An Optimization of Oregano, Thyme, and Lemongrass Essential Oil Blend to Simultaneous Inactivation of Relevant Foodborne Pathogens by Simplex–Centroid Mixture Design
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of Essential oils
2.2. Single and Combined Antimicrobial Effects through Mixture Design (MD)
2.3. Mixture Optimization and Validation
3. Discussion
4. Conclusions
5. Material and Methods
5.1. Plant Material and Selection of EOs for Study
5.2. Characterization of the EOs
5.3. Mixture Design and Statistical Analysis
5.4. Antimicrobial Assays
5.4.1. Microorganisms
5.4.2. Determination of Minimum Inhibitory Concentration (MIC)
5.4.3. Determination of Minimum Bactericidal Concentration (MBC)
5.4.4. Statistical Analysis and Mixture Optimization
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pateiro, M.; Munekata, P.E.S.; Sant’Ana, A.S.; Domínguez, R.; Rodríguez-Lázaro, D.; Lorenzo, J.M. Application of essential oils as antimicrobial agents against spoilage and pathogenic microorganisms in meat products. Int. J. Food Microbiol. 2021, 337, 108966. [Google Scholar] [CrossRef] [PubMed]
- WHO. Draft Who Global Strategy for Food Safety 2022–2030. Available online: https://cdn.who.int/media/docs/default-source/food-safety/public-consultation/draft-who-global-strategy-for-food-safety-13may2021.pdf?sfvrsn=ac480bb9_5 (accessed on 30 October 2022).
- Coimbra, A.; Ferreira, S.; Duarte, A.P. Biological properties of Thymus zygis essential oil with emphasis on antimicrobial activity and food application. Food Chem. 2022, 393, 133370. [Google Scholar] [CrossRef] [PubMed]
- WHO. Food Safety. Available online: https://www.who.int/news-room/fact-sheets/detail/food-safety (accessed on 29 October 2022).
- FDA. Outbreaks of Foodborne Illness. Available online: https://www.fda.gov/food/recalls-outbreaks-emergencies/outbreaks-foodborne-illness#:~:text=Whentwoormorepeople,fromhappeninginthefuture (accessed on 30 October 2022).
- USDA. Foodborne Illness and Disease. Available online: https://www.fsis.usda.gov/food-safety/foodborne-illness-and-disease#:~:text=What%20Is%20Foodborne%20Illness%3F,comes%20from%20eating%20contaminated%20food (accessed on 4 September 2022).
- CDC. Staphylococcal (Staph) Food Poisoning. Available online: https://www.cdc.gov/foodsafety/diseases/staphylococcal.html#:~:text=Staph%20food%20poisoning%20is%20characterized,Severe%20illness%20is%20rare (accessed on 4 September 2022).
- FDA. Get the Facts about Salmonella. Available online: https://www.fda.gov/animal-veterinary/animal-health-literacy/get-facts-about-salmonella (accessed on 30 October 2022).
- EFSA. Salmonella. Available online: https://www.efsa.europa.eu/en/topics/topic/salmonella (accessed on 30 October 2022).
- WHO. Estimating the Burden of Foodborne Diseases. Available online: https://www.who.int/activities/estimating-the-burden-of-foodborne-diseases (accessed on 30 October 2022).
- FDA. Escherichia coli (E. coli). Available online: https://www.fda.gov/food/foodborne-pathogens/escherichia-coli-e-coli (accessed on 30 October 2022).
