Qualitative Characterization and Antifungal Activity of Romanian Honey and Propolis
Abstract
:1. Introduction
2. Results
2.1. Physicochemical Characterization of Honey and Propolis Samples
2.2. Antifungal Activity of Honey and Aqueous Propolis Extracts
2.3. Minimum Inhibitory Concentration (MIC)
2.4. Statistical Analysis
3. Discussion
4. Materials and Methods
4.1. Honey and Propolis Samples
4.2. Physicochemical Analysis for Honey
4.2.1. Water Content (Moisture) of Honey
4.2.2. pH Value and Free Acidity of Honey
4.2.3. Electrical Conductivity of Honey
4.2.4. The Water Activity (aw)
4.2.5. The Value in Pfund Scale for Color of Honey
4.2.6. The Ash Content in Honey
4.2.7. Determination of HMF in Honey
4.2.8. Determination of Cu, Pb and Cd
4.2.9. Determination of Total Phenolic Content (TPC)
4.2.10. Total Flavonoid Content (TFC)
4.2.11. DPPH Radical Scavenging Activity
4.3. Physicochemical Analysis for Propolis
4.3.1. Moisture
4.3.2. Ash (Total Mineral Substances)
4.3.3. Wax (Extractable Substances)
4.3.4. Qualitative Identification of Flavones’ Presence
4.3.5. Identification of Aromatic Acids
4.3.6. Quantification of the Phenolic Compounds
4.3.7. Determination of Flavonoid Content
4.3.8. The Antioxidant Activity of Propolis
4.4. Antifungal Activity
4.4.1. Micro-Organisms and Culture Conditions
4.4.2. Determination of the Antifungal Properties—Agar Disk Diffusion Method
4.4.3. Minimum Inhibitory Concentration (MIC) of the Honey and Propolis Samples
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Antonescu, C.; Mateescu, C. Environmental pollution and its effects on honey quality. Roum. Biotechnol. Lett. 2001, 6, 371–379. [Google Scholar]
- Bogdanov, S.; Kilchenmann, V.; Fluri, P.; Buhler, U.; Lavanchy, P. Influence of organic acids and components of essential oils on honey taste. Am. Bee J. 1999, 139, 61–63. [Google Scholar]
- Eteraf-Oskouei, T.; Najafi, M. Traditional and modern uses of natural honey in human diseases: A review. Iran. J. Basic Med. Sci. 2013, 16, 731–742. [Google Scholar]
- Manjo, G. The Healing Hand: Man and Wound in the Ancient World; Harvard University Press: Cambridge, MA, USA, 1975; p. 48. [Google Scholar]
- Yilmaz, H.; Yavuz, O. Content of some trace metals in honey from south-eastern Anatolia. Food Chem. 1999, 65, 475–476. [Google Scholar] [CrossRef]
- Dadant and Sons. The Hive and the Honey Bee; Dadant and Sons: Hamilton, IL, USA, 1992; p. 1324. [Google Scholar]
- Sforcin, J.M. Biological properties and therapeutic applications of propolis. Phytother. Res. 2016, 30, 894–905. [Google Scholar] [CrossRef]
- Mărghitaş, L.A. Bees and Their Products; Ceres Publishing: Bucharest, Romania, 2008; pp. 280–282.
- Ali, A.M.; Kunugi, H. Apitherapy for age-related skeletal muscle dysfunction (sarcopenia): A review on the effects of royal jelly, propolis, and bee pollen. Foods 2020, 9, 1362. [Google Scholar] [CrossRef]
- Zullkiflee, N.; Taha, H.; Usman, A. Propolis: Its Role and Efficacy in Human Health and Diseases. Molecules 2022, 27, 6120. [Google Scholar] [CrossRef]
- Hossain, R.; Quispe, C.; Khan, R.A.; Saikat, A.S.M.; Ray, P.; Ongalbek, D.; Yeskaliyeva, B.; Jain, D.; Smeriglio, A.; Trombetta, D.; et al. Propolis: An update on its chemistry and pharmacological applications. Chin. Med. 2022, 17, 100. [Google Scholar] [CrossRef]
- Rocha, B.A.; Bueno, P.C.; Vaz, M.M.; Nascimento, A.P.; Ferreira, N.U.; Moreno, G.d.P.; Rodrigues, M.R.; Costa-Machado, A.R.; Barizon, E.A.; Campos, J.C.; et al. Evaluation of a Propolis Water Extract Using a Reliable RP-HPLC Methodology and In Vitro and In Vivo Efficacy and Safety Characterisation. Evid. Based Complement. Alternat. Med. 2013, 2013, 670451. [Google Scholar] [CrossRef] [Green Version]
- Cara, M.C.; Dumitrel, G.-A.; Glevitzky, M.; Perju, D. Stability of tetracycline residues in honey. J. Serb. Chem. Soc. 2012, 77, 1–8. [Google Scholar]
