Prevalence, Tetracycline Resistance and Tet(O) Gene Identification in Pathogenic Campylobacter Strains Isolated from Chickens in Retail Markets of Lima, Peru
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Number and Origin of Samples
4.2. Campylobacter Identification
4.3. The Kirby–Bauer Test
4.4. Identification and Sequencing of the Tet(O) Gene
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bolton, D.J. Campylobacter Virulence and Survival Factors. Food Microbiol. 2015, 48, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Ramos, A.P.; Leonhard, S.E.; Halstead, S.K.; Cuba, M.A.; Castañeda, C.C.; Dioses, J.A.; Tipismana, M.A.; Abanto, J.T.; Llanos, A.; Gourlay, D.; et al. Guillain-Barré Syndrome Outbreak in Peru 2019 Associated With Campylobacter jejuni Infection. Neurol.-Neuroimmunol. Neuroinflamm. 2021, 8, e952. [Google Scholar] [CrossRef] [PubMed]
- Whitehouse, C.A.; Zhao, S.; Tate, H. Antimicrobial Resistance in Campylobacter Species: Mechanisms and Genomic Epidemiology. Adv. Appl. Microbiol. 2018, 103, 1–47. [Google Scholar] [PubMed]
- Igwaran, A.; Okoh, A.I. Human Campylobacteriosis: A Public Health Concern of Global Importance. Heliyon 2019, 5, e02814. [Google Scholar] [CrossRef] [PubMed]
- Mehdi, Y.; Létourneau-Montminy, M.P.; Gaucher, M.L.; Chorfi, Y.; Suresh, G.; Rouissi, T.; Brar, S.K.; Côté, C.; Ramirez, A.A.; Godbout, S. Use of Antibiotics in Broiler Production: Global Impacts and Alternatives. Anim. Nutr. 2018, 4, 170–178. [Google Scholar] [CrossRef]
- Tang, Y.; Fang, L.; Xu, C.; Zhang, Q. Antibiotic Resistance Trends and Mechanisms in the Foodborne Pathogen, Campylobacter. Anim. Health Res. Rev. 2017, 18, 87–98. [Google Scholar] [CrossRef] [Green Version]
- Sheykhsaran, E.; Baghi, H.B.; Soroush, M.H.; Ghotaslou, R. An Overview of Tetracyclines and Related Resistance Mechanisms. Rev. Res. Med. Microbiol. 2019, 30, 69–75. [Google Scholar] [CrossRef]
- WOAH. Annual Report on Antimicrobial Agents Intended for Use in Animals; WOAH: Paris, France, 2022. [Google Scholar]
- de Alcântara Rodrigues, I.; Ferrari, R.G.; Panzenhagen, P.H.N.; Mano, S.B.; Conte-Junior, C.A. Antimicrobial Resistance Genes in Bacteria from Animal-Based Foods. In Advances in Applied Microbiology; Academic Press: Cambridge, MA, USA, 2020; Volume 112, pp. 143–183. ISBN 9780128207079. [Google Scholar]
- Sibanda, N.; McKenna, A.; Richmond, A.; Ricke, S.C.; Callaway, T.; Stratakos, A.C.; Gundogdu, O.; Corcionivoschi, N. A Review of the Effect of Management Practices on Campylobacter Prevalence in Poultry Farms. Front. Microbiol. 2018, 9, 2002. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Shehata, A.M.; Arif, M.; Paswan, V.K.; Batiha, G.E.S.; Khafaga, A.F.; Elbestawy, A.R. Approaches to Prevent and Control Campylobacter spp. Colonization in Broiler Chickens: A Review. Environ. Sci. Pollut. Res. 2020, 28, 4989–5004. [Google Scholar] [CrossRef]
- Sahin, O.; Kassem, I.I.; Shen, Z.; Lin, J.; Rajashekara, G.; Zhang, Q. Campylobacter in Poultry: Ecology and Potential Interventions. Avian Dis. 2015, 59, 185–200. [Google Scholar] [CrossRef]
- Deza-Chiock, C.; Mendoza-Pérez, J. Factores Críticos Que No Permiten El Ingreso Del Pollo Beneficiado Industrialmente En El Canal Tradicional En Lima Metropolitana; Universidad Peruana de Ciencias Aplicadas: Lima, Peru, 2018. [Google Scholar]
- Popa, S.A.; Morar, A.; Ban-Cucerzan, A.; Imre, K. Last Decade Mini-Review of the Scientific Progresses in the Monitoring of the Occurrence and Antimicrobial Susceptibility Profile of Poultry Origin Campylobacter spp. within the European Union Countries. Rev. Rom. Med. Vet. 2022, 32, 75–82. [Google Scholar]