- Galvan, D.; Effting, L.; Torres Neto, L.; Conte-Junior, C.A. An overview of research of essential oils by self-organizing maps: A novel approach for meta-analysis study. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3136–3163. [Google Scholar] [CrossRef] [PubMed]
- Torres Neto, L.; Monteiro, M.L.G.; Galvan, D.; Conte-Junior, C.A. An Evaluation of the Potential of Essential Oils against SARS-CoV-2 from In Silico Studies through the Systematic Review Using a Chemometric Approach. Pharmaceuticals 2021, 14, 1138. [Google Scholar] [CrossRef] [PubMed]
- Tariq, S.; Wani, S.; Rasool, W.; Shafi, K.; Bhat, M.A.; Prabhakar, A.; Shalla, A.H.; Rather, M.A. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb. Pathog. 2019, 134, 103580. [Google Scholar] [CrossRef] [PubMed]
- Yap, P.S.X.; Yiap, B.C.; Ping, H.C.; Lim, S.H.E. Essential Oils, A New Horizon in Combating Bacterial Antibiotic Resistance. Open Microbiol. J. 2014, 8, 6–14. [Google Scholar] [CrossRef]
- Ouedrhiri, W.; Balouiri, M.; Bouhdid, S.; Moja, S.; Chahdi, F.O.; Taleb, M.; Greche, H. Mixture design of Origanum compactum, Origanum majorana and Thymus serpyllum essential oils: Optimization of their antibacterial effect. Ind. Crops Prod. 2016, 89, 1–9. [Google Scholar] [CrossRef]
- da Silva, B.D.; Bernardes, P.C.; Pinheiro, P.F.; Fantuzzi, E.; Roberto, C.D. Chemical composition, extraction sources and action mechanisms of essential oils: Natural preservative and limitations of use in meat products. Meat Sci. 2021, 176, 108463. [Google Scholar] [CrossRef]
- Falleh, H.; Ben Jemaa, M.; Saada, M.; Ksouri, R. Essential oils: A promising eco-friendly food preservative. Food Chem. 2020, 330, 127268. [Google Scholar] [CrossRef]
- Gutierrez, J.; Barry-Ryan, C.; Bourke, P. Antimicrobial activity of plant essential oils using food model media: Efficacy, synergistic potential and interactions with food components. Food Microbiol. 2009, 26, 142–150. [Google Scholar] [CrossRef]
- Nazer, A.I.; Kobilinsky, A.; Tholozan, J.-L.; Dubois-Brissonnet, F. Combinations of food antimicrobials at low levels to inhibit the growth of Salmonella sv. Typhimurium: A synergistic effect? Food Microbiol. 2005, 22, 391–398. [Google Scholar] [CrossRef]
- Fadil, M.; Fikri-Benbrahim, K.; Rachiq, S.; Ihssane, B.; Lebrazi, S.; Chraibi, M.; Haloui, T.; Farah, A. Combined treatment of Thymus vulgaris L., Rosmarinus officinalis L. and Myrtus communis L. essential oils against Salmonella typhimurium: Optimization of antibacterial activity by mixture design methodology. Eur. J. Pharm. Biopharm. 2018, 126, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Guleria, S.; Razdan, V.K.; Babu, V. Synergistic antioxidant and antimicrobial activities of essential oils of some selected medicinal plants in combination and with synthetic compounds. Ind. Crops Prod. 2020, 154, 112569. [Google Scholar] [CrossRef]
- Langeveld, W.T.; Veldhuizen, E.J.A.; Burt, S.A. Synergy between essential oil components and antibiotics: A review. Crit. Rev. Microbiol. 2014, 40, 76–94. [Google Scholar] [CrossRef]
- Maia, E.C.R.; Borsato, D.; Moreira, I.; Spacino, K.R.; Rodrigues, P.R.P.; Gallina, A.L. Study of the biodiesel B100 oxidative stability in mixture with antioxidants. Fuel Process. Technol. 2011, 92, 1750–1755. [Google Scholar] [CrossRef]
- Nunes Filho, R.C.; Galvan, D.; Effting, L.; Terhaag, M.M.; Yamashita, F.; Benassi, M.d.T.; Spinosa, W.A. Effects of adding spices with antioxidants compounds in red ale style craft beer: A simplex-centroid mixture design approach. Food Chem. 2021, 365, 130478. [Google Scholar] [CrossRef]
