Prevalence of virulence genes (ctxA, stn, OmpW and tcpA) among non-O1 Vibrio cholerae isolated from freshwater environment. Int. J. Hyg. Environ. Health 2006, 209, 521–526. [Google Scholar] [CrossRef]
- Gutierrez West, C.K.; Klein, S.L.; Lovell, C.R. High frequency of virulence factor genes tdh, trh, and tlh in Vibrio parahaemolyticus strains isolated from a pristine estuary. Appl. Environ. Microbiol. 2013, 79, 2247–2252. [Google Scholar] [CrossRef] [Green Version]
- Sun, D. Pull in and push out: Mechanisms of horizontal gene transfer in bacteria. Front. Microbiol. 2018, 9, 2154. [Google Scholar] [CrossRef]
- Mazel, D. Integrons: Agents of bacterial evolution. Nat. Rev. Microbiol. 2006, 4, 608–620. [Google Scholar] [CrossRef]
- Wozniak, R.; Waldor, M. Integrative and conjugative elements: Mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat. Rev. Microbiol. 2010, 8, 552–563. [Google Scholar] [CrossRef]
- World Health Organization (WHO); Food and Agriculture Organization (FAO); World Organization for Animal Health (OIE). Technical Brief on Water, Sanitation, Hygiene and Wastewater Management to Prevent Infections and Reduce the Spread of Antimicrobial Resistance; World Health Organization: Geneva, Switzerland; Food Agriculture Organization: Rome, Italy; World Organization for Animal Health: Paris, France, 2020; ISBN 9789240006416. [Google Scholar]
- Zhao, J.Y.; Dang, H. Coastal seawater bacteria harbor a large reservoir of plasmid-mediated quinolone resistance determinants in Jiaozhou Bay, China. Microb. Ecol. 2012, 64, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Ghenem, L.; Elhadi, N. Isolation, molecular characterization, and antibiotic resistance patterns of Vibrio parahaemolyticus isolated from coastal water in the Eastern province of Saudi Arabia. J. Water Health 2018, 16, 57–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alibi, S.; Beltifa, A.; Hassen, W.; Jaziri, A.; Soussia, L.; Zbidi, F.; Mansour, H.B. Coastal surveillance and water quality monitoring in the Rejiche Sea-Tunisia. Water Environ. Res. 2021, 93, 2025–2033. [Google Scholar] [CrossRef] [PubMed]
- Nunes, M.; Leston, S. Coastal Pollution: An Overview. Life Below Water; Springer: Cham, Switzerland, 2022; pp. 155–165. ISBN 978-3-319-98536-7. [Google Scholar]
- Prüss-Ustün, A.; Bartram, J.; Clasen, T.; Colford, J.M.; Cumming, O.; Curtis, V.; Bonjour, S.; Dangour, A.D.; De France, J.; Fewtrell, L.; et al. Burden of disease from inadequate water, sanitation and hygiene in low- and middle-income settings: A retrospective analysis of data from 145 countries. Trop. Med. Int. Health 2014, 19, 894–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammad, A.M.; Eltahan, A.; Hassan, H.A.; Abbas, N.H.; Hussien, H.; Shimamoto, T. Loads of coliforms and fecal coliforms and characterization of thermotolerant Escherichia coli in fresh raw milk cheese. Foods 2022, 11, 332. [Google Scholar] [CrossRef] [PubMed]
- Hartinger, S.M.; Medina-Pizzali, M.L.; Salmon-Mulanovich, G.; Larson, A.J.; Pinedo-Bardales, M.; Verastegui, H.; Riberos, M.; Mäusezahl, D. Antimicrobial resistance in humans, animals, water and household environs in rural Andean Peru: Exploring dissemination pathways through the One Health Lens. Int. J. Environ. Res. Public Health 2021, 18, 4604. [Google Scholar] [CrossRef]
- Sorour, H.K.; Amer, F. Detection of biofilm formation and antibiotic resistance of Salmonella in broiler chicken. Assiut. Vet. Med. J. 2018, 64, 146–153. [Google Scholar]
- Jha, B.; Kim, C.M.; Kim, D.M.; Chung, J.H.; Yoon, N.R.; Jha, P.; Kim, S.W.; Jang, S.J.; Kim, S.G.; Chung, J.K. First report of iliacus abscess caused by Salmonella enterica serovar Othmarschen. J. Infect. Chemother. 2016, 22, 117–119. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Multistate Outbreak of Salmonella Braenderup Infections Linked to Rose Acre Farms Shell Eggs (Final Update). Available online: https://www.cdc.gov/salmonella/braenderup-04-18/index.html (accessed on 6 October 2022).
- Wawa, A.I. Challenges facing wastewater management in fast growing cities in Tanzania: A case of Dodoma city council. Huria J. 2020, 27, 168–185. [Google Scholar]
- Aoki, Y.; Watanabe, Y.; Kitazawa, K.; Ando, N.; Hirai, S.; Yokoyama, E. Emergence of Salmonella enterica subsp. enterica serovar Chester in a rural area of Japan. J. Vet. Med. Sci. 2020, 82, 580–584. [Google Scholar] [CrossRef] [Green Version]
- Khanam, F.; Rajib, N.H.; Tonks, S.; Khalequzzaman, M.; Pollard, A.J.; Clemens, J.D.; Qadri, F.; The STRATAA Study Team. Case report: Salmonella enterica serovar Paratyphi B infection in a febrile Ill child during enhanced passive surveillance in an urban slum in Mirpur, Dhaka. Am. J. Trop. Med. Hyg. 2020, 103, 231–233. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; McMillan, E.A.; Jackson, C.R.; Desai, P.T.; Porwollik, S.; McClelland, M.; Hiott, L.M.; Humayoun, S.B.; Frye, J.G. Draft genome sequence of Salmonella enterica subsp. enterica serovar Orion strain CRJJGF_00093 (Phylum Gammaproteobacteria). Genome Announc. 2016, 4, e01063–e01116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Aljaro, C.; Muniesa, M.; Jofre, J.; Blanch, A.R. Prevalence of the stx2 gene in coliform populations from aquatic environments. Appl. Environ. Microbiol. 2004, 70, 3535–3540. [Google Scholar] [CrossRef]
- Mauro, S.A.; Koudelka, G.B. Shiga toxin: Expression, distribution, and its role in the environment. Toxins 2011, 3, 608–625. [Google Scholar] [CrossRef] [PubMed]
- Prabhakaran, D.M.; Ramamurthy, T. Genetic and virulence characterisation of Vibrio parahaemolyticus isolated from Indian coast. BMC Microbiol. 2020, 20, 1–14. [Google Scholar] [CrossRef]
- Sathiyamurthy, K.; Baskaran, A.; Subbaraj, D.K. Prevalence of Vibrio cholerae and other vibrios from environmental and seafood sources, Tamil Nadu, India. Br. Microbiol. Res. J. 2013, 3, 538–549. [Google Scholar] [CrossRef]
- Praja, R.A.K.; Sukrama, I.D.M.; Fatmawati, N.N.D. Detection of genes encoding ompW and ctxA of Vibrio cholerae isolated from shrimp and shellfish at Kedonganan fish market, Bali-Indonesia. Oceana Biomed. J. 2019, 2, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Mala, W.; Faksri, K.; Samerpitak, K.; Yordpratum, U.; Kaewkes, W.; Tattawasart, U.; Chomvarin, C. Antimicrobial resistance and genetic diversity of the SXT element in Vibrio cholerae from clinical and environmental water samples in northeastern Thailand. Infect. Genet. Evol. 2017, 52, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Tulatorn, S.; Preeprem, S.; Vuddhakul, V.; Mittraparp-Arthorn, P. Comparison of virulence gene profiles and genomic fingerprints of Vibrio cholerae O1 and non-O1/non-O139 isolates from diarrheal patients in southern Thailand. Trop. Med. Health 2018, 46, 31. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, M.; Simner, P.J.; Bradford, P.A. Extended-spectrum β-lactamases: An update on their characteristics, epidemiology and detection. JAC Antimicrob. Resist. 2021, 3, dlab092. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, S.B.; Søraas, A.V.; Arnesen, L.S.; Leegaard, T.M.; Sundsfjord, A.; Jenum, P.A. A comparison of extended spectrum β-lactamase producing Escherichia coli from clinical, recreational water and wastewater samples associated in time and location. PLoS ONE 2017, 12, e0186576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassen, B.; Jouini, A.; Elbour, M.; Hamrouni, S.; Maaroufi, A. Detection of extended-spectrum β-lactamases (ESBL) producing enterobacteriaceae from fish trapped in the lagoon area of Bizerte, Tunisia. Biomed. Res. Int. 2020, 2020, 7132812. [Google Scholar] [CrossRef]