- Cooper, R.A.; Molan, P.C.; Harding, K.G. The sensitivity to honey of Gram-positive cocci of clinical significance isolated from wounds. J. Appl. Microbiol. 2002, 93, 857–863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vică, M.L.; Glevitzky, M.; Dumitrel, G.A.; Junie, L.M.; Popa, M. Antibacterial activity of different natural honeys from Transylvania, Romania. J. Environ. Sci. Health. 2014, 49, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Junie, L.M.; Vică, M.L.; Glevitzky, M.; Matei, H.V. Physico-chemical Characterization and Antibacterial Activity of Different Types of Honey Tested on Strains Isolated from Hospitalized Patients. J. Apic. Sci. 2016, 60, 5–18. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, K.; Khalil, A.T.; Somayya, R.; Khan, F.N.; Shah, A.R.; Ovais, M.; Shinwari, Z.K. Potential antifungal activity of different honey brands from Pakistan: A quest for natural remedy. Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 18–23. [Google Scholar] [CrossRef]
- Ceyhan, N.; Ugur, A. Investigation of in vitro antimicrobial activity of honey. Riv Biol. 2001, 94, 363–371. [Google Scholar]
- Toreti, V.C.; Sato, H.H.; Pastore, G.M.; Park, Y.K. Recent progress of propolis for its biological and chemical compositions and its botanical origin. Evid. Based Complement Altern. Med. 2013, 2013, 697390. [Google Scholar] [CrossRef]
- Basnet, P.; Matsuno, T.; Neidlein, R. Potent free radical scavenging activity of propol isolated from Brazilian propolis. Z. Naturforsch. C J. Biosci. 1997, 52, 828–833. [Google Scholar] [CrossRef]
- Park, Y.K.; Koo, M.H.; Abreu, J.A.S.; Ikegaki, M.; Cury, J.A.; Rosalen, P.L. Antimicrobial activity of propolis on oral microorganisms. Curr. Microbiol. 1998, 36, 24–28. [Google Scholar] [CrossRef]
- Gekker, G.; Hu, S.; Spivak, M.; Lokensgard, J.; Peterson, P. Anti-HIV-1 activity of propolis in CD4(+) lymphocyte and microglial cell cultures. J. Ethnopharmacol. 2005, 102, 158–163. [Google Scholar] [CrossRef]
- Oliveira, A.V.; Ferreira, A.L.; Nunes, S.; Dandlen, S.A.; Miguel, D.G.D.G.; Faleiro, M.L. Antibacterial activity of propolis extracts from the south of Portugal. Pak. J. Pharm. Sci. 2017, 30, 1–9. [Google Scholar]
- Haddadin, M.; Nazer, I.; Jamal, S.; Raddad, A.; Robinson, R. Efect of propolis on two bacterial species with probiotic potential. Pak. J. Nutr. 2008, 7, 391–394. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, J.F.M.; de Souza, M.C.; Matta, S.R.; de Andrade, M.R.; Vidal, F.V.N. Correlation analysis between phenolic levels of Brazilian propolis extracts and their antimicrobial and antioxidant activities. Food Chem. 2006, 99, 431–435. [Google Scholar] [CrossRef]
- Vică, M.L.; Glevitzky, I.; Glevitzky, M.; Siserman, C.V.; Matei, H.V.; Teodoru, C.A. Antibacterial Activity of Propolis Extracts from the Central Region of Romania against Neisseria gonorrhoeae. Antibiotics 2021, 10, 689. [Google Scholar] [CrossRef] [PubMed]
- Vică, M.L.; Glevitzky, M.; Heghedus-Mîndru, R.C.; Glevitzky, I.; Matei, H.V.; Bâlici, Ș.; Popa, M.; Teodoru, C.A. Potential Effects of Romanian Propolis Extracts against Pathogen Strains. Int. J. Environ. Res. Public Health 2022, 19, 2640. [Google Scholar] [CrossRef] [PubMed]
- Hassanien, A.A.; Shaker, E.M.; El-Sharkawy, E.E.; Elsherif, W.M. Antifungal and antitoxin effects of propolis and its nanoemulsion formulation against Aspergillus flavus isolated from human sputum and milk powder samples. Vet. World 2021, 14, 2306–2312. [Google Scholar] [CrossRef] [PubMed]
- Council Directive 2001/110/EC of 20 December 2001 relating to honey. Off. J. Eur. Communities L 2002, 10, 47–52.
- Romanian Standard SR 784-1; Honey. Part 1: Quality Requirements at Delivery by Producers. Romanian Standards Association, ASRO: Bucharest, Romania, 2009.