- Orives, J.R.; Galvan, D.; Coppo, R.L.; Rodrigues, C.H.F.; Angilelli, K.G.; Borsato, D. Multiresponse optimisation on biodiesel obtained through a ternary mixture of vegetable oil and animal fat: Simplex-centroid mixture design application. Energy Convers. Manag. 2014, 79, 398–404. [Google Scholar] [CrossRef]
- Chraibi, M.; Fadil, M.; Farah, A.; Lebrazi, S.; Fikri-Benbrahim, K. Antimicrobial combined action of Mentha pulegium, Ormenis mixta and Mentha piperita essential oils against S. aureus, E. coli and C. tropicalis: Application of mixture design methodology. LWT 2021, 145, 111352. [Google Scholar] [CrossRef]
- Gonçalves, D.C.; Tebaldi de Queiroz, V.; Costa, A.V.; Lima, W.P.; Belan, L.L.; Moraes, W.B.; Pontes Póvoa Iorio, N.L.; Corrêa Póvoa, H.C. Reduction of Fusarium wilt symptoms in tomato seedlings following seed treatment with Origanum vulgare L. essential oil and carvacrol. Crop Prot. 2021, 141, 105487. [Google Scholar] [CrossRef]
- Barros, F.A.P.; Radünz, M.; Scariot, M.A.; Camargo, T.M.; Nunes, C.F.P.; de Souza, R.R.; Gilson, I.K.; Hackbart, H.C.S.; Radünz, L.L.; Oliveira, J.V.; et al. Efficacy of encapsulated and non-encapsulated thyme essential oil (Thymus vulgaris L.) in the control of Sitophilus zeamais and its effects on the quality of corn grains throughout storage. Crop Prot. 2022, 153, 105885. [Google Scholar] [CrossRef]
- Moazeni, M.; Davari, A.; Shabanzadeh, S.; Akhtari, J.; Saeedi, M.; Mortyeza-Semnani, K.; Abastabar, M.; Nabili, M.; Moghadam, F.H.; Roohi, B.; et al. In Vitro antifungal activity of Thymus vulgaris essential oil nanoemulsion. J. Herb. Med. 2021, 28, 100452. [Google Scholar] [CrossRef]
- Ajayi, E.O.; Sadimenko, A.P.; Afolayan, A.J. GC–MS evaluation of Cymbopogon citratus (DC) Stapf oil obtained using modified hydrodistillation and microwave extraction methods. Food Chem. 2016, 209, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Aumeeruddy-Elalfi, Z.; Gurib-Fakim, A.; Mahomoodally, M.F. Chemical composition, antimicrobial and antibiotic potentiating activity of essential oils from 10 tropical medicinal plants from Mauritius. J. Herb. Med. 2016, 6, 88–95. [Google Scholar] [CrossRef]
- Kachkoul, R.; Benjelloun Touimi, G.; Bennani, B.; El Habbani, R.; El Mouhri, G.; Mohim, M.; Sqalli Houssaini, T.; Chebaibi, M.; Koulou, A.; Lahrichi, A. The Synergistic Effect of Three Essential Oils against Bacteria Responsible for the Development of Lithiasis Infection: An Optimization by the Mixture Design. Evid.-Based Complement. Altern. Med. 2021, 2021, 1–17. [Google Scholar] [CrossRef]
- Kalemba, D.; Kunicka, A. Antibacterial and Antifungal Properties of Essential Oils. Curr. Med. Chem. 2003, 10, 813–829. [Google Scholar] [CrossRef]
- Lara, V.M.; Carregaro, A.B.; Santurio, D.F.; Sá, M.F.d.; Santurio, J.M.; Alves, S.H. Antimicrobial Susceptibility of Escherichia coli Strains Isolated from Alouatta spp. Feces to Essential Oils. Evid.-Based Complement. Altern. Med. 2016, 2016, 1–4. [Google Scholar] [CrossRef]
- Boskovic, M.; Djordjevic, J.; Glisic, M.; Ciric, J.; Janjic, J.; Zdravkovic, N.; Krnjaic, D.; Baltic, M.Z. The effect of oregano (Origanum vulgare) essential oil on four Salmonella serovars and shelf life of refrigerated pork meat packaged under vacuum and modified atmosphere. J. Food Process. Preserv. 2020, 44, e14311. [Google Scholar] [CrossRef]
- Pesavento, G.; Calonico, C.; Bilia, A.R.; Barnabei, M.; Calesini, F.; Addona, R.; Mencarelli, L.; Carmagnini, L.; Di Martino, M.C.; Lo Nostro, A. Antibacterial activity of Oregano, Rosmarinus and Thymus essential oils against Staphylococcus aureus and Listeria monocytogenes in beef meatballs. Food Control 2015, 54, 188–199. [Google Scholar] [CrossRef]
- Marinelli, L.; Di Stefano, A.; Cacciatore, I. Carvacrol and its derivatives as antibacterial agents. Phytochem. Rev. 2018, 17, 903–921. [Google Scholar] [CrossRef]