- Jafari, S.; Ebrahimi, M.; Luangtongkum, T. The Status of Antimicrobial Resistance in Campylobacter spp. Isolated from Animals and Humans in Southeast Asia: A Review. Thai J. Vet. Med. 2020, 50, 451–458. [Google Scholar]
- Asuming-Bediako, N.; Kunadu, A.P.H.; Abraham, S.; Habib, I. Campylobacter at the Human–Food Interface: The African Perspective. Pathogens 2019, 8, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anampa, D.; Benites, C.; Lázaro, C.; Espinoza, J.; Angulo, P.; Díaz, D.; Manchego, A.; Rojas, M. Detection of the ErmB Gene Associated with Macrolide Resistance in Campylobacter Strains Isolated from Chickens Marketed in Lima, Peru. Pan Am. J. Public Health 2020, 44, e60. [Google Scholar]
- Lázaro, C.A.; Conte-Junior, C.A.; Vilca, M.A.; Lucas, J.R.; Ramos, D.D.; Manchego, A.; Chiok, K.R.L.; Franco, R.M. Molecular Identification of Campylobacter jejuni and Campylobacter coli Isolated from Small-Scale Poultry Slaughterhouse in Lima, Peru. Int. J. Poult. Sci. 2012, 11, 677–682. [Google Scholar] [CrossRef] [Green Version]
- Lucas, J.; Vilca, M.; Ramos, D. Presencia de Campylobacter spp. En Canales y Ciegos de Pollos de Engorde En Lima, Perú. Rev. Investig. Vet. Perú 2013, 24, 346–352. [Google Scholar] [CrossRef]
- Carnero, A.M.; Kitayama, K.; Diaz, D.A.; Garvich, M.; Angulo, N.; Cama, V.A.; Gilman, R.H.; Bayer, A.M. Risk for Interspecies Transmission of Zoonotic Pathogens during Poultry Processing and Pork Production in Peru: A Qualitative Study. Zoonoses Public Health 2018, 65, 528–539. [Google Scholar] [CrossRef]
- Murray, M.; Salvatierra, G.; Dávila-Barclay, A.; Ayzanoa, B.; Castillo-Vilcahuaman, C.; Huang, M.; Pajuelo, M.J.; Lescano, A.G.; Cabrera, L.; Calderón, M.; et al. Market Chickens as a Source of Antibiotic-Resistant Escherichia coli in a Peri-Urban Community in Lima, Peru. Front. Microbiol. 2021, 12, 327. [Google Scholar] [CrossRef]
- Vásquez-Ampuero, J.M.; Tasayco-Alcántara, W.R. Presence of Pathogens in Raw Chicken Meat in Retail Centers, Huánuco-Peru. J. Selva Andin. Res. Soc. 2020, 11, 130–141. [Google Scholar] [CrossRef]
- Gomes, C.N.; Passaglia, J.; Vilela, F.P.; Pereira da Silva, F.M.H.S.; Duque, S.S.; Falcão, J.P. High Survival Rates of Campylobacter coli under Different Stress Conditions Suggest That More Rigorous Food Control Measures Might Be Needed in Brazil. Food Microbiol. 2018, 73, 327–333. [Google Scholar] [CrossRef]
- Casagrande Proietti, P.; Pergola, S.; Bellucci, S.; Menchetti, L.; Miraglia, D.; Franciosini, M.P. Occurrence and Antimicrobial Susceptibility of Campylobacter spp. on Fresh and Refrigerated Chicken Meat Products in Central Italy. Poult. Sci. 2018, 97, 2895–2901. [Google Scholar] [CrossRef] [PubMed]
- Vinueza-Burgos, C.; Cevallos, M.; Cisneros, M.; Van Damme, I.; De Zutter, L. Quantification of the Campylobacter Contamination on Broiler Carcasses during the Slaughter of Campylobacter Positive Flocks in Semi-Industrialized Slaughterhouses. Int. J. Food Microbiol. 2018, 269, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Poma-Fermín, A.E. Comercialización de Pollos Vivos En Una Integración Comercial; Universidad Nacional Agraria La Molina: Lima, Peru, 2021. [Google Scholar]
- Ramirez-Hernandez, A.; Galagarza, O.A.; Álvarez Rodriguez, M.V.; Pachari Vera, E.; Valdez Ortiz, M.d.C.; Deering, A.J.; Oliver, H.F. Food Safety in Peru: A Review of Fresh Produce Production and Challenges in the Public Health System. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3323–3342. [Google Scholar] [CrossRef] [PubMed]
- Walker, L.J.; Wallace, R.L.; Smith, J.J.; Graham, T.; Saputra, T.; Symes, S.; Stylianopoulos, A.; Polkinghorne, B.G.; Kirk, M.D.; Glass, K. Prevalence of Campylobacter coli and Campylobacter jejuni in Retail Chicken, Beef, Lamb, and Pork Products in Three Australian States. J. Food Prot. 2019, 82, 2126–2134. [Google Scholar] [CrossRef] [PubMed]
- Lopes, G.V.; Landgraf, M.; Destro, M.T. Occurrence of Campylobacter in Raw Chicken and Beef from Retail Outlets in São Paulo, Brazil. J. Food Saf. 2018, 38, e12442. [Google Scholar] [CrossRef]
- Sakaridis, I.; Papadopoulos, T.; Boukouvala, E.; Ekateriniadou, L.; Samouris, G.; Zdragas, A. Prevalence, antimicrobial resistance, and molecular typing of thermophilic Campylobacter spp. in a Greek poultry slaughterhouse. Sciendo 2019, 69, 325–339. [Google Scholar] [CrossRef] [Green Version]
- Karki, A.B.; Marasini, D.; Oakey, C.K.; Mar, K.; Fakhr, M.K. Campylobacter coli from Retail Liver and Meat Products Is More Aerotolerant than Campylobacter jejuni. Front. Microbiol. 2018, 9, 2951. [Google Scholar] [CrossRef]
- EFSA Scientific Opinion on Campylobacter in Broiler Meat Production: Control Options and Performance Objectives and/or Targets at Different Stages of the Food Chain. EFSA J. 2011, 9, 2105. [CrossRef]
- Chantarapanont, W.; Berrang, M.; Frank, J.F. Direct Microscopic Observation and Viability Determination of Campylobacter jejuni on Chicken Skin. J. Food Prot. 2003, 66, 2222–2230. [Google Scholar] [CrossRef] [Green Version]
- Quino, W.; Caro-Castro, J.; Hurtado, V.; Flores-León, D.; Gonzalez-Escalona, N.; Gavilan, R.G. Genomic Analysis and Antimicrobial Resistance of Campylobacter jejuni and Campylobacter coli in Peru. Front. Microbiol. 2022, 12, 802404. [Google Scholar] [CrossRef]
- Lynch, C.T.; Lynch, H.; Burke, S.; Hawkins, K.; Buttimer, C.; Mc Carthy, C.; Egan, J.; Whyte, P.; Bolton, D.; Coffey, A.; et al. Antimicrobial Resistance Determinants Circulating among Thermophilic Campylobacter Isolates Recovered from Broilers in Ireland over a One-Year Period. Antibiotics 2020, 9, 308. [Google Scholar] [CrossRef] [PubMed]
- Paravisi, M.; Laviniki, V.; Bassani, J.; Kunert Filho, H.C.; Carvalho, D.; Wilsmann, D.E.; Borges, K.A.; Furian, T.Q.; Salle, C.T.P.; Moraes, H.L.S.; et al. Antimicrobial Resistance in Campylobacter jejuni Isolated from Brazilian Poultry Slaughterhouses. Braz. J. Poult. Sci. 2020, 22, 1–10. [Google Scholar] [CrossRef]
- Wozniak-Biel, A.; Bugla-Płoskońska, G.; Kielsznia, A.; Korzekwa, K.; Tobiasz, A.; Korzeniowska-Kowal, A.; Wieliczko, A. High Prevalence of Resistance to Fluoroquinolones and Tetracycline Campylobacter spp. Isolated from Poultry in Poland. Microb. Drug Resist. 2018, 24, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.; Zishiri, O.T. Detection and Prevalence of Antimicrobial Resistance Genes in Campylobacter spp. Isolated from Chickens and Humans. Onderstepoort J. Vet. Res. 2017, 84, e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, X.; Zhu, D.; Lai, H.; Zeng, H.; Zhou, K.; Zou, L.; Wu, C.; Han, G.; Liu, S. Prevalence, Antimicrobial Resistance Profiling and Genetic Diversity of Campylobacter jejuni and Campylobacter coli Isolated from Broilers at Slaughter in China. Food Control 2016, 69, 160–170. [Google Scholar] [CrossRef]
- Schiaffino, F.; Platts-Mills, J.; Kosek, M.N. A One Health Approach to Prevention, Treatment, and Control of Campylobacteriosis. Curr. Opin. Infect. Dis. 2019, 32, 453–460. [Google Scholar] [CrossRef]