- Buchta, V.; Černý, J.; Opletalová, V. In vitro antifungal activity of propolis samples of Czech and Slovak origin. Cent. Eur. J. Biol. 2011, 6, 160–166. [Google Scholar] [CrossRef]
- Ezz El-Din Ibrahim, M.; Alqurashi, R.M. Anti-fungal and antioxidant properties of propolis (bee glue) extracts. Int. J. Food Microbiol. 2022, 361, 109463. [Google Scholar] [CrossRef]
- Inokuchi, Y.; Shimazawa, M.; Nakajima, Y.; Suemori, S.; Mishima, S.; Hara, H. Brazilian Green Propolis Protects against Retinal Damage In Vitro and In Vivo. Evid. Based Complement. Altern. Med. 2006, 3, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Bazmandegan, G.; Boroushaki, M.T.; Shamsizadeh, A.; Ayoobi, F.; Hakimizadeh, E.; Allahtavakoli, M. Brown propolis at-tenuates cerebral ischemia-induced oxidative damage via affecting antioxidant enzyme system in mice. Biomed. Pharmacother. 2017, 85, 503–510. [Google Scholar] [CrossRef]
- Farooqui, T.; A Farooqui, A. Molecular mechanism underlying the therapeutic activities of propolis: A critical review. Curr. Nutr. Food Sci. 2010, 6, 186–199. [Google Scholar] [CrossRef]
- Baloš, M.; Popov, N.; Vidakovic, K.S.; Ljubojević, D.; Pelić, M.; Mihaljev, Ž.; Jakšić, S. Electrical conductivity and acidity of honey. Arch. Vet. Med. 2018, 11, 91–101. [Google Scholar] [CrossRef]
- Baloš, M.; Jakšić, S.; Popov, N.; Mihaljev, Ž.; Ljubojević, D. Comparative study of water content in honey produced in different years. Arch. Vet. Med. 2019, 12, 43–53. [Google Scholar] [CrossRef]
- Chirife, J.; Zamora, M.C.; Motto, A. The correlation between water activity and moisture in honey: Fundamental aspects and application to Argentine honeys. J. Food Eng. 2006, 72, 287–292. [Google Scholar] [CrossRef] [Green Version]
- Popescu, N.; Meica, S. Bee Products and Their Chemical Analysis; Diacon CORESI Press: Bucharest, Romanian, 1997; p. 125. (In Romanian) [Google Scholar]
- Hamid, S.; Saeed, M.A. Bee keeping. Hamdard Med. 1991, 34, 94–95. [Google Scholar]
- Sheikh, D.; Uz-Zaman, S.; Baqir Naqvi, S.; Rafi Sheikh, M.; Ghulam, A. Studies on the antimicrobial activity of honey. Pak. J. Pharm. Sci. 1995, 8, 51–62. [Google Scholar] [PubMed]
- Romanian Standard SR 784-3; Honey. Part 3: Analysis Methods. Romanian Standards Association, ASRO: Bucharest, Romania, 2009.
- Bogdanov, S. Bee Product Science: Honey Composition. 2019. Available online: https://cdn.imagearchive.com/aussiehomebrewer/data/attach/46/46929-CompositionHoney.20105942.pdf (accessed on 26 July 2022).
- Lianda, R.; Sant’Ana, L.; Echevarria, A.; Nora, C.R. Antioxidant Activity and Phenolic Composition of Brazilian Honeys and their Extracts. J. Braz. Chem. Soc. 2012, 23, 618–627. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, P.M.; Dhillion, S.S. Diversity and traditional knowledge concerning wild food species in a locally managed forest in Nepal. Agrofor. Syst. 2006, 66, 55–63. [Google Scholar] [CrossRef]
- Ahn, M.R.; Kumazawa, S.; Usui, Y.; Nakamura, J.; Matsuka, M.; Zhu, F.; Nakayama, T. Antioxidant activity and constituents of propolis collected in various areas of China. Food Chem. 2007, 101, 1383–1392. [Google Scholar] [CrossRef]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef] [Green Version]
- Popa, M.; Vică, M.; Axinte, R.; Glevitzky, M.; Varvara, S. Correlations on the microbiological and physical-chemical characteristics of different types of honey. J. Environ. Prot. Ecol. 2009, 10, 1113–1121. [Google Scholar]
- Vică, M.L.; Glevitzky, M.; Tit, D.M.; Behl, T.; Heghedus-Mîndru, R.C.; Zaha, D.C.; Ursu, F.; Popa, M.; Glevitzky, I.; Bungau, S. The antimicrobial activity of honey and propolis extracts from the central region of Romania. Food Biosci. 2021, 41, 101014. [Google Scholar] [CrossRef]
- Anyanwu, C.U. Investigation of in vitro antifungal activity of honey. J. Med. Plant Res. 2012, 6, 3512–3516. [Google Scholar] [CrossRef]
- Moussa, A.; Noureddine, D.; Saad, A.; Abdelmelek, M.; Abdelkader, B. Antifungal activity of four honeys of different types from Algeria against pathogenic yeast: Candida albicans and Rhodotorula sp. Asian Pac. J. Trop. Biomed. 2012, 2, 554–557. [Google Scholar] [CrossRef] [Green Version]
- Gniewosz, M.; Pobiega, K.; Kraśniewska, K.; Synowiec, A.; Chaberek, M.; Galus, S. Characterization and Antifungal Activity of Pullulan Edible Films Enriched with Propolis Extract for Active Packaging. Foods 2022, 11, 2319. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, S. Harmonised Methods of the International Honey Commission; Swiss Bee Research Centre, FAM: Liebefeld, Switzeland, 2009; p. 63. [Google Scholar]
- Romanian Standard SR 2213-5; Sweet Products. Part 5: Determination of Soluble Dry Matter (Refractometric Method). Romanian Standards Association, ASRO: Bucharest, Romania, 2009.
- AOAC. 978.18 Water Activity. Official Methods of Analysis of the Association of Official Analytical Chemist, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 29, 10–18. [Google Scholar]
- Daves, J.W. Current Protocols in Food Analytical Chemistry; John. Wiley & Sons: Hoboken, NJ, USA, 2003; pp. 1073–1080. [Google Scholar]
- Alothman, M.; Bhat, R.; Karim, A.A. Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chem. 2009, 115, 785–788. [Google Scholar] [CrossRef]
- Meda, A.; Lamien, C.E.; Romito, M.; Millogo, J.; Nacoulma, O.G. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem. 2005, 91, 571–577. [Google Scholar] [CrossRef]
- Silva, F.C.; Fávaro-Trindade, C.S.; Alencar, S.M.; Thomazini, M.; Balieiro, J.C. Physicochemical properties, antioxidant activity and stability of spray-dried propolis. JAAS 2011, 3, 94–100. [Google Scholar] [CrossRef]
- Woisky, R.G.; Salatino, A. Analysis of propolis: Some parameters and procedures for chemical quality control. J. Apic. Res. 1998, 37, 99–105. [Google Scholar] [CrossRef]
- Kumazawa, S.; Hamasaka, T.; Nakayama, T. Antioxidant activity of propolis of various geographic origins. Food Chem. 2004, 84, 329–339. [Google Scholar] [CrossRef]
- Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.K. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar]
- Marcucci, M.C.; Ferreres, F.; Garcıa-Viguera, C.; Bankova, V.S.; De Castro, S.L.; Dantas, A.P.; Valente, P.H.; Paulino, N. Phenolic compounds from Brazilian propolis with pharmacological activities. J. Ethnopharmacol. 2001, 74, 105–112. [Google Scholar] [CrossRef]
- Mărghitaş, L.A.; Dezmirean, D.; Moise, A.; Mihai, C.; Laslo, L. DPPH method for evaluation of propolis antioxidant activity. Bull. Univ. Agric. Sci. 2009, 66, 253–258. [Google Scholar]
- Popova, M.; Bankova, V.; Butovska, D.; Petkov, V.; Nikolova-Damyanova, B.; Sabatini, A.G.; Marcazzan, G.L.; Bogdanov, S. Validated methods for the quantification of biologically active constituents of poplar type propolis. Phytochem. Anal. 2004, 15, 235–240. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standard Institute. Performance Standards for Antimicrobial Susceptibility Testing. 2020. Available online: https://clsi.org/media/3481/m100ed30_sample.pdf (accessed on 27 July 2022).
- Box, G.E.P.; Hunter, J.S.; Hunter, W.G. Statistics for Experimenters: Design, Innovation, and Discovery, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2005; Volume 2, p. 672. [Google Scholar]
Sample No. | Moisture Content (%) | pH | Acidity (meq/kg) | Electrical Conductivity (mS/cm) | aw | Pfund (mm) |
---|---|---|---|---|---|---|
S1 | 15.78 ± 0.9 | 4.25 ± 0.5 | 22.2 ± 4.7 | 0.51 ± 0.02 | 0.548 ± 0.035 | 52 |
S2 | 13.05 ± 0.6 | 3.88 ± 0.3 | 11.2 ± 4.6 | 0.38 ± 0.02 | 0.536 ± 0.022 | 52 |
S3 | 14.67 ± 0.7 | 3.81 ± 0.3 | 12.0 ± 3.2 | 0.27 ± 0.00 | 0.571 ± 0.028 | 57 |
S4 | 15.04 ± 0.9 | 3.93 ± 0.2 | 10.8 ± 2.4 | 0.34 ± 0.01 | 0.588 ± 0.034 | 51 |
S5 | 14.66 ± 0.6 | 3.27 ± 0.1 | 10.5 ± 3.0 | 0.36 ± 0.02 | 0.571 ± 0.022 | 53 |
S6 | 13.48 ± 0.8 | 4.08 ± 0.3 | 14.5 ± 4.2 | 0.40 ± 0.01 | 0.532 ± 0.010 | 56 |
S7 | 14.54 ± 0.7 | 4.02 ± 0.1 | 17.3 ± 3.7 | 0.47 ± 0.02 | 0.549 ± 0.021 | 57 |
S8 | 14.82 ± 0.8 | 3.74 ± 0.3 | 19.7 ± 4.4 | 0.58 ± 0.02 | 0.545 ± 0.025 | 49 |
S9 | 13.27 ± 0.5 | 3.49 ± 0.3 | 12.2 ± 4.9 | 0.35 ± 0.01 | 0.524 ± 0.029 | 55 |
S10 | 14.45 ± 0.8 | 3.55 ± 0.2 | 18.2 ± 4.5 | 0.61 ± 0.03 | 0.562 ± 0.028 | 53 |
S11 | 14.56 ± 0.9 | 3.18 ± 0.3 | 16.2 ± 3.8 | 0.39 ± 0.00 | 0.555 ± 0.019 | 50 |
S12 | 15.63 ± 0.8 | 3.92 ± 0.3 | 10.5 ± 3.2 | 0.32 ± 0.02 | 0.579 ± 0.023 | 54 |
S13 | 14.29 ± 0.9 | 3.83 ± 0.2 | 19.6 ± 3.1 | 0.53 ± 0.01 | 0.568 ± 0.024 | 49 |
Sample No. | Moisture Content (%) | pH | Acidity (meq/kg) | Electrical Conductivity (mS/cm) | aw | Pfund (mm) |
---|---|---|---|---|---|---|
SS1 | 15.78 ± 0.9 | 4.25 ± 0.5 | 22.2 ± 4.7 | 0.51 ± 0.02 | 0.548 ± 0.035 | 52 |
SS2 | 12.64 ± 0.6 | 4.06 ± 0.2 | 13.8 ± 3.2 | 0.23 ± 0.03 | 0.552 ± 0.024 | 50 |
SS3 | 15.33 ± 1.0 | 3.62 ± 0.3 | 9.1 ± 4.0 | 0.26 ± 0.00 | 0.602 ± 0.038 | 58 |
SS4 | 13.75 ± 0.1 | 3.53 ± 0.1 | 14.7 ± 3.1 | 0.28 ± 0.00 | 0.567 ± 0.041 | 54 |
SS5 | 13.64 ± 0.8 | 4.54 ± 0.4 | 12.9 ± 2.6 | 0.43 ± 0.02 | 0.551 ± 0.023 | 49 |
SS6 | 13.07 ± 0.7 | 3.35 ± 0.3 | 13.3 ± 6.5 | 0.42 ± 0.01 | 0.584 ± 0.019 | 56 |
SS7 | 16.01 ± 1.2 | 3.07 ± 0.2 | 21.5 ± 5.8 | 0.45 ± 0.02 | 0.536 ± 0.015 | 59 |
SS8 | 13.75 ± 0.7 | 3.94 ± 0.2 | 18.6 ± 3.4 | 0.33 ± 0.01 | 0.575 ± 0.026 | 48 |
SS9 | 12.53 ± 0.3 | 3.71 ± 0.1 | 15.8 ± 2.7 | 0.32 ± 0.00 | 0.539 ± 0.033 | 56 |
SS10 | 14.96 ± 0.6 | 3.82 ± 0.3 | 14.0 ± 9.1 | 0.54 ± 0.01 | 0.593 ± 0.025 | 51 |
SS11 | 13.47 ± 0.8 | 3.79 ± 0.2 | 32.7 ± 4.2 | 0.93 ± 0.01 | 0.547 ± 0.017 | 57 |
SS12 | 16.05 ± 1.4 | 4.24 ± 0.4 | 34.1 ± 3.5 | 0.77 ± 0.02 | 0.536 ± 0.012 | 55 |
Sample No. | Ash g/100 g | HMF (mg/kg) | Phenols (mg GAE/100 g) | Flavonoids (mg QE/100 g) | Lead, mg/kg | Copper, mg/kg | Cadmium, mg/kg | RSA (%) |
---|---|---|---|---|---|---|---|---|
S1 | 0.19 | 0.9 ± 0.2 | 73.80 ± 0.25 | 3.51 ± 0.52 | ND | ND | ND | 27.45 |
S2 | 0.28 | 1.2 ± 0.4 | 53.67 ± 0.49 | 2.18 ± 0.17 | ND | 0.204 ± 0.006 | ND | 15.12 |
S3 | 0.31 | 1.1 ± 0.3 | 61.38 ± 0.52 | 3.04 ± 0.26 | ND | ND | ND | 14.32 |
S4 | 0.27 | 3.1 ± 0.2 | 113.03 ± 0.90 | 7.39 ± 0.11 | 0.042 ± 0.004 | ND | ND | 41.27 |
S5 | 0.19 | 0.1 ± 0.3 | 128.52 ± 0.98 | 4.52 ± 0.23 | ND | 0.118 ± 0.003 | 0.006 ± 0.002 | 40.43 |
S6 | 0.21 | 4.7 ± 0.2 | 39.41 ± 0.29 | 2.49 ± 0.09 | 0.120 ± 0.005 | ND | ND | 18.16 |
S7 | 0.25 | 2.5 ± 0.4 | 93.09 ± 1.12 | 5.19 ± 0.15 | ND | 0.107 ± 0.004 | 0.002 ± 0.001 | 42.13 |
S8 | 0.22 | 1.7 ± 0.2 | 81.60 ± 0.84 | 2.44 ± 0.13 | ND | ND | ND | 33.65 |
S9 | 0.19 | 0.4 ± 0.2 | 59.45 ± 0.87 | 1.92 ± 0.04 | 0.051 ± 0.003 | ND | ND | 13.16 |
S10 | 0.18 | 1.2 ± 0.3 | 72.74 ± 0.51 | 2.06 ± 0.51 | ND | 0.214 ± 0.005 | ND | 16.13 |
S11 | 0.24 | 2.3 ± 0.3 | 66.07 ± 0.44 | 3.23 ± 0.08 | 0.106 ± 0.008 | ND | ND | 37.2 |
S12 | 0.31 | 5.4 ± 0.4 | 49.24 ± 0.63 | 3.69 ± 0.03 | ND | ND | 0.004 ± 0.001 | 25.84 |
S13 | 0.23 | 0.2 ± 0.1 | 87.49 ± 1.21 | 6.43 ± 0.16 | ND | 0.169 ± 0.007 | ND | 48.09 |
Sample No. | Ash g/100 g | HMF (mg/kg) | Phenols (mg GAE/100 g) | Flavonoids (mg QE/100 g) | Lead, mg/kg | Copper, mg/kg | Cadmium, mg/kg | RSA (%) |
---|---|---|---|---|---|---|---|---|
SS1 | 0.19 | 0.9 ± 0.2 | 73.80 ± 0.25 | 3.51 ± 0.52 | ND | ND | ND | 27.45 |
SS2 | 0.34 | 4.0 ± 0.3 | 100.72 ± 1.20 | 3.63 ± 0.20 | 0.334 ± 0.021 | ND | ND | 15.32 |
SS3 | 0.19 | 2.8 ± 0.4 | 126.53 ± 1.10 | 6.17 ± 0.17 | 0.176 ± 0.013 | ND | ND | 30.48 |
SS4 | 0.22 | 0.4 ± 0.1 | 111.68 ± 0.92 | 7.06 ± 0.03 | 0.471 ± 0.043 | ND | ND | 26.79 |
SS5 | 0.17 | 0.2 ± 0.1 | 100.81 ± 0.54 | 5.11 ± 0.05 | ND | 0.125 ± 0.015 | ND | 23.46 |
SS6 | 0.18 | 0.9 ± 0.2 | 99.55 ± 0.41 | 5.46 ± 0.15 | ND | ND | 0.002 ± 0.001 | 22.39 |
SS7 | 0.11 | 2.3 ± 0.1 | 85.47 ± 0.59 | 5.37 ± 0.29 | ND | 0.138 ± 0.011 | 0.003 ± 0.001 | 23.04 |
SS8 | 0.20 | 1.6 ± 0.3 | 66.84 ± 0.22 | 3.30 ± 0.18 | ND | 0.100 ± 0.008 | 0.007 ± 0.001 | 15.5 |
SS9 | 0.18 | 0.5 ± 0.2 | 42.10 ± 0.11 | 2.10 ± 0.03 | 0.062 ± 0.03 | ND | ND | 9.27 |
SS10 | 0.17 | 3.1 ± 0.2 | 67.52 ± 0.63 | 1.84 ± 0.11 | ND | 0.496 ± 0.081 | 0.011 ± 0.002 | 11.46 |
SS11 | 0.21 | 0.8 ± 0.3 | 74.06 ± 0.48 | 2.68 ± 0.04 | ND | 0.411 ± 0.042 | ND | 20.55 |
SS12 | 0.32 | 0.7 ± 0.3 | 58.12 ± 0.87 | 2.96 ± 0.80 | ND | ND | 0.005 ± 0.001 | 18.83 |
Sample No. | Moisture (%) | Ash (g/100 g) | Wax (%) | Phenols (mg GAE/g) | Flavonoids (mg QE/g) | RSA (%) |
---|---|---|---|---|---|---|
S1 | 8.04 ± 0.12 | 3.14 ± 0.07 | 25.84 ± 0.57 | 189.4 ± 5.82 | 84.31 ± 0.09 | 16.44 |
S2 | 6.34 ± 0.63 | 2.85 ± 0.08 | 37.18 ± 0.81 | 180.8 ± 4.54 | 78.26 ± 0.07 | 15.21 |
S3 | 7.64 ± 0.27 | 2.96 ± 0.04 | 40.56 ± 1.06 | 172.9 ± 3.25 | 78.55 ± 0.08 | 15.08 |
S4 | 9.11 ± 0.89 | 3.15 ± 0.06 | 33.22 ± 0.38 | 189.5 ± 4.83 | 87.84 ± 0.11 | 16.79 |
S5 | 7.56 ± 0.28 | 3.28 ± 0.09 | 46.33 ± 1.05 | 193.4 ± 7.22 | 88.06 ± 0.08 | 17.27 |
S6 | 4.81 ± 0.80 | 2.55 ± 0.05 | 37.41 ± 0.58 | 129.6 ± 3.58 | 65.59 ± 0.09 | 11.75 |
S7 | 6.52 ± 0.46 | 2.73 ± 0.03 | 31.19 ± 0.71 | 184.3 ± 6.04 | 82.27 ± 0.25 | 15.04 |
S8 | 7.32 ± 0.54 | 2.69 ± 0.04 | 32.52 ± 0.44 | 152.2 ± 6.80 | 70.10 ± 0.16 | 13.50 |
S9 | 5.43 ± 0.82 | 3.08 ± 0.03 | 28.92 ± 0.67 | 157.1 ± 5.57 | 74.35 ± 0.36 | 14.43 |
S10 | 7.05 ± 0.37 | 2.62 ± 0.02 | 34.24 ± 0.96 | 186.9 ± 6.88 | 77.33 ± 0.21 | 16.28 |
S11 | 6.27 ± 0.91 | 3.10 ± 0.05 | 39.47 ± 1.05 | 144.2 ± 5.51 | 67.41 ± 0.14 | 12.66 |
S12 | 7.63 ± 0.57 | 2.42 ± 0.08 | 27.65 ± 0.73 | 153.5 ± 4.78 | 82.38 ± 0.27 | 14.57 |
S13 | 8.18 ± 0.62 | 2.67 ± 0.07 | 38.15 ± 0.92 | 144.0 ± 2.09 | 81.09 ± 0.98 | 13.92 |
Sample No. | Moisture (%) | Ash (g/100 g) | Wax (%) | Phenols (mg GAE/g) | Flavonoids (mg QE/g) | RSA (%) |
---|---|---|---|---|---|---|
SS1 | 8.04 ± 0.12 | 3.14 ± 0.07 | 25.84 ± 0.57 | 189.4 ± 5.82 | 84.31 ± 0.09 | 16.44 |
SS2 | 7.46 ± 0.06 | 3.05 ± 0.07 | 34.07 ± 1.12 | 172.2 ± 6.14 | 70.37 ± 0.03 | 14.54 |
SS3 | 7.38 ± 0.39 | 2.88 ± 0.08 | 32.71 ± 0.71 | 158.8 ± 5.27 | 86.48 ± 0.12 | 15.81 |
SS4 | 8.21 ± 0.64 | 3.22 ± 0.14 | 30.15 ± 0.57 | 203.3 ± 7.28 | 90.54 ± 0.06 | 17.22 |
SS5 | 6.78 ± 0.17 | 3.12 ± 0.05 | 28.92 ± 0.68 | 181.5 ± 6.10 | 82.92 ± 0.07 | 18.19 |
SS6 | 8.06 ± 0.60 | 2.24 ± 0.06 | 31.64 ± 0.27 | 134.7 ± 4.09 | 71.24 ± 0.02 | 13.30 |
SS7 | 7.86 ± 0.68 | 3.20 ± 0.09 | 29.38 ± 0.63 | 190.6 ± 5.26 | 80.19 ± 0.01 | 14.41 |
SS8 | 7.15 ± 0.82 | 2.49 ± 0.03 | 30.79 ± 1.01 | 169.1 ± 8.39 | 69.23 ± 0.04 | 12.15 |
SS9 | 6.70 ± 0.93 | 2.77 ± 0.02 | 27.67 ± 0.64 | 135.9 ± 7.42 | 79.89 ± 0.44 | 13.27 |