- de Carvalho, R.J.; de Souza, G.T.; Honório, V.G.; de Sousa, J.P.; da Conceição, M.L.; Maganani, M.; de Souza, E.L. Comparative inhibitory effects of Thymus vulgaris L. essential oil against Staphylococcus aureus, Listeria monocytogenes and mesophilic starter co-culture in cheese-mimicking models. Food Microbiol. 2015, 52, 59–65. [Google Scholar] [CrossRef]
- Lemos, M.F.; Lemos, M.F.; Pacheco, H.P.; Guimarães, A.C.; Fronza, M.; Endringer, D.C.; Scherer, R. Seasonal variation affects the composition and antibacterial and antioxidant activities of Thymus vulgaris. Ind. Crops Prod. 2017, 95, 543–548. [Google Scholar] [CrossRef]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef]
- Ortega-Ramirez, L.A.; Silva-Espinoza, B.A.; Vargas-Arispuro, I.; Gonzalez-Aguilar, G.A.; Cruz-Valenzuela, M.R.; Nazzaro, F.; Ayala-Zavala, J.F. Combination of Cymbopogon citratus and Allium cepa essential oils increased antibacterial activity in leafy vegetables. J. Sci. Food Agric. 2017, 97, 2166–2173. [Google Scholar] [CrossRef]
- Naik, M.I.; Fomda, B.A.; Jaykumar, E.; Bhat, J.A. Antibacterial activity of lemongrass (Cymbopogon citratus) oil against some selected pathogenic bacterias. Asian Pac. J. Trop. Med. 2010, 3, 535–538. [Google Scholar] [CrossRef]
- De Silva, B.C.J.; Jung, W.-G.; Hossain, S.; Wimalasena, S.H.M.P.; Pathirana, H.N.K.S.; Heo, G.-J. Antimicrobial property of lemongrass (Cymbopogon citratus) oil against pathogenic bacteria isolated from pet turtles. Lab. Anim. Res. 2017, 33, 84. [Google Scholar] [CrossRef]
- Nakamura, S.; Hatanaka, A. Green-Leaf-Derived C6-Aroma Compounds with Potent Antibacterial Action That Act on Both Gram-Negative and Gram-Positive Bacteria. J. Agric. Food Chem. 2002, 50, 7639–7644. [Google Scholar] [CrossRef]
- Pei, R.; Zhou, F.; Ji, B.; Xu, J. Evaluation of Combined Antibacterial Effects of Eugenol, Cinnamaldehyde, Thymol, and Carvacrol against E. coli with an Improved Method. J. Food Sci. 2009, 74, M379–M383. [Google Scholar] [CrossRef]
- Gallucci, M.N.; Oliva, M.; Casero, C.; Dambolena, J.; Luna, A.; Zygadlo, J.; Demo, M. Antimicrobial combined action of terpenes against the food-borne microorganisms Escherichia coli, Staphylococcus aureus and Bacillus cereus. Flavour Fragr. J. 2009, 24, 348–354. [Google Scholar] [CrossRef]
- Nowak, A.; Kalemba, D.; Krala, L.; Piotrowska, M.; Czyzowska, A. The effects of thyme (Thymus vulgaris) and rosemary (Rosmarinus officinalis) essential oils on Brochothrix thermosphacta and on the shelf life of beef packaged in high-oxygen modified atmosphere. Food Microbiol. 2012, 32, 212–216. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, B.K.; Valdramidis, V.P.; O’ Donnell, C.P.; Muthukumarappan, K.; Bourke, P.; Cullen, P.J. Application of Natural Antimicrobials for Food Preservation. J. Agric. Food Chem. 2009, 57, 5987–6000. [Google Scholar] [CrossRef]
- Cao, Y.; Zhou, D.; Zhang, X.; Xiao, X.; Yu, Y.; Li, X. Synergistic effect of citral and carvacrol and their combination with mild heat against Cronobacter sakazakii CICC 21544 in reconstituted infant formula. LWT 2021, 138, 110617. [Google Scholar] [CrossRef]
- CDC. Salmonella Outbreak Linked to Raw Frozen Breaded Stuffed Chicken Products. Available online: https://www.cdc.gov/salmonella/enteritidis-06-21/index.html (accessed on 4 August 2022).
- CDC. 2019 AR Threats Report. Available online: https://www.cdc.gov/drugresistance/biggest-threats.html (accessed on 4 August 2022).
- FDA. Outbreak Investigation of E. coli O157:H7—Spinach (November 2021). Available online: https://www.fda.gov/food/outbreaks-foodborne-illness/outbreak-investigation-e-coli-o157h7-spinach-november-2021 (accessed on 4 August 2022).