- Cohen, R.; Paikin, S.; Rokney, A.; Rubin-Blum, M.; Astrahan, P. Multidrug-resistant Enterobacteriaceae in coastal water: An emerging threat. Antimicrob. Resist. Infect. Control 2020, 9, 169. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Hu, Y.; Wen, H.; Wu, J.; Liu, Y.; Zhang, Y.; Wu, H. Occurrence and driving mechanism of antibiotic resistance genes in marine recreational water around Qinhuangdao, China. Front. Mar. Sci. 2022, 9, 976438. [Google Scholar] [CrossRef]
- Leonard, A.F.C.; Zhang, L.; Balfour, A.J.; Garside, R.; Hawkey, P.M.; Murray, A.K.; Ukoumunne, O.C.; Gaze, W.H. Exposure to and colonisation by antibiotic-resistant E. coli in UK coastal water users: Environmental surveillance, exposure assessment, and epidemiological study (Beach Bum Survey). Environ. Int. 2018, 114, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Lu, J.; Wu, J.; Zhang, Y.; Zhang, C. Proliferation of antibiotic resistance genes in coastal recirculating mariculture system. Environ. Pollut. 2019, 248, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro-Moura, J.R.; Kraychete, G.B.; Longo, L.; Corrêa, L.L.; da Silva, N.M.V.; Campana, E.H.; Oliveira, C.J.B.; Picão, R.C. Description and comparative genomic analysis of a mcr-1-carrying Escherichia coli ST683/CC155 recovered from touristic coastal water in Northeastern Brazil. Infect. Genet. Evol. 2022, 97, 105196. [Google Scholar] [CrossRef] [PubMed]
- Holmes, A.H.; Moore, L.S.; Sundsfjord, A.; Steinbakk, M.; Regmi, S.; Karley, A.; Guerin, P.; Piddock, L.J. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 2016, 387, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Akrami, F.; Rajabnia, M.; Pournajaf, A. Resistance integrons—A mini review. Caspian J. Intern. Med. 2019, 10, 370–376. [Google Scholar] [PubMed]
- Narciso-da-Rocha, C.; Varela, A.R.; Schwartz, T.; Nunes, O.C.; Manaia, C.M. blaTEM and vanA as indicator genes of antibiotic resistance contamination in a hospital–urban wastewater treatment plant system. J. Glob. Antimicrob. Resist. 2014, 2, 309–315. [Google Scholar] [CrossRef] [Green Version]
- Food and Drug Administration. BAM Chapter 4: Enumeration of Escherichia coli and the Coliform Bacteria. Available online: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-4-enumeration-escherichia-coli-and-coliform-bacteria#conventional (accessed on 28 October 2022).
- Food and Drug Administration. BAM Chapter 9: Vibrio. Available online: https://www.fda.gov/food/foodscienceresearch/laboratorymethods/ucm070830.htm (accessed on 28 October 2022).
- Food and Drug Administration. BAM Chapter 5: Salmonella. Available online: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-5-salmonella (accessed on 28 October 2022).
- Grimont, P.A.D.; Weill, F.X. Antigenic Formulae of the Salmonella Serovars, 9th ed.; WHO Collaborating Center for Reference and Research on Salmonella; Institut Pasteur: Paris, France, 2007. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Test for Bacteria Isolated from Animals, 31st ed.; CLSI Guideline M100; Clinical and Laboratory Standard Institute: Wayne, PA, USA, 2015. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria, 3rd ed.; CLSI Guideline M45; Clinical and Laboratory Standard Institute: Wayne, PA, USA, 2016. [Google Scholar]
- Lévesque, C.; Piché, L.; Larose, C.; Roy, P.H. PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob. Agents Chemother. 1995, 39, 185–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuanchuen, R.; Padungtod, P. Antimicrobial resistance genes among Salmonella enterica isolates from poultry and swine in Thailand. Int. J. Infect. Dis. 2009, 12, e117. [Google Scholar] [CrossRef] [Green Version]
- Thaotumpitak, V.; Sripradite, J.; Atwill, E.R.; Tepaamorndech, S.; Jeamsripong, S. Bacterial pathogens and factors associated with Salmonella contamination in hybrid red tilapia (Oreochromis spp.) cultivated in a cage culture system. Food Qual. Saf. 2022, 6, fyac036. [Google Scholar] [CrossRef]
- Chuanchuen, R.; Pathanasophon, P.; Khemtong, S.; Wannaprasat, W.; Padungtod, P. Susceptibilities to antimicrobials and disinfectants in Salmonella isolates obtained from poultry and swine in Thailand. J. Vet. Med. Sci. 2008, 70, 595–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pungpian, C.; Lee, S.; Trongjit, S.; Sinwat, N.; Angkititrakul, S.; Prathan, R.; Srisanga, S.; Chuanchuen, R. Colistin resistance and plasmid-mediated mcr genes in Escherichia coli and Salmonella isolated from pigs, pig carcass and pork in Thailand, Lao PDR and Cambodia border provinces. J. Vet. Sci. 2021, 22, 5. [Google Scholar] [CrossRef]
- Olesen, I.; Hasman, H.; Aarestrup, F.M. Prevalence of ß-lactamases among ampicillin-resistant Escherichia coli and Salmonella isolated from food animals in Denmark. Microb. Drug Resist. 2004, 10, 334–340. [Google Scholar] [CrossRef]
- Hasman, H.; Mevius, D.; Veldman, K.; Olesen, I.; Aarestrup, F.M. ß-Lactamases among extended-spectrum ß-lactamase (ESBL)-resistant Salmonella from poultry, poultry products and human patients in The Netherlands. J. Antimicrob. Chemother. 2005, 56, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Batchelor, M.; Hopkins, K.; Threlfall, E.J.; Clifton-Hadley, F.A.; Stallwood, A.D.; Davies, R.H.; Liebana, E. blaCTX-M genes in clinical Salmonella isolates recovered from humans in England and Wales from 1992 to 2003. Antimicrob. Agents Chemother. 2005, 49, 1319–1322. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Lai, J.; Wang, Y.; Liu, S.; Li, Y.; Liu, K.; Shen, J.; Wu, C. Prevalence and characterization of Salmonella species isolated from pigs, ducks and chickens in Sichuan Province, China. Int. J. Food Microbiol. 2013, 163, 14–18. [Google Scholar] [CrossRef]
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef]