SS10 | 7.65 ± 0.37 | 2.72 ± 0.04 | 31.05 ± 0.91 | 133.7 ± 6.97 | 61.56 ± 0.59 | 10.29 |
SS11 | 6.99 ± 0.70 | 3.32 ± 0.08 | 31.26 ± 0.67 | 131.5 ± 3.01 | 73.15 ± 0.41 | 11.38 |
SS12 | 7.72 ± 0.44 | 2.89 ± 0.07 | 33.45 ± 0.85 | 140.4 ± 5.31 | 73.97 ± 0.29 | 14.07 |
No. | Strain | Sample Inhibition Diameter Area (mm) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | S12 | S13 | ||
1 | A. niger | 9 | 9 | 9 | 10 | 10 | 9 | 8 | 9 | 8 | 9 | 8 | 9 | 10 |
2 | A. flavus | 9 | 9 | 9 | 10 | 9 | 9 | 8 | 9 | 9 | 9 | 9 | 9 | 10 |
3 | C. albicans | 8 | 9 | 8 | 9 | 10 | 8 | 8 | 8 | 7 | 8 | 7 | 8 | 9 |
4 | P. chrysogenum | 10 | 12 | 11 | 12 | 11 | 10 | 9 | 10 | 9 | 11 | 9 | 11 | 12 |
5 | R. stolonifer | 9 | 12 | 11 | 12 | 10 | 8 | 9 | 9 | 9 | 12 | 9 | 11 | 11 |
6 | F. oxysporum | 8 | 10 | 9 | 11 | 11 | 9 | 8 | 10 | 7 | 10 | 8 | 9 | 11 |
No. | Strain | Sample Inhibition Diameter Area (mm) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SS1 | SS2 | SS3 | SS4 | SS5 | SS6 | SS7 | SS8 | SS9 | SS10 | SS11 | SS12 | ||
1 | A. niger | 9 | 8 | 9 | 9 | 10 | 8 | 9 | 10 | 9 | 11 | 9 | 10 |
2 | A. flavus | 9 | 10 | 9 | 9 | 11 | 9 | 9 | 8 | 10 | 10 | 9 | 9 |
3 | C. albicans | 8 | 9 | 8 | 8 | 9 | 9 | 10 | 9 | 8 | 8 | 9 | 10 |
4 | P. chrysogenum | 10 | 11 | 10 | 12 | 10 | 12 | 9 | 11 | 8 | 12 | 10 | 9 |
5 | R. stolonifer | 9 | 11 | 12 | 10 | 10 | 9 | 8 | 10 | 9 | 11 | 9 | 10 |
6 | F. oxysporum | 8 | 9 | 10 | 9 | 11 | 10 | 9 | 9 | 8 | 9 | 7 | 8 |
No. | Strain | Sample Inhibition Diameter Area (mm) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | S12 | S13 | ||
1 | A. niger | 24 | 21 | 19 | 23 | 26 | 17 | 18 | 16 | 22 | 15 | 19 | 18 | 16 |
2 | A. flavus | 26 | 20 | 17 | 25 | 27 | 15 | 18 | 15 | 20 | 16 | 17 | 20 | 18 |
3 | C. albicans | 22 | 19 | 18 | 22 | 22 | 19 | 21 | 20 | 19 | 21 | 18 | 20 | 19 |
4 | P. chrysogenum | 27 | 24 | 22 | 26 | 27 | 23 | 24 | 25 | 23 | 25 | 22 | 26 | 24 |
5 | R. stolonifer | 24 | 22 | 20 | 26 | 25 | 21 | 23 | 22 | 22 | 24 | 20 | 23 | 21 |
6 | F. oxysporum | 28 | 23 | 24 | 25 | 26 | 23 | 22 | 27 | 21 | 25 | 23 | 26 | 22 |
No. | Strain | Sample Inhibition Diameter Area (mm) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SS1 | SS2 | SS3 | SS4 | SS5 | SS6 | SS7 | SS8 | SS9 | SS10 | SS11 | SS12 | ||
1 | A. niger | 24 | 20 | 18 | 24 | 26 | 19 | 25 | 17 | 21 | 16 | 19 | 20 |
2 | A. flavus | 26 | 22 | 16 | 25 | 27 | 17 | 20 | 15 | 21 | 18 | 18 | 19 |
3 | C. albicans | 22 | 18 | 20 | 21 | 23 | 17 | 22 | 21 | 18 | 20 | 16 | 20 |
4 | P. chrysogenum | 27 | 23 | 22 | 25 | 27 | 21 | 27 | 24 | 25 | 26 | 20 | 23 |
5 | R. stolonifer | 24 | 22 | 21 | 26 | 25 | 19 | 25 | 23 | 20 | 22 | 21 | 19 |
6 | F. oxysporum | 28 | 25 | 25 | 27 | 25 | 21 | 24 | 26 | 22 | 25 | 24 | 24 |
Dispersion Sum of the Diameters of Inhibition Zones | Quadratic Sum | Degrees of Freedom (ν) | Variance (s2) | Fcomputed | F0.05 | |
---|---|---|---|---|---|---|
Between honey samples | (S2–S4) | 52.12 | m − 1 = 5 | s21,H = 10.42 | 10.42 | 2.37 |
Between propolis extracts | 299.79 | s21,P = 18.40 | 18.40 | |||
Between strains, H | (S3–S4) | 45.53 | n − 1 = 12 | s22,H = 3.79 | 9.18 | 1.92 |
Between strains, P | 350.56 | s22,P = 8.96 | 8.96 | |||