- Rajakrishnan, S.; Hafiz Ismail, M.Z.; Jamalulail, S.H.; Alias, N.; Ismail, H.; Md Taib, S.; Cheng, L.S.; Zakiman, Z.; Ong, R.; Silverdurai, R.R.; et al. Investigation of a foodborne outbreak at a mass gathering in Petaling District, Selangor, Malaysia. West. Pacific Surveill. Response J. 2022, 13, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Jugreet, B.S.; Suroowan, S.; Rengasamy, R.R.K.; Mahomoodally, M.F. Chemistry, bioactivities, mode of action and industrial applications of essential oils. Trends Food Sci. Technol. 2020, 101, 89–105. [Google Scholar] [CrossRef]
- Sardasht, A.; Tamandani, A.K. Chemical composition of essential oil from Semenovia suffruticosa and their antimicrobial’s effects in drinking water. Jordan J. Pharm. Sci. 2021, 14, 37–47. [Google Scholar]
- da Silva, B.D.; do Rosário, D.K.A.; Weitz, D.A.; Conte-Junior, C.A. Essential oil nanoemulsions: Properties, development, and application in meat and meat products. Trends Food Sci. Technol. 2022, 121, 1–13. [Google Scholar] [CrossRef]
- Chagas, E.C.; Majolo, C.; Monteiro, P.C.; Oliveira, M.R.d.; Gama, P.E.; Bizzo, H.R.; Chaves, F.C.M. Composition of essential oils of Mentha species and their antimicrobial activity against Aeromonas spp. J. Essent. Oil Res. 2020, 32, 209–215. [Google Scholar] [CrossRef]
- De Oliveira, M.I.B.; Brandão, F.R.; Da Silva, M.J.R.; Rosa, M.C.; Farias, C.F.S.; Dos Santos, D.S.; Majolo, C.; Oliveira, M.R.d.; Chaves, F.C.M.; Bizzo, H.R.; et al. In Vitro anthelmintic efficacy of essential oils in the control of Neoechinorhynchus buttnerae, an endoparasite of Colossoma macropomum. J. Essent. Oil Res. 2021, 33, 509–522. [Google Scholar] [CrossRef]
- Cornell, J.A. Experiments with Mixtures; Wiley Series in Probability and Statistics; Wiley: New York, NY, USA, 2002; ISBN 9780471393672. [Google Scholar]
- Scheffé, H. The Simplex-Centroid Design for Experiments with Mixtures. J. R. Stat. Soc. Ser. B 1963, 25, 235–251. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing; CLSI: Pennsylvania, PA, USA, 2021. [Google Scholar]
- Yang, Z.; He, Q.; Ismail, B.B.; Hu, Y.; Guo, M. Ultrasonication induced nano-emulsification of thyme essential oil: Optimization and antibacterial mechanism against Escherichia coli. Food Control 2022, 133, 108609. [Google Scholar] [CrossRef]
E. coli MIC | Sum of Squares | Degrees of freedom | Mean Square | F-value | p-value | R2 | R2adj. * |
Model | 0.026249 | 5 | 0.00525 | 20.83859 | 0.000995 | ||
Total Error | 0.001512 | 6 | 0.000252 | ||||
Lack of Fit | 0.001095 | 4 | 0.000274 | 1.31386 | 0.475324 | 0.9456 | 0.9002 |
Pure Error | 0.000417 | 2 | 0.000208 | ||||
Total Adjusted | 0.02776 | 11 | 0.002524 | ||||
S. aureus MIC | Sum of Squares | Degrees of freedom | Mean Square | F-value | p-value | R2 | R2adj. * |
Model | 0.004934 | 5 | 0.000987 | 2.979 | 0.108212 | ||
Total Error | 0.001988 | 6 | 0.000331 | ||||
Lack of Fit | 0.001987 | 4 | 0.000497 | 1490.163 | 0.000671 | 0.7128 | 0.4735 |
Pure Error | 0.000001 | 2 | 0 | ||||
Total Adjusted | 0.006921 | 11 | 0.000629 | ||||