- Cornejo, J.; Yevenes, K.; Avello, C.; Pokrant, E.; Maddaleno, A.; Martin, B.S.; Lapierre, L. Determination of Chlortetracycline Residues, Antimicrobial Activity and Presence of Resistance Genes in Droppings of Experimentally Treated Broiler Chickens. Molecules 2018, 23, 1264. [Google Scholar] [CrossRef] [Green Version]
- Fairchild, A.S.; Smith, J.L.; Idris, U.; Lu, J.; Sanchez, S.; Purvis, L.B.; Hofacre, C.; Lee, M.D. Effects of Orally Administered Tetracycline on the Intestinal Community Structure of Chickens and on Tet Determinant Carriage by Commensal Bacteria and Campylobacter jejuni. Appl. Environ. Microbiol. 2005, 71, 5865–5872. [Google Scholar] [CrossRef] [Green Version]
- Benavides, J.A.; Streicker, D.G.; Gonzales, M.S.; Rojas-Paniagua, E.; Shiva, C. Knowledge and Use of Antibiotics among Low-Income Small-Scale Farmers of Peru. Prev. Vet. Med. 2021, 189, 105287. [Google Scholar] [CrossRef]
- SENASA. Informe Del Monitoreo de Residuos Químicos y Otros Contaminantes En Alimentos Agropecuarios Primarios y Piensos, Año 2021; Servicio Nacional de Sanidad Agraria del Perú: La Molina, Peru, 2021; p. 66. [Google Scholar]
- INS Decreto Supremo N°010-2019-SA. Aprobación Del Plan Multisectorial Para Enfrentar La Resistencia a Los Antimicrobianos 2019–2021. 2019, p. 129. Available online: https://busquedas.elperuano.pe/normaslegales/aprueban-el-plan-multisectorial-para-enfrentar-la-resistenci-decreto-supremo-n-010-2019-sa-1770600-1/ (accessed on 14 February 2021).
- MINSA. Norma Técnica de Salud Para La Implementación Del Programa de Optimización Del Uso de Antimicrobianos a Nivel Hospitalario; Ministerio de Salud: Lima, Peru, 2022; pp. 1–40. [Google Scholar]
- Shen, Z.; Wang, Y.; Zhang, Q.; Shen, J. Antimicrobial Resistance in Campylobacter spp. Microbiol. Spectr. 2018, 6, ARBA-0013-2017. [Google Scholar] [CrossRef]
- Iovine, N.M. Resistance Mechanisms in Campylobacter jejuni. Virulence 2013, 4, 230–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharifi, S.; Bakhshi, B.; Najar-peerayeh, S. Significant Contribution of the CmeABC Efflux Pump in High-Level Resistance to Ciprofloxacin and Tetracycline in Campylobacter jejuni and Campylobacter coli Clinical Isolates. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 36. [Google Scholar] [CrossRef] [PubMed]
- Abdi-Hachesoo, B.; Khoshbakht, R.; Sharifiyazdi, H.; Tabatabaei, M.; Hosseinzadeh, S.; Asasi, K. Tetracycline Resistance Genes in Campylobacter jejuni and C. coli Isolated From Poultry Carcasses. Jundishapur J. Microbiol. 2014, 7, 12129. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.N.M.; Hotzel, H.; Njeru, J.; Mwituria, J.; El-Adawy, H.; Tomaso, H.; Neubauer, H.; Hafez, H.M. Antimicrobial Resistance of Campylobacter Isolates from Small Scale and Backyard Chicken in Kenya. Gut Pathog. 2016, 8, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, C.; Hawkins, K.; Lynch, H.; Egan, J.; Bolton, D.; Coffey, A.; Lucey, B. Investigation of Molecular Mechanisms Underlying Tetracycline Resistance in Thermophilic Campylobacter spp. Suggests That Previous Reports of Tet(A)-Mediated Resistance in These Bacteria Are Premature. Gut Pathog. 2019, 11, 56. [Google Scholar] [CrossRef] [PubMed]
- MINAGRI (Ministerio de Agricultura y Riego). Panorama de La Comercialización de Aves En Lima Metropolitana y Callao; MINAGRI: Lima, Peru, 2018. [Google Scholar]
- ISO 10272-1; Horizontal Method for Detection and Enumeration of Campylobacter spp. Part 1: Detection Method. Microbiology of the Food Chain. ISO: Geneva, Switzerland, 2017; 2017.