Residual, H | Sr | 24.79 | (m − 1)(n − 1) = 60 | s2r,H = 0.41 | - | - |
Residual, P | 195.43 | s2r,P = 3.25 | - | - |
Dispersion Sum of the Diameters of Inhibition Zones | Quadratic Sum | Degrees of Freedom (ν) | Variance (s2) | Fcomputed | F0.05 | |
---|---|---|---|---|---|---|
Between honey samples | (S2–S4) | 16.15 | m − 1 = 5 | s21,H = 3.23 | 3.53 | 2.38 |
Between propolis extracts | 323 | s21,P = 64.60 | 19.08 | |||
Between strains, H | (S3-S4) | 20.90 | n − 1 = 11 | s22,H = 1.90 | 2.07 | 1.97 |
Between strains, P | 250.83 | s22,P = 22.80 | 6.73 | |||
Residual, H | Sr | 50.26 | (m − 1)(n − 1) = 55 | s2r,H = 0.91 | - | - |
Residual, P | 186.16 | s2r,P = 3.38 | - | - |
Microbial Strains | Flavonoids | Phenols | ||||||
---|---|---|---|---|---|---|---|---|
Honey | Propolis | Honey | Propolis | |||||
N-V/Center | Alba | N-V/Center | Alba | N-V/Center | Alba | N-V/Center | Alba | |
A. niger | 0.545 | −0.395 | 0.549 | 0.699 | 0.513 | −0.392 | 0.551 | 0.711 |
A. flavus | 0.481 | −0.132 | 0.789 | 0.541 | 0.213 | 0.045 | 0.644 | 0.618 |
C. albicans | 0.509 | −0.004 | 0.696 | 0.415 | 0.630 | −0.129 | 0.710 | 0.732 |
P. chrysogenum | 0.388 | 0.279 | 0.697 | 0.250 | 0.216 | 0.461 | 0.559 | 0.592 |
R. stolonifer | 0.266 | 0.073 | 0.728 | 0.465 | 0.172 | 0.42 | 0.726 | 0.888 |
F. oxisforumn | 0.489 | 0.599 | 0.313 | 0.317 | 0.531 | 0.650 | 0.362 | 0.694 |
Sample | County of Origin | Areal | Sub-Sample | Area |
---|---|---|---|---|
S1 | Alba | Mountainous | Alba County | |
S2 | Arad | Plain | SS1 | Blaj |
S3 | Bihor | Hilly | SS2 | Zlatna |
S4 | Bistrița-Năsăud | Mountainous | SS3 | Alba Iulia |
S5 | Caraș-Severin | Hilly | SS4 | Teius |
S6 | Cluj | Hilly | SS5 | Șona |
S7 | Hunedoara | Sub-mountainous | SS6 | Berghin |
S8 | Maramureș | Mountainous | SS7 | Crăciunelu de Jos |
S9 | Mureș | Hilly | SS8 | Sântimbru |
S10 | Satu Mare | Hilly | SS9 | Feneș |
S11 | Sălaj | Sub-mountainous | SS10 | Cugir |
S12 | Sibiu | Sub-mountainous | SS11 | Abrud |
S13 | Timiș | Plain | SS12 | Baia de Aries |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vică, M.L.; Glevitzky, M.; Dumitrel, G.-A.; Bostan, R.; Matei, H.V.; Kartalska, Y.; Popa, M. Qualitative Characterization and Antifungal Activity of Romanian Honey and Propolis. Antibiotics 2022, 11, 1552. https://doi.org/10.3390/antibiotics11111552
Vică ML, Glevitzky M, Dumitrel G-A, Bostan R, Matei HV, Kartalska Y, Popa M. Qualitative Characterization and Antifungal Activity of Romanian Honey and Propolis. Antibiotics. 2022; 11(11):1552. https://doi.org/10.3390/antibiotics11111552
Chicago/Turabian StyleVică, Mihaela Laura, Mirel Glevitzky, Gabriela-Alina Dumitrel, Roxana Bostan, Horea Vladi Matei, Yordanka Kartalska, and Maria Popa. 2022. "Qualitative Characterization and Antifungal Activity of Romanian Honey and Propolis" Antibiotics 11, no. 11: 1552. https://doi.org/10.3390/antibiotics11111552
APA StyleVică, M. L., Glevitzky, M., Dumitrel, G.-A., Bostan, R., Matei, H. V., Kartalska, Y., & Popa, M. (2022). Qualitative Characterization and Antifungal Activity of Romanian Honey and Propolis. Antibiotics, 11(11), 1552. https://doi.org/10.3390/antibiotics11111552