Ag-Modified ZnO for Degradation of Oxytetracycline Antibiotic and Reactive Red Azo Dye
Abstract
:1. Introduction
2. Experiment
2.1. Chemicals
2.2. Preparation of the Photocatalysts
2.2.1. Preparation of ZnO
2.2.2. Preparation of Silver-ZnO
2.3. Characterization
2.4. Photocatalytic Study
3. Results and Discussion
3.1. Characterization of the Prepared Photocatalyst
3.2. Photocatalytic Degradation of OTC Antibiotic and RR141 Dye
3.2.1. Photocatalytic Degradation of the Pollutants under UV Light
3.2.2. Photodegradation of the Pollutants under Natural Sunlight
3.2.3. Effect of the Experimental Parameters on Photoactivity
3.2.4. Photocatalytic Degradation Mechanism and Reusability
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Senasu, T.; Nanan, S. Photocatalytic performance of CdS nanomaterials for photodegradation of organic azo dyes under artificial visible light and natural solar light irradiation. J. Mater. Sci. Mater. Electron. 2017, 28, 17421–17441. [Google Scholar] [CrossRef]
- Kakarndee, S.; Nanan, S. SDS capped and PVA capped ZnO nanostructures with high photocatalytic performance toward photodegradation of reactive red (RR141) azo dye. J. Environ. Chem. Eng. 2018, 6, 74–94. [Google Scholar] [CrossRef]
- Chankhanittha, T.; Nanan, S. Hydrothermal synthesis, characterization and enhanced photocatalytic performance of ZnO toward degradation of organic azo dye. Mater. Lett. 2018, 226, 79–82. [Google Scholar] [CrossRef]
- Senasu, T.; Hemavibool, K.; Nanan, S. Hydrothermally grown CdS nanoparticles for photodegradation of anionic azo dyes under UV-visible light irradiation. RSC Adv. 2018, 8, 22592–22605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chankhanittha, T.; Watcharakitti, J.; Nanan, S. PVP-assisted synthesis of rod-like ZnO photocatalyst for photodegradation of reactive red (RR141) and Congo red (CR) azo dyes. J. Mater. Sci. Mater. Electron. 2019, 30, 17804–17819. [Google Scholar] [CrossRef]
- Mahmoodi, N.M.; Abdi, J.; Taghizadeh, M.; Taghizadeh, A.; Hayati, B.; Shekarchi, A.A.; Vossoughi, M. Activated carbon/metal-organic framework nanocomposite: Preparation and photocatalytic dye degradation mathematical modeling from wastewater by least squares support vector machine. J. Environ. Manag. 2019, 233, 660–672. [Google Scholar] [CrossRef]
- Chankhanittha, T.; Somaudon, V.; Watcharakitti, J.; Nanan, S. Solar light-driven photocatalyst based on bismuth molybdate (Bi4MoO9) for detoxification of anionic azo dyes in wastewater. J. Mater. Sci. Mater. Electron. 2021, 32, 1977–1991. [Google Scholar] [CrossRef]
- Chankhanittha, T.; Yenjai, C.; Nanan, S. Utilization of formononetin and pinocembrin from stem extract of Dalbergia parviflora as capping agents for preparation of ZnO photocatalysts for degradation of RR141 azo dye and ofloxacin antibiotic. Catal. Today 2021, 384–386, 279–293. [Google Scholar] [CrossRef]
- Chankhanittha, T.; Komchoo, N.; Senasu, T.; Piriyanon, J.; Youngme, S.; Hemavibool, K.; Nanan, S. Silver decorated ZnO photocatalyst for effective removal of reactive red azo dye and ofloxacin antibiotic under solar light irradiation. Colloids Surf. A Physicochem. Eng. Asp. 2021, 626, 127034–127053. [Google Scholar] [CrossRef]