- Linton, D.; Lawson, A.J.; Owen, R.J.; Stanley, J. PCR Detection, Identification to Species Level, and Fingerprinting of Campylobacter jejuni and Campylobacter coli Direct from Diarrheic Samples. J. Clin. Microbiol. 1997, 35, 2568–2572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CLSI. M-45: Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015. [Google Scholar]
- Hungaro, H.M.; Mendonça, R.C.S.; Rosa, V.O.; Badaró, A.C.L.; Moreira, M.A.S.; Chaves, J.B.P. Low Contamination of Campylobacter spp. on Chicken Carcasses in Minas Gerais State, Brazil: Molecular Characterization and Antimicrobial Resistance. Food Control 2015, 51, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Kimura, M. A Simple Method for Estimating Evolutionary Rates of Base Substitutions through Comparative Studies of Nucleotide Sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar]
Identification: Sample Evaluated | n | Positive | Prevalence (%) | CI 95% | p-Value |
---|---|---|---|---|---|
Campylobacter spp. 1: | |||||
Skin | 120 | 117 | 97.5 A | 0.9259–0.9947 | <0.0001 |
Meat | 130 | 56 | 43.1 B | 0.3488–0.5167 | |
Skin + meat | 250 | 173 | 69.2 | 0.6322–0.7460 | |
C. coli2: | |||||
Skin | 120 | 117 | 97.5 A | 0.9259–0.9947 | <0.0001 |
Meat | 130 | 47 | 36.2 B | 0.2839–0.4471 | |
Skin + meat | 250 | 164 | 66.8 | 0.6074–0.7235 | |
C. jejuni2: | |||||
Skin | 120 | 0 | 0.0 | ND | ND |
Meat | 130 | 4 | 3.1 | 0.0094–0.0791 | |
Skin + meat | 250 | 4 | 1.6 | 0.0048–0.0419 | |
Tetracycline resistance 3: | |||||
Campylobacter from skin | 117 | 117 | 100.0 | ND | ND |
Campylobacter from meat | 51 | 51 | 100.0 | ND | |
Campylobacter (skin + meat) | 168 | 168 | 100.0 | ND | |
Tet(O) gene: | |||||
C. coli from skin | 117 | 90 | 76.9 A | 0.6846–0.8367 | 0.1488 |
C. coli from meat | 47 | 31 | 66.0 A | 0.5162–0.7788 | |
C. coli (skin + meat) | 164 | 121 | 73.8 | 0.6654–0.7993 | |
C. jejuni from skin | 0 | 0 | 0.0 | ND | ND |
C. jejuni from meat | 4 | 4 | 100.0 | ND | |
C. jejuni (skin + meat) | 4 | 4 | 100.00 | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benites, C.; Anampa, D.; Torres, D.; Avalos, I.; Rojas, M.; Conte, C.; Lázaro, C. Prevalence, Tetracycline Resistance and Tet(O) Gene Identification in Pathogenic Campylobacter Strains Isolated from Chickens in Retail Markets of Lima, Peru. Antibiotics 2022, 11, 1580. https://doi.org/10.3390/antibiotics11111580
Benites C, Anampa D, Torres D, Avalos I, Rojas M, Conte C, Lázaro C. Prevalence, Tetracycline Resistance and Tet(O) Gene Identification in Pathogenic Campylobacter Strains Isolated from Chickens in Retail Markets of Lima, Peru. Antibiotics. 2022; 11(11):1580. https://doi.org/10.3390/antibiotics11111580
Chicago/Turabian StyleBenites, Christian, Diego Anampa, Domingo Torres, Ivette Avalos, Miguel Rojas, Carlos Conte, and César Lázaro. 2022. "Prevalence, Tetracycline Resistance and Tet(O) Gene Identification in Pathogenic Campylobacter Strains Isolated from Chickens in Retail Markets of Lima, Peru" Antibiotics 11, no. 11: 1580. https://doi.org/10.3390/antibiotics11111580
APA StyleBenites, C., Anampa, D., Torres, D., Avalos, I., Rojas, M., Conte, C., & Lázaro, C. (2022). Prevalence, Tetracycline Resistance and Tet(O) Gene Identification in Pathogenic Campylobacter Strains Isolated from Chickens in Retail Markets of Lima, Peru. Antibiotics, 11(11), 1580. https://doi.org/10.3390/antibiotics11111580