- Costa, D.; Poeta, P.; Sáenz, Y.; Vinué, L.; Rojo-Bezares, B.; Jouini, A.; Zarazaga, M.; Rodrigues, J.; Torres, C. Detection of Escherichia coli harbouring extended-spectrum ß-lactamases of the CTX-M, TEM and SHV classes in faecal samples of wild animals in Portugal. J. Antimicrob. Chemother. 2006, 58, 1311–1312. [Google Scholar] [CrossRef] [PubMed]
- Ying, Y.; Wu, F.; Wu, C.; Jiang, Y.; Yin, M.; Zhou, W.; Zhu, X.; Cheng, C.; Zhu, L.; Li, K.; et al. Florfenicol resistance in Enterobacteriaceae and whole-genome sequence analysis of florfenicol-resistant Leclercia adecarboxylata strain R25. Int. J. Genom. 2019, 2019, 9828504. [Google Scholar] [CrossRef] [Green Version]
- Raissy, M.; Moumeni, M.; Ansari, M.; Rahimi, E. Antibiotic resistance pattern of some Vibrio strains isolated from seafood. Iran J. Fish Sci. 2012, 11, 618–626. [Google Scholar]
- Cattoir, V.; Poirel, L.; Rotimi, V.; Soussy, C.J.; Nordmann, P. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J. Antimicrob. Chemother. 2007, 60, 394–397. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.B.; Khan, M.A.; Ahmad, I.; Rehman, T.; Ullah, S.; Dad, R.; Sultan, A.; Memon, A.M. Phentotypic, gentotypic antimicrobial resistance and pathogenicity of Salmonella enterica serovars Typimurium and Enteriditis in poultry and poultry products. Microb. Pathog. 2019, 129, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Shahrani, M.; Dehkordi, F.S.; Momtaz, H. Characterization of Escherichia coli virulence genes, pathotypes and antibiotic resistance properties in diarrheic calves in Iran. Biol. Res. 2014, 47, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebelo, A.R.; Bortolaia, V.; Kjeldgaard, J.S.; Pedersen, S.K.; Leekitcharoenphon, P.; Hansen, I.M.; Guerra, B.; Malorny, B.; Borowiak, M.; Hammerl, J.A. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Euro Surveill. 2018, 23, 17–00672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitiyodom, S.; Khemtong, S.; Wongtavatchai, J.; Chuanchuen, R. Characterization of antibiotic resistance in Vibrio spp. isolated from farmed marine shrimps (Penaeus monodon). FEMS Microbiol. Ecol. 2010, 72, 219–227. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Yamasaki, S.; Sato, T.; Ramamurthy, T.; Pal, A.; Datta, S.; Chowdhury, N.R.; Das, S.C.; Sikdar, A.; Tsukamoto, T.; et al. Prevalence and genetic profiling of virulence determinants of non-O157 shiga toxin-producing Escherichia coli isolated from cattle, beef, and humans, Calcutta, India. Emerg. Infect. Dis. 2002, 8, 54–62. [Google Scholar] [CrossRef]
- Kumar, R.; Datta, T.K.; Lalitha, K.V. Salmonella grows vigorously on seafood and expresses its virulence and stress genes at different temperature exposure. BMC Microbiol. 2015, 15, 254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bej, A.K.; Patterson, D.P.; Brasher, C.W.; Vickery, M.C.L.; Jones, D.D.; Kaysner, C.A. Detection of total and hemolysin-producing Vibrio parahaemolyticus in shellfish using multiplex PCR amplification of tl, tdh, and trh. J. Microbiol. Methods 1999, 36, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.C.; You, W.Y.; Chen, S.Y. Detection of toxigenic Vibrio cholerae, V. parahaemolyticus and V. vulnificus in oyster by multiplex-PCR with internal amplification control. J. Food Drug Anal. 2012, 20, 48–58. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed]
Antimicrobial Agent | Prevalence of Phenotypic AMR (%) | ||||
---|---|---|---|---|---|
E. coli (n = 84) | S. enterica subsp. enterica (n = 12) | V. parahaemolyticus (n = 249) | V. cholerae (n = 39) | Total (n = 384) | |
Ampicillin | 33 (39.3) | 2 (16.7) | 162 (65.1) | 3 (7.7) | 200 (52.1) |
Chloramphenicol | 5 (6.0) | 1 (8.3) | 0 (0) | 0 (0) | 6 (1.6) |
Ciprofloxacin | 2 (2.4) | 0 (0) | 0 (0) | 0 (0) | 2 (0.5) |
Ceftazidime | 1 (1.2) | 1 (8.3) | 5 (2.0) | 2 (5.1) | 9 (2.3) |
Cefotaxime | 0 (0) | 0 (0) | 2 (0.8) | 0 (0) | 2 (0.5) |
Cefpodoxime | 0 (0) | 0 (0) | 2 (0.8) | 0 (0) | 2 (0.5) |
Gentamicin | 1 (1.2) | 0 (0) | 0 (0) | 0 (0) | 1 (0.3) |
Streptomycin | 12 (14.3) | 1 (8.3) | 0 (0) | 0 (0) | 13 (3.4) |
Sulfamethoxazole | 14 (16.7) | 1 (8.3) | 42 (16.9) | 4 (10.3) | 61 (15.9) |
Tetracycline | 30 (35.7) | 2 (16.7) | 1 (0.4) | 0 (0) | 33 (8.6) |
Trimethoprim | 10 (11.9) | 0 (0) | 60 (24.1) | 0 (0) | 70 (18.2) |
MDR 1 | 21 (25.0) | 2 (16.7) | 11 (4.4) | 0 (0) | 34 (8.9) |
AMR Pattern | No. (%) | ||||
---|---|---|---|---|---|
E. coli (n = 84) | S. enterica subsp. enterica (n = 12) | V. parahaemolyticus (n = 249) | V. cholerae (n = 39) | Total (n = 384) | |
Susceptible | 47 (56.0) | 9 (75.0) | 59 (23.7) | 32 (82.1) | 147 (38.3) |
AMP | 6 (7.1) | 0 (0) | 99 (39.8) | 1 (2.6) | 106 (27.6) |
AMP-CAZ | 0 (0) | 0 (0) | 1 (0.4) | 0 (0) | 1 (0.3) |
AMP-CAZ-CPD-CTX | 0 (0) | 0 (0) | 2 (0.8) | 0 (0) | 2 (0.5) |
AMP-CAZ-SUL-TRI | 0 (0) | 0 (0) | 1 (0.4) | 0 (0) | 1 (0.3) |
AMP-CAZ-TET | 1 (1.2) | 0 (0) | 0 (0) | 0 (0) | 1 (0.3) |
AMP-CHL-CIP-SUL-TET | 1 (1.2) | 0 (0) | 0 (0) | 0 (0) | 1 (0.3) |
AMP-CHL-CIP-SUL-TET-TRI | 1 (1.2) | 0 (0) | 0 (0) | 0 (0) | 1 (0.3) |
AMP-CHL-SUL-TET | 2 (2.4) | 1 (8.3) | 0 (0) | 0 (0) | 3 (0.8) |
AMP-CHL-SUL-TET-TRI | 1 (1.2) | 0 (0) | 0 (0) | 0 (0) | 1 (0.3) |
AMP-GEN-SUL-TET-TRI | 1 (1.2) | 0 (0) | 0 (0) | 0 (0) | 1 (0.3) |
AMP-STR-SUL | 1 (1.2) | 0 (0) | 0 (0) | 0 (0) | 1 (0.3) |
AMP-STR-SUL-TET | 1 (1.2) | 0 (0) | 0 (0) | 0 (0) | 1 (0.3) |
AMP-STR-SUL-TET-TRI | 4 (4.8) | 0 (0) | 0 (0) | 0 (0) | 4 (1.0) |
AMP-STR-TET | 6 (7.1) | 1 (8.3) | 0 (0) | 0 (0) | 7 (1.8) |
AMP-SUL | 0 (0) | 0 (0) | 20 (8.0) | 2 (5.1) | 22 (5.7) |
AMP-SUL-TET-TRI | 2 (2.4) | 0 (0) | 0 (0) | 0 (0) | 2 (0.5) |
AMP-SUL-TRI | 0 (0) | 0 (0) | 8 (3.2) | 0 (0) | 8 (2.1) |
AMP-TET | 6 (7.1) | 0 (0) | 0 (0) | 0 (0) | 6 (1.6) |
AMP-TRI | 0 (0) | 0 (0) | 31 (12.4) | 0 (0) | 31 (8.1) |
CAZ | 0 (0) | 1 (8.3) | 1 (0.4) | 2 (5.1) | 4 (1.0) |
SUL | 0 (0) | 0 (0) | 7 (2.8) | 2 (5.1) | 9 (2.3) |
SUL-TRI | 0 (0) | 0 (0) | 6 (2.4) | 0 (0) | 6 (1.6) |
TET | 3 (3.6) | 0 (0) | 0 (0) | 0 (0) | 3 (0.8) |
TET-TRI | 1 (1.2) | 0 (0) | 1 (0.4) | 0 (0) | 2 (0.5) |
TRI | 0 (0) | 0 (0) | 13 (5.2) | 0 (0) | 13 (3.4) |
Gene | Prevalence of Genotypic AMR (%) | ||||
---|---|---|---|---|---|
E. coli (n = 84) | Salmonella spp. (n = 12) | V. parahaemolyticus (n = 249) | V. cholerae (n = 39) | Total (n = 384) | |
Genotype | |||||
blaTEM | 21 (25.0) | 0 (0) | 0 (0) | 0 (0) | 21 (5.5) |
blaSHV | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
blaCTX-M | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
blaPSE | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
blaNDM | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
blaOXA | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
floR | 4 (4.8) | 1 (8.3) | 0 (0) | 0 (0) | 5 (1.3) |
cmlA | 2 (2.4) | 1 (8.3) | 0 (0) | 0 (0) | 3 (0.8) |
ermB | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
qnrS | 7 (8.3) | 0 (0) | 0 (0) | 0 (0) | 7 (1.8) |
aadA1 | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
tetA | 14 (16.7) | 0 (0) | 0 (0) | 0 (0) | 14 (3.7) |
tetB | 2 (2.4) | 0 (0) | 0 (0) | 0 (0) | 2 (0.5) |
strA | 6 (7.1) | 0 (0) | 0 (0) | 0 (0) | 6 (1.6) |
sul1 | 1 (1.2) | 0 (0) | 0 (0) | 0 (0) | 1 (0.3) |
sul2 | 1 (1.2) | 0 (0) | 0 (0) | 0 (0) | 1 (0.3) |
dfrA1 | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
dfrA12 | 3 (3.6) | 0 (0) | 0 (0) | 0 (0) | 3 (0.8) |
mcr-1 | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
mcr-2 | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
mcr-3 | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Integrons | |||||
int1 | 7 (8.3) | 0 (0) | 0 (0) | 0 (0) | 7 (1.8) |
int2 | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
int3 | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Integrative and conjugative elements | |||||
intSXT | 0 (0) | 0 (0) | 0 (0) | 1 (2.6) | 1 (0.3) |
Resistance | % Agreement | Kappa | Std. Err. 1 | Degree of Agreement | p-Value | ||
---|---|---|---|---|---|---|---|
Observed | Expected | ||||||
Phenotype | Phenotype | ||||||
MDR | AMP | 56.7 | 48.4 | 0.16 | 0.03 | Slight | <0.0001 |
MDR | CAZ | 91.1 | 89.4 | 0.16 | 0.04 | Slight | 0.0001 |
MDR | CHL | 93.0 | 90.1 | 0.29 | 0.04 | Fair | <0.0001 |
MDR | CIP | 91.9 | 91.0 | 0.11 | 0.02 | Slight | <0.0001 |
MDR | CPD | 91.2 | 91.0 | 0.11 | 0.02 | Slight | <0.0001 |
MDR | CTX | 91.9 | 91.0 | 0.11 | 0.02 | Slight | <0.0001 |
MDR | GEN | 91.6 | 91.2 | 0.05 | 0.02 | Slight | <0.0001 |
MDR | STR | 94.5 | 88.8 | 0.51 | 0.04 | Moderate | <0.0001 |
MDR | SUL | 88.0 | 78.2 | 0.45 | 0.05 | Moderate | <0.0001 |
MDR | TET | 94.0 | 84.5 | 0.61 | 0.05 | Substantial | <0.0001 |
MDR | TRI | 82.5 | 76.3 | 0.26 | 0.05 | Fair | <0.0001 |
Phenotype | Genotype | ||||||
AMP | blaTEM | 52.9 | 48.1 | 0.09 | 0.02 | Slight | <0.0001 |
AMP | int1 | 49.2 | 48.0 | 0.02 | 0.01 | Slight | 0.036 |
CAZ | int1 | 96.4 | 95.9 | 0.11 | 0.05 | Slight | 0.018 |
CHL | floR | 99.2 | 97.2 | 0.72 | 0.05 | Substantial | <0.0001 |
CHL | cmlA | 98.7 | 97.7 | 0.44 | 0.05 | Moderate | <0.0001 |
CHL | int1 | 97.1 | 96.7 | 0.14 | 0.05 | Slight | 0.003 |
TET | tetA | 94.5 | 88.4 | 0.53 | 0.05 | Moderate | <0.0001 |
TET | tetB | 91.9 | 91.0 | 0.11 | 0.02 | Slight | <0.0001 |
STR | strA | 98.2 | 95.2 | 0.62 | 0.05 | Substantial | 0.0001 |
STR | int1 | 95.8 | 94.9 | 0.18 | 0.05 | Slight | <0.0001 |
SUL | sul1 | 84.4 | 83.9 | 0.03 | 0.01 | Slight | <0.05 |
SUL | int1 | 84.4 | 82.9 | 0.09 | 0.03 | Slight | 0.0013 |
TET | int1 | 93.2 | 89.9 | 0.33 | 0.04 | Fair | <0.0001 |
TRI | dfrA12 | 82.0 | 81.3 | 0.04 | 0.02 | Slight | <0.05 |
TRI | int1 | 82.6 | 80.6 | 0.10 | 0.03 | Slight | 0.0001 |
MDR | blaTEM | 91.9 | 87.1 | 0.37 | 0.05 | Fair | <0.0001 |
MDR | cmlA | 91.6 | 90.7 | 0.10 | 0.03 | Slight | 0.0002 |
MDR | dfrA12 | 91.6 | 90.7 | 0.10 | 0.03 | Slight | 0.0002 |
MDR | floR | 99.2 | 97.2 | 0.72 | 0.05 | Substantial | <0.0001 |
MDR | qnrS | 91.6 | 90.0 | 0.18 | 0.04 | Slight | <0.0001 |
MDR | strA | 92.7 | 90.3 | 0.25 | 0.03 | Fair | <0.0001 |
MDR | tetA | 91.6 | 88.6 | 0.27 | 0.05 | Fair | <0.0001 |
MDR | tetB | 91.9 | 91.0 | 0.11 | 0.02 | Slight | <0.0001 |
MDR | sul1 | 91.6 | 91.2 | 0.05 | 0.02 | Slight | 0.0006 |
MDR | int1 | 92.2 | 90.0 | 0.23 | 0.04 | Fair | <0.0001 |
Genotype | Genotype | ||||||
int1 | blaTEM | 95.8 | 92.9 | 0.41 | 0.04 | Moderate | <0.0001 |
int1 | cmlA | 98.4 | 97.4 | 0.39 | 0.05 | Fair | <0.0001 |
int1 | dfrA12 | 98.4 | 97.4 | 0.39 | 0.05 | Fair | <0.0001 |
int1 | floR | 97.9 | 96.9 | 0.32 | 0.05 | Fair | <0.0001 |
int1 | qnrS | 97.9 | 96.4 | 0.42 | 0.05 | Moderate | <0.0001 |
int1 | strA | 97.7 | 96.7 | 0.30 | 0.05 | Fair | <0.0001 |
int1 | sul2 | 98.4 | 98.0 | 0.25 | 0.03 | Fair | 0.0001 |
int1 | tetA | 96.6 | 94.7 | 0.37 | 0.05 | Fair | <0.0001 |
int1 | tetB | 98.7 | 97.7 | 0.44 | 0.04 | Moderate | <0.0001 |
Predictor | OR 1 | Std. Err. 2 | 95% C.I. 3 | p-Value |
---|---|---|---|---|
Model 1 | ||||
Ampicillin resistance | Reference group | |||
blaTEM | 20.333 | 11.856 | 6.485–63.758 | <0.0001 |
Intercept | 0.984 | 0.574 | 0.314–3.084 | 0.977 |
AIC 4 | 513.241 | |||
Model 2 | ||||
Trimethoprim resistance | Reference group | |||
MDR 5 | 5.720 | 1.713 | 3.180–10.289 | <0.0001 |
int1 | 4.677 | 2.959 | 1.354–16.160 | 0.015 |
Intercept | 0.172 | 0.088 | 0.063–0.469 | 0.001 |
AIC 4 | 340.641 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeamsripong, S.; Thaotumpitak, V.; Anuntawirun, S.; Roongrojmongkhon, N.; Atwill, E.R.; Hinthong, W. Molecular Epidemiology of Antimicrobial Resistance and Virulence Profiles of Escherichia coli, Salmonella spp., and Vibrio spp. Isolated from Coastal Seawater for Aquaculture. Antibiotics 2022, 11, 1688. https://doi.org/10.3390/antibiotics11121688
Jeamsripong S, Thaotumpitak V, Anuntawirun S, Roongrojmongkhon N, Atwill ER, Hinthong W. Molecular Epidemiology of Antimicrobial Resistance and Virulence Profiles of Escherichia coli, Salmonella spp., and Vibrio spp. Isolated from Coastal Seawater for Aquaculture. Antibiotics. 2022; 11(12):1688. https://doi.org/10.3390/antibiotics11121688
Chicago/Turabian StyleJeamsripong, Saharuetai, Varangkana Thaotumpitak, Saran Anuntawirun, Nawaphorn Roongrojmongkhon, Edward R. Atwill, and Woranich Hinthong. 2022. "Molecular Epidemiology of Antimicrobial Resistance and Virulence Profiles of Escherichia coli, Salmonella spp., and Vibrio spp. Isolated from Coastal Seawater for Aquaculture" Antibiotics 11, no. 12: 1688. https://doi.org/10.3390/antibiotics11121688