- Sansenya, T.; Masri, N.; Chankhanittha, T.; Senasu, T.; Piriyanon, J.; Mukdasai, S.; Nanan, S. Hydrothermal synthesis of ZnO photocatalyst for detoxification of anionic azo dyes and antibiotic. J. Phys. Chem. Solids 2022, 160, 110353–110372. [Google Scholar] [CrossRef]
- Narenuch, T.; Senasu, T.; Chankhanittha, T.; Nanan, S. Sunlight-Active BiOI Photocatalyst as an Efficient Adsorbent for the Removal of Organic Dyes and Antibiotics from Aqueous Solutions. Molecules 2021, 26, 5624. [Google Scholar] [CrossRef] [PubMed]
- Hemavibool, K.; Sansenya, T.; Nanan, S. Enhanced Photocatalytic Degradation of Tetracycline and Oxytetracycline Antibiotics by BiVO4 Photocatalyst under Visible Light and Solar Light Irradiation. Antibiotics 2022, 11, 761. [Google Scholar] [CrossRef] [PubMed]
- Senasu, T.; Youngme, S.; Hemavibool, K.; Nanan, S. Sunlight-driven photodegradation of oxytetracycline antibiotic by BiVO4 photocatalyst. J. Solid State Chem. 2021, 297, 122088. [Google Scholar] [CrossRef]
- Yang, X.; Wang, D. Photocatalysis: From Fundamental Principles to Materials and Applications. ACS Appl. Energy Mater. 2018, 1, 6657–6693. [Google Scholar] [CrossRef]
- Chuenpratoom, T.; Hemavibool, K.; Rermthong, K.; Nanan, S. Removal of Lead by Merlinoite Prepared from Sugarcane Bagasse Ash and Kaolin: Synthesis, Isotherm, Kinetic, and Thermodynamic Studies. Molecules 2021, 26, 7550. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, Z.; Yahyaoui, S.; Hanafy, H.; Seliem, M.K.; Bonilla-Petriciolet, A.; Dotto, G.L.; Sellaoui, L.; Li, Q. Effective adsorption of dyes on an activated carbon prepared from carboxymethyl cellulose: Experiments, characterization and advanced modelling. Chem. Eng. J. 2021, 417, 128116. [Google Scholar] [CrossRef]
- Du, X.; Yang, W.; Liu, Y.; Zhang, W.; Wang, Z.; Nie, J.; Li, G.; Liang, H. Removal of manganese, ferrous and antibiotics from groundwater simultaneously using peroxymonosulfate-assisted in-situ oxidation/coagulation integrated with ceramic membrane process. Sep. Purif. Technol. 2020, 252, 117492. [Google Scholar] [CrossRef]
- Chankhanittha, T.; Nanan, S. Visible-light-driven photocatalytic degradation of ofloxacin (OFL) antibiotic and Rhodamine B (RhB) dye by solvothermally grown ZnO/Bi2MoO6 heterojunction. J. Colloid Interface Sci. 2021, 582, 412–427. [Google Scholar] [CrossRef]
- Senasu, T.; Chankhanittha, T.; Hemavibool, K.; Nanan, S. Visible-light-responsive photocatalyst based on ZnO/CdS nanocomposite for photodegradation of reactive red azo dye and ofloxacin antibiotic. Mater. Sci. Semicond. Process. 2021, 123, 105558. [Google Scholar] [CrossRef]
- Chankhanittha, T.; Somaudon, V.; Photiwat, T.; Youngme, S.; Hemavibool, K.; Nanan, S. Enhanced photocatalytic performance of ZnO/Bi2WO6 heterojunctions toward photodegradation of fluoroquinolone-based antibiotics in wastewater. J. Phys. Chem. Solids 2021, 153, 109995. [Google Scholar] [CrossRef]
- Juabrum, S.; Chankhanittha, T.; Nanan, S. Hydrothermally grown SDS-capped ZnO photocatalyst for degradation of RR141 azo dye. Mater. Lett. 2019, 245, 1–5. [Google Scholar] [CrossRef]
- Keshipour, S.; Mohammad-Alizadeh, S. Nickel phthalocyanine@graphene oxide/TiO2 as an efficient degradation catalyst of formic acid toward hydrogen production. Sci. Rep. 2021, 11, 16148. [Google Scholar] [CrossRef] [PubMed]
- Bai, Q.; Shupyk, I.; Vauriot, L.; Majimel, J.; Labrugere, C.; Delville, M.-H.; Delville, J.-P. Design of metal@titanium oxide nanoheterodimers by laser-driven photodeposition: Growth mechanism and modeling. ACS Nano 2021, 15, 2947–2961. [Google Scholar] [CrossRef] [PubMed]
- Bai, Q.; Lavenas, M.; Vauriot, L.; Le Tréquesser, Q.; Hao, J.; Weill, F.; Delville, J.-P.; Delville, M.-H. Hydrothermal Transformation of Titanate Scrolled Nanosheets to Anatase over a Wide pH Range and Contribution of Triethanolamine and Oleic Acid to Control the Morphology. Inorg. Chem. 2019, 58, 2588–2598. [Google Scholar] [CrossRef] [Green Version]
- Podasca, V.E.; Damaceanu, M.D. ZnO-Ag based polymer composites as photocatalysts for highly efficient visible-light degradation of Methyl Orange. J. Photochem. Photobiol. A Chem. 2021, 406, 113003. [Google Scholar] [CrossRef]
- Wu, F.; Pu, C.; Zhang, M.; Liu, B.; Yang, J. Silver embedded in defective twin brush-like ZnO for efficient and stable photocatalytic NO removal. Surf. Interfaces 2021, 25, 101298. [Google Scholar] [CrossRef]
- Fiorenza, R.; Spitaleri, L.; Perricelli, F.; Nicotra, G.; Fragalà, M.E.; Scirè, S.; Gulino, A. Efficient photocatalytic oxidation of VOCs using ZnO@Au nanoparticles. J. Photochem. Photobiol. A Chem. 2023, 434, 114232. [Google Scholar] [CrossRef]
- Nie, M.; Liao, J.; Cai, H.; Sun, H.; Xue, Z.; Guo, P.; Wu, M. Photocatalytic property of silver enhanced Ag/ZnO composite catalyst. Chem. Phys. Lett. 2021, 768, 138394. [Google Scholar] [CrossRef]
- Chen, J.; Gu, A.; Miensah, E.D.; Liu, Y.; Wang, P.; Mao, P.; Gong, C.; Jiao, Y.; Chen, K.; Zhang, Z.; et al. Silver-decorated ZIF-8 derived ZnO concave nanocubes for efficient photooxidation-adsorption of iodide anions: An in-depth experimental and theoretical investigation. J. Solid State Chem. 2021, 297, 122039. [Google Scholar] [CrossRef]
- Al-Mamun, M.R.; Islam, M.S.; Hossain, M.R.; Kader, S.; Islam, M.S.; Khan, M.Z.H. A novel and highly efficient Ag and GO co-synthesized ZnO nano photocatalyst for methylene blue dye degradation under UV irradiation. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100495. [Google Scholar]
- Yudasari, N.; Anugrahwidya, R.; Tahir, D.; Suliyanti, M.M.; Herbani, Y.; Imawan, C.; Khalil, M.; Djuhana, D. Enhanced photocatalytic degradation of rhodamine 6G (R6G) using ZnO–Ag nanoparticles synthesized by pulsed laser ablation in liquid (PLAL). J. Alloys Compd. 2021, 886, 161291. [Google Scholar] [CrossRef]
- Badán, J.A.; Jauregui, G.; Navarrete-Astorga, E.; Henríquez, R.; Jiménez, F.M.; Ariosa, D.; Dalchiele, E.A. Solid-state thermal dewetted silver nanoparticles onto electrochemically grown self-standing vertically aligned ZnO nanorods for three-dimensional plasmonic nanostructures. Ceram. Int. 2021, 47, 32685–32698. [Google Scholar] [CrossRef]
- Farooq, M.; Shujah, S.; Tahir, K.; Nazir, S.; Khan, A.U.; Almarhoon, Z.M.; Jevtovic, V.; Al-Shehri, H.S.; Hussain, S.T.; Ullah, A. Ultra efficient 4-Nitrophenol reduction, dye degradation and Cr(VI) adsorption in the presence of phytochemical synthesized Ag/ZnO nanocomposite: A view towards sustainable chemistry. Inorg. Chem. Commun. 2022, 136, 109189. [Google Scholar] [CrossRef]
- Muñoz-Fernandez, L.; Gomez-Villalba, L.S.; Milošević, O.; Rabanal, M.E. Influence of nanoscale defects on the improvement of photocatalytic activity of Ag/ZnO. Mater. Charact. 2022, 185, 111718. [Google Scholar] [CrossRef]
- Harinee, S.; Muthukumar, K.; James, R.A.; Arulmozhi, M.; Dahms, H.U.; Ashok, M. Bio-approach ZnO/Ag nano-flowers: Enhanced photocatalytic and photoexcited anti-microbial activities towards pathogenic bacteria. Mater. Today Sustain. 2022, 18, 100133. [Google Scholar] [CrossRef]
- Lee, Y.; Fujimoto, T.; Yamanaka, S. Characterization of submicro-sized Ag/ZnO particles generated using the spray pyrolysis method. Adv. Powder Technol. 2022, 33, 103525. [Google Scholar] [CrossRef]
- Liu, H.; Hu, Y.; Zhang, Z.; Liu, X.; Jia, H.; Xu, B. Synthesis of spherical Ag/ZnO heterostructural composites with excellent photocatalytic activity under visible light and UV irradiation. Appl. Surf. Sci. 2015, 355, 644–652. [Google Scholar] [CrossRef]
- Kaur, A.; Gupta, G.; Ibhadon, A.O.; Salunke, D.B.; Sinha, A.S.K.; Kansal, S.K. A Facile synthesis of silver modified ZnO nanoplates for efficient removal of ofloxacin drug in aqueous phase under solar irradiation. J. Environ. Chem. Eng. 2018, 6, 3621–3630. [Google Scholar] [CrossRef]
- Deng, Q.; Duan, X.; Ng, D.H.L.; Tang, H.; Yang, Y.; Kong, M.; Wu, Z.; Cai, W.; Wang, G. Ag nanoparticle decorated nanoporous ZnO microrods and their enhanced photocatalytic activities. ACS Appl. Mater. Interfaces 2012, 4, 6030–6037. [Google Scholar] [CrossRef] [PubMed]
- Ansari, S.A.; Khan, M.M.; Lee, J.; Cho, M.H. Highly visible light active Ag@ZnO nanocomposites synthesized by gel-combustion route. J. Ind. Eng. Chem. 2014, 20, 1602–1607. [Google Scholar] [CrossRef]
- Liu, H.; Liu, H.; Yang, J.; Zhai, H.; Liu, X.; Jia, H. Microwave-assisted one-pot synthesis of Ag decorated flower-like ZnO composites photocatalysts for dye degradation and NO removal. Ceram. Int. 2019, 45, 20133–20140. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, Y.; Shen, M.; Li, W.; Xia, W. The facile synthesis and enhanced photocatalytic properties of ZnO@ZnS modified with Ag0 via in-situ ion exchange. Colloids Surf. A Physicochem. Eng. Asp. 2020, 591, 124556. [Google Scholar] [CrossRef]
- Beura, R.; Pachaiappan, R.; Paramasivam, T. Photocatalytic degradation studies of organic dyes over novel Ag-loaded ZnO-graphene hybrid nanocomposites. J. Phys. Chem. Solids 2021, 148, 109689. [Google Scholar] [CrossRef]
- Ha, L.P.P.; Vinh, T.H.T.; Thuy, N.T.B.; Thi, C.M.; Van Viet, P. Visible-light-driven photocatalysis of anisotropic silver nanoparticles decorated on ZnO nanorods: Synthesis and characterizations. J. Environ. Chem. Eng. 2021, 9, 105103. [Google Scholar] [CrossRef]
- Toe, M.Z.; Le, A.T.; Han, S.S.; Yaacob, K.A.B.; Pung, S.Y. Silver nanoparticles coupled ZnO nanorods array prepared using photo-reduction method for localized surface plasmonic effect study. J. Cryst. Growth 2020, 547, 125806. [Google Scholar] [CrossRef]
- Hassani, A.; Faraji, M.; Eghbali, P. Facile fabrication of mpg-C3N4/Ag/ZnO nanowires/Zn photocatalyst plates for photodegradation of dye pollutant. J. Photochem. Photobiol. A Chem. 2020, 400, 112665. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, D.; Ji, Z.; Shao, D.; Sun, P.; Duan, J. High efficiency photocatalytic degradation of indoor formaldehyde with silver-doped ZnO/g-C3N4 composite catalyst under the synergistic effect of silver plasma effect and heterojunction. Opt. Mater. 2021, 111, 110721. [Google Scholar] [CrossRef]
- Iqbal, S.; Ahmad, N.; Javed, M.; Qamar, M.A.; Bahadur, A.; Ali, S.; Ahmad, Z.; Irfan, R.M.; Liu, G.; Akbar, M.B.; et al. Designing highly potential photocatalytic comprising silver deposited ZnO NPs with sulfurized graphitic carbon nitride (Ag/ZnO/S-g-C3N4) ternary composite. J. Environ. Chem. Eng. 2021, 9, 104919. [Google Scholar] [CrossRef]
- Du, C.; Song, J.; Tan, S.; Yang, L.; Yu, G.; Chen, H.; Zhou, L.; Zhang, Z.; Zhang, Y.; Su, Y.; et al. Facile synthesis of Z-scheme ZnO/Ag/Ag3PO4 composite photocatalysts with enhanced performance for the degradation of ciprofloxacin. Mater. Chem. Phys. 2021, 260, 124136. [Google Scholar] [CrossRef]
- Iqbal, S.; Bahadur, A.; Ali, S.; Ahmad, Z.; Javed, M.; Irfan, R.M.; Ahmad, N.; Qamar, M.A.; Liu, G.; Akbar, M.B.; et al. Critical role of the heterojunction interface of silver decorated ZnO nanocomposite with sulfurized graphitic carbon nitride heterostructure materials for photocatalytic applications. J. Alloys Compd. 2021, 858, 158338. [Google Scholar] [CrossRef]
- Ye, W.; Jiang, Y.; Liu, Q.; Xu, D.; Zhang, E.; Cheng, X.; Wan, Z.; Liu, C. The preparation of visible light-driven ZnO/Ag2MoO4/Ag nanocomposites with effective photocatalytic and antibacterial activity. J. Alloys Compd. 2022, 891, 161898. [Google Scholar] [CrossRef]
- Mohanty, L.; Pattanayak, D.S.; Dash, S.K. An efficient ternary photocatalyst Ag/ZnO/g-C3N4 for degradation of RhB and MG under solar radiation. J. Indian Chem. Soc. 2021, 98, 100180. [Google Scholar] [CrossRef]
- Lucilha, A.C.; Camargo, L.P.; Liberatti, V.R.; Barbosa, E.C.M.; Dall’Antonia, L.H. Zn1-xCoxO vs. Ag-ZnO photoanodes design via combustion: Characterization and application in photoelectrocatalysis. Colloids Surf. A Physicochem. Eng. Asp. 2022, 638, 128261. [Google Scholar]
- Gea, S.; Situmorang, S.A.; Pasaribu, N.; Piliang, A.F.; Attaurrazaq, B.; Sari, R.M.; Pasaribu, K.M.; Goutianos, S. Facile synthesis of ZnO–Ag nanocomposite supported by graphene oxide with stabilised band-gap and wider visible-light region for photocatalyst application. J. Mater. Res. Technol. 2022, 19, 2730–2741. [Google Scholar] [CrossRef]
- Guo, Y.; Fu, X.; Xie, Y.; Zhu, L.; Liu, R.; Liu, L. Synthesis of Ag/ZnO nanocomposites with enhanced visible photocatalytic performance. Opt. Mater. 2022, 133, 112980. [Google Scholar] [CrossRef]
- Singh, S. Natural sunlight driven photocatalytic performance of Ag/ZnO nanocrystals. Mater. Today Commun. 2022, 33, 104438. [Google Scholar] [CrossRef]
- Kakarndee, S.; Juabrum, S.; Nanan, S. Low temperature synthesis, characterization and photoluminescence study of plate-like ZnS. Mater. Lett. 2016, 164, 198–201. [Google Scholar] [CrossRef]
- Christy, E.J.S.; Amalraj, A.; Rajeswari, A.; Pius, A. Enhanced photocatalytic performance of Zr(IV) doped ZnO nanocomposite for the degradation efficiency of different azo dyes. Environ. Chem. Ecotoxicol. 2021, 3, 31–41. [Google Scholar] [CrossRef]
- Xue, L.; Liang, E.; Wang, J. Fabrication of magnetic ZnO/ZnFe2O4/diatomite composites: Improved photocatalytic efficiency under visible light irradiation. J. Mater. Sci. Mater. Electron. 2022, 33, 1405–1424. [Google Scholar] [CrossRef]
- Wang, L.; Ali, J.; Wang, Z.; Oladoja, N.; Cheng, R.; Zhang, C.; Mailhot, G.; Pan, G. Oxygen nanobubbles enhanced photodegradation of oxytetracycline under visible light: Synergistic effect and mechanism. Chem. Eng. J. 2020, 388, 124227. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, S.; Rishikesh; Manna, A.K.; Soni, R.K. Fabrication of ZnO–TiO2 nanohybrids for rapid sunlight driven photodegradation of textile dyes and antibiotic residue molecules. Opt. Mater. 2020, 107, 110138. [Google Scholar] [CrossRef]
- Wang, W.; Han, Q.; Zhu, Z.; Zhang, L.; Zhong, S.; Liu, B. Enhanced photocatalytic degradation performance of organic contaminants by heterojunction photocatalyst BiVO4/TiO2/RGO and its compatibility on four different tetracycline antibiotics. Adv. Powder Technol. 2019, 30, 1882–1896. [Google Scholar] [CrossRef]
- Zhen, Q.; Gao, L.; Sun, C.; Gong, H.; Hu, P.; Song, S.; Li, R. Honeycomb-like TiO2@GO nanocomposites for the photodegradation of oxytetracycline. Mater. Lett. 2018, 228, 318–321. [Google Scholar] [CrossRef]
- Hong, J.; Hwang, D.K.; Selvaraj, R.; Kim, Y. Facile synthesis of Br-doped g-C3N4 nanosheets via one-step exfoliation using ammonium bromide for photodegradation of oxytetracycline antibiotics. J. Ind. Eng. Chem. 2019, 79, 473–481. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Zhai, C. Construction of a novel p-n heterojunction CdS QDs/LaMnO3 composite for photodegradation of oxytetracycline. Mater. Sci. Semicond. Process. 2022, 144, 106568. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, S.; Huang, S.; Hu, B.; Wang, M.; Zhang, Z.; He, L.; Du, M. Photocatalytic degradation of oxytetracycline under visible light by nanohybrids of CoFe alloy nanoparticles and nitrogen-/sulfur-codoped mesoporous carbon. Chem. Eng. J. 2021, 420, 130516. [Google Scholar] [CrossRef]
- Wu, J.; Hu, J.; Qian, H.; Li, J.; Yang, R.; Qu, L. NiCo/ZnO/g-C3N4 Z-scheme heterojunction nanoparticles with enhanced photocatalytic degradation oxytetracycline. Diam. Relat. Mater. 2022, 121, 108738. [Google Scholar] [CrossRef]
- Jo, W.K.; Kumar, S.; Isaacs, M.A.; Lee, A.F.; Karthikeyan, S. Cobalt promoted TiO2/GO for the photocatalytic degradation of oxytetracycline and Congo Red. Appl. Catal. B Environ. 2017, 201, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Liu, Y.; Kong, J.; Yuan, J.; Sun, C.; Xian, Q.; Yang, S.; He, H. High photocatalytic degradation efficiency of oxytetracycline hydrochloride over Ag/AgCl/BiVO4 plasmonic photocatalyst. Solid State Sci. 2019, 96, 105946. [Google Scholar] [CrossRef]
Catalyst | Concentration | Catalyst Loading | Light Source | Lamp | Time (min) | Photodegradation (%) | Ref. |
---|---|---|---|---|---|---|---|
● Photodegradation of RR141 azo dye | |||||||
ZnO | 10 mgL−1 | 50 mg | UV | 125 W | 240 | 95 | [3] |
SDS capped ZnO | 10 mgL−1 | 50 mg | UV | 125 W | 240 | 100 | [21] |
SDS capped ZnO | 10 mgL−1 | 50 mg | UV | 125 W | 240 | 95 | [21] |
SDS capped ZnO | 10 mgL−1 | 50 mg | Visible | 15 W | 240 | 60 | [21] |
SDS capped ZnO | 10 mgL−1 | 50 mg | Solar light | - | 240 | 88 | [21] |
PVP capped ZnO | 10 mgL−1 | 50 mg | UV | 125 W | 120 | 100 | [5] |
4% Zr(IV) doped ZnO | 10 mgL−1 | 100 mg | UV | 16 W | 40 | 96 | [58] |
ZnO/CdS | 10 mgL−1 | 50 mg | Visible | 15 W | 120 | 80 | [19] |
CdS | 10 mgL−1 | 50 mg | Visible | 15 W | 240 | 95 | [4] |
CdS | 10 mgL−1 | 50 mg | Visible | 15 W | 240 | 100 | [1] |
Bi4MoO9 | 10 mgL−1 | 50 mg | UV | 125 W | 240 | 68 | [7] |
5Ag-ZnO | 10 mgL−1 | 50 mg | UV | 125 W | 240 | 100 | This work |
5Ag-ZnO | 10 mgL−1 | 50 mg | Solar light | - | 120 | 99 | This work |
● Photodegradation of OTC antibiotic | |||||||
BiVO4 | 10 mgL−1 | 50 mg | Visible | 15 W | 240 | 55.5 | [13] |
BiVO4 | 10 mgL−1 | 50 mg | Visible | 15 W | 240 | 62 | [12] |
ZnO | 10 mgL−1 | 100 mg | Visible | 300 W | 150 | 50 | [59] |
Oxygen nanobubbles | 30 mgL−1 | - | UV | 250 W | 240 | 60 | [60] |
ZnO–TiO2 | 60 mgL−1 | 5 mg | Solar light | - | 8 | 90.3 | [61] |
BiVO4/TiO2 | 10 mgL−1 | - | Visible | 1000 W | 120 | 68.4 | [62] |
TiO2/RGO | 50 mgL−1 | 60 mg | Natural light | - | 60 | 80 | [63] |
Br-doped g-C3N4 | 10 mgL−1 | 250 mg | Visible | 38.5 W | 120 | 75 | [64] |
CdS QDs/LaMnO3 | 40 mgL−1 | 20 mg | Solar light | - | 60 | 70 | [65] |
CoFe@NSC-1000 | 50 mgL−1 | 8 mg | Visible | 300 W | 150 | 90 | [66] |
ZnO/ZnFe2O4/diatomite | 10 mgL−1 | 100 mg | Visible | 300 W | 150 | 95 | [59] |
NiCo/ZnO/g-C3N4 | 10 mgL−1 | 20 mg | Visible | 300 W | 50 | 71.3 | [67] |
Co3O4/TiO2/GO | 10 mgL−1 | 25 mg | UV | 300 W | 90 | 91 | [68] |
Ag/AgCl/BiVO4 | 20 mgL−1 | 50 mg | UV | 1000 W | 120 | 97.6 | [69] |
5Ag-ZnO | 10 mgL−1 | 50 mg | UV | 125 W | 240 | 99 | This work |
5Ag-ZnO | 10 mgL−1 | 50 mg | Solar light | - | 240 | 99 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wannakan, K.; Khansamrit, K.; Senasu, T.; Chankhanittha, T.; Nanan, S. Ag-Modified ZnO for Degradation of Oxytetracycline Antibiotic and Reactive Red Azo Dye. Antibiotics 2022, 11, 1590. https://doi.org/10.3390/antibiotics11111590
Wannakan K, Khansamrit K, Senasu T, Chankhanittha T, Nanan S. Ag-Modified ZnO for Degradation of Oxytetracycline Antibiotic and Reactive Red Azo Dye. Antibiotics. 2022; 11(11):1590. https://doi.org/10.3390/antibiotics11111590
Chicago/Turabian StyleWannakan, Khemika, Kamonpan Khansamrit, Teeradech Senasu, Tammanoon Chankhanittha, and Suwat Nanan. 2022. "Ag-Modified ZnO for Degradation of Oxytetracycline Antibiotic and Reactive Red Azo Dye" Antibiotics 11, no. 11: 1590. https://doi.org/10.3390/antibiotics11111590
APA StyleWannakan, K., Khansamrit, K., Senasu, T., Chankhanittha, T., & Nanan, S. (2022). Ag-Modified ZnO for Degradation of Oxytetracycline Antibiotic and Reactive Red Azo Dye. Antibiotics, 11(11), 1590. https://doi.org/10.3390/antibiotics11111590