S. enteritidis MIC | Sum of Squares | Degrees of freedom | Mean Square | F-value | p-value | R2 | R2adj. * |
Model | 0.112971 | 5 | 0.022594 | 14.03543 | 0.002927 | ||
Total Error | 0.009659 | 6 | 0.00161 | ||||
Lack of Fit | 0.009242 | 4 | 0.002311 | 11.09053 | 0.084416 | 0.9212 | 0.8556 |
Pure Error | 0.000417 | 2 | 0.000208 | ||||
Total Adjusted | 0.12263 | 11 | 0.011148 | ||||
E. coli MBC | Sum of Squares | Degrees of freedom | Mean Square | F-value | p-value | R2 | R2adj. * |
Model | 0.026249 | 5 | 0.00525 | 20.83859 | 0.000995 | ||
Total Error | 0.001512 | 6 | 0.000252 | ||||
Lack of Fit | 0.001095 | 4 | 0.000274 | 1.31386 | 0.475324 | 0.9456 | 0.9002 |
Pure Error | 0.000417 | 2 | 0.000208 | ||||
Total Adjusted | 0.02776 | 11 | 0.002524 | ||||
S. aureus MBC | Sum of Squares | Degrees of freedom | Mean Square | F-value | p-value | R2 | R2adj. * |
Model | 0.00622 | 5 | 0.001244 | 1.641339 | 0.280675 | ||
Total Error | 0.004548 | 6 | 0.000758 | ||||
Lack of Fit | 0.002881 | 4 | 0.00072 | 0.864343 | 0.598648 | 0.5777 | 0.2257 |
Pure Error | 0.001667 | 2 | 0.000833 | ||||
Total Adjusted | 0.010768 | 11 | 0.000979 | ||||
S. enteritidis MBC | Sum of Squares | Degrees of freedom | Mean Square | F-value | p-value | R2 | R2adj. * |
Model | 0.106867 | 5 | 0.021373 | 4.81933 | 0.040813 | ||
Total Error | 0.02661 | 6 | 0.004435 | ||||
Lack of Fit | 0.026193 | 4 | 0.006548 | 31.43148 | 0.031072 | 0.8006 | 0.6345 |
Pure Error | 0.000417 | 2 | 0.000208 | ||||
Total Adjusted | 0.133477 | 11 | 0.012134 |
E. coli | S. aureus | S. enteritidis | |||||||
---|---|---|---|---|---|---|---|---|---|
MIC | Estimation € | SE † | p-Value | Estimation | SE † | p-Value | Estimation | SE † | p-Value |
ORE 1 | 0.012896 | 0.015265 | 0.430588 | 0.039735 | 0.017504 | 0.063661 | 0.011105 | 0.038586 | 0.783187 |
THY 1 | 0.050495 | 0.015265 | 0.016245 ** | 0.049711 | 0.017504 | 0.029566 * | 0.033339 | 0.038586 | 0.420770 |
LG 1 | 0.192025 | 0.015265 | 0.000015 *** | 0.106495 | 0.017504 | 0.000896 *** | 0.376076 | 0.038586 | 0.000067 *** |
ORE0.5 + THY0.5 | −0.007719 | 0.068055 | 0.913390 | −0.075322 | 0.078039 | 0.371723 | 0.172999 | 0.172033 | 0.353418 |
ORE0.5 + LG0.5 | −0.225688 | 0.068055 | 0.016079 ** | −0.060932 | 0.078039 | 0.464605 | −0.645440 | 0.172033 | 0.009489 ** |
THY0.5 + LG0.5 | −0.300477 | 0.068055 | 0.004494 ** | −0.039770 | 0.078039 | 0.628516 | −0.488530 | 0.172033 | 0.029577 * |
E. coli | S. aureus | S. enteritidis | |||||||
MBC | Estimation € | SE † | p-Value | Estimation | SE † | p-Value | Estimation | SE † | p-Value |
ORE 1 | 0.012896 | 0.015265 | 0.430588 | 0.086091 | 0.026477 | 0.017433 ** | 0.018346 | 0.064046 | 0.784173 |
THY 1 | 0.050495 | 0.015265 | 0.016245 ** | 0.104938 | 0.026477 | 0.007424 * | 0.058587 | 0.064046 | 0.395587 |
LG 1 | 0.192025 | 0.015265 | 0.000015 *** | 0.104938 | 0.026477 | 0.007424 * | 0.374725 | 0.064046 | 0.001100 ** |
ORE0.5 + THY0.5 | −0.007719 | 0.068055 | 0.913390 | −0.188111 | 0.118046 | 0.162149 | 0.018773 | 0.285542 | 0.949716 |
ORE0.5 + LG0.5 | −0.225688 | 0.068055 | 0.016079 ** | −0.188111 | 0.118046 | 0.162149 | −0.256087 | 0.285542 | 0.404348 |
THY0.5 + LG0.5 | −0.300477 | 0.068055 | 0.004494** | 0.051866 | 0.118046 | 0.675775 | −0.622240 | 0.285542 | 0.072145 |
MIC (%)(n = 6) * | MBC (%)(n = 6) * | |||||||
---|---|---|---|---|---|---|---|---|
Predicted Value | Observed Value | t-Test (%) | Levene’s Test (%) | Predicted Value | Observed Value | t-Test (%) | Levene’s Test (%) | |
E. coli | 0.014 | 0.013 | 58.06 | 48.38 | 0.021 | 0.025 | 5.33 | 42.27 |
S. aureus | 0.034 | 0.031 | 64.94 | 15.18 | 0.051 | 0.075 | 7.56 | 38.81 |
S. enteritidis | 0.014 | 0.021 | 6.62 | 6.24 | 0.036 | 0.035 | 86.18 | 15.18 |
Experiments * | MIC (%) | MBC (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
ORE | THY | LG | S. enteritidis | E. coli | S. aureus | S. enteritidis | E. coli | S. aureus | |
1 | 1 | 0 | 0 | 0.0031 | 0.0125 | 0.05 | 0.0125 | 0.0125 | 0.1 |
2 | 0 | 1 | 0 | 0.025 | 0.05 | 0.05 | 0.025 | 0.05 | 0.1 |
3 | 0 | 0 | 1 | 0.4 | 0.2 | 0.1 | 0.4 | 0.2 | 0.1 |
4 | 0.5 | 0.5 | 0 | 0.05 | 0.025 | 0.025 | 0.05 | 0.025 | 0.05 |
5 | 0.5 | 0 | 0.5 | 0.05 | 0.05 | 0.05 | 0.2 | 0.05 | 0.05 |
6 | 0 | 0.5 | 0.5 | 0.1 | 0.05 | 0.05 | 0.1 | 0.05 | 0.1 |
7 | 0.33 | 0.33 | 0.33 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
8 | 0.33 | 0.33 | 0.33 | 0.025 | 0.025 | 0.05 | 0.025 | 0.025 | 0.05 |
9 | 0.33 | 0.33 | 0.33 | 0.05 | 0.025 | 0.025 | 0.05 | 0.025 | 0.1 |
10 | 0.67 | 0.17 | 0.17 | 0.025 | 0.0125 | 0.0125 | 0.025 | 0.0125 | 0.0125 |
11 | 0.17 | 0.67 | 0.17 | 0.05 | 0.025 | 0.05 | 0.1 | 0.025 | 0.1 |
12 | 0.17 | 0.17 | 0.67 | 0.05 | 0.05 | 0.1 | 0.05 | 0.05 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres Neto, L.; Monteiro, M.L.G.; Machado, M.A.M.; Galvan, D.; Conte Junior, C.A. An Optimization of Oregano, Thyme, and Lemongrass Essential Oil Blend to Simultaneous Inactivation of Relevant Foodborne Pathogens by Simplex–Centroid Mixture Design. Antibiotics 2022, 11, 1572. https://doi.org/10.3390/antibiotics11111572
Torres Neto L, Monteiro MLG, Machado MAM, Galvan D, Conte Junior CA. An Optimization of Oregano, Thyme, and Lemongrass Essential Oil Blend to Simultaneous Inactivation of Relevant Foodborne Pathogens by Simplex–Centroid Mixture Design. Antibiotics. 2022; 11(11):1572. https://doi.org/10.3390/antibiotics11111572
Chicago/Turabian StyleTorres Neto, Luiz, Maria Lúcia Guerra Monteiro, Maxsueli Aparecida Moura Machado, Diego Galvan, and Carlos Adam Conte Junior. 2022. "An Optimization of Oregano, Thyme, and Lemongrass Essential Oil Blend to Simultaneous Inactivation of Relevant Foodborne Pathogens by Simplex–Centroid Mixture Design" Antibiotics 11, no. 11: 1572. https://doi.org/10.3390/antibiotics11111572
APA StyleTorres Neto, L., Monteiro, M. L. G., Machado, M. A. M., Galvan, D., & Conte Junior, C. A. (2022). An Optimization of Oregano, Thyme, and Lemongrass Essential Oil Blend to Simultaneous Inactivation of Relevant Foodborne Pathogens by Simplex–Centroid Mixture Design. Antibiotics, 11(11), 1572. https://doi.org/10.3390/antibiotics11111572