Synthesis, Biocidal and Antibiofilm Activities of New Isatin–Quinoline Conjugates against Multidrug-Resistant Bacterial Pathogens along with Their In Silico Screening
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. In Vitro Antibacterial Screening
2.2.1. Antibacterial Screening of Conjugates 10a–f and 11a–f against Methicillin-Resistant Staphylococcus aureus (MRSA)
2.2.2. Antibacterial Screening of Conjugates 10a–f and 11a–f against Streptococcus Mutans
2.2.3. Antibacterial Screening of Conjugates 10a–f and 11a–f against Klebsiella pneumoniae
2.2.4. Antibacterial screening of conjugates 10a–f and 11a–f against Serratia marcescens
2.3. Time-Kill Assay
2.4. Assessment of Anti-Biofilm Assay
2.5. Transmission Electron Microscopy (TEM) Assay
2.6. Molecular Docking
2.7. Structure Activity Relationships Study (SARs)
2.8. In silico Pharmacokinetic Assessment
3. Materials and Methods
3.1. General
3.1.1. Bacterial Strains
3.1.2. Reference Strains
3.1.3. Clinical Isolates
3.2. Chemistry
3.2.1. General Procedure for Synthesis of 4-Bisamino Quinoline Hydrazine Derivatives 9
3.2.2. General Procedure for Synthesis of Conjugates of 10 and 11
3.3. Antibacterial Screening
3.3.1. Minimum Inhibitory Concentration (MIC)
3.3.2. Minimum Bactericidal Concentration (MBC)
3.3.3. Time-Kill Assay
3.4. Anti-Biofilm Assay
3.4.1. Bacterial Culture Preparation
3.4.2. Anti-Biofilm Assay
3.4.3. Staining the Biofilm with Crystal Violet
3.5. Molecular Assay by Transmission Electron Microscopy (TEM)
3.6. Molecular Modeling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chu, X.-M.; Wang, C.; Liu, W.; Liang, L.-L.; Gong, K.-K.; Zhao, C.-Y.; Sun, K.-L. Quinoline and quinolone dimers and their biological activities: An overview. Eur. J. Med. Chem. 2019, 161, 101–117. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.-Q.; Zhang, S.; Xu, Z.; Lv, Z.-S.; Liu, M.-L.; Feng, L.-S. 4-Quinolone hybrids and their antibacterial activities. Eur. J. Med. Chem. 2017, 141, 335–345. [Google Scholar] [CrossRef] [PubMed]
- WHO. Antibiotic Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance (accessed on 10 June 2022).
- Kumar, M.; Sarma, D.K.; Shubham, S.; Kumawat, M.; Verma, V.; Nina, P.B.; Jp, D.; Kumar, S.; Singh, B.; Tiwari, R.R. Futuristic Non-antibiotic Therapies to Combat Antibiotic Resistance: A Review. Front. Microbiol. 2021, 12, 609459. [Google Scholar] [CrossRef] [PubMed]
- Hays, J.P.; Ruiz-Alvarez, M.J.; Roson-Calero, N.; Amin, R.; Murugaiyan, J.; van Dongen, M.B.M. The Global AMR Insights Ambassador Network Perspectives on the Ethics of Antibiotic Overuse and on the Implementation of (New) Antibiotics. Infect. Dis. Ther. 2022, 11, 1315–1326. [Google Scholar] [PubMed]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Wang, N.; Świtalska, M.; Wang, L.; Elkhabiry, S.; Hossain, M.I.; El Sayed, I.E.T.; Wietrzyk, J.; Inokuchi, T. Structural Modifications of Nature-Inspired Indoloquinolines: A Mini Review of Their Potential Antiproliferative Activity. Molecules. 2019, 24, 2121. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Lv, Z.; Wen, J.; Zhao, S.; Xu, Z. Synthesis and in vitro evaluation of novel substituted isatin-propylene-1H-1,2,3-triazole-4-methylene-moxifloxacin hybrids for their anti-mycobacterial activities. Eur. J. Med. Chem. 2018, 143, 899–904. [Google Scholar] [CrossRef]
- Lu, W.-J.; ´Switalska, M.; Wang, L.; Yonezawa, M.; El-Sayed, I.E.T.; Wietrzyk, J.; Inokuchi, T. In vitro antiproliferative activity of 11-aminoalkylaminosubstituted 5H-indolo[2,3-b]quinolines; improving activity of neocryptolepines by installation of ester substituent. Med. Chem. Res. 2013, 22, 4492–4504. [Google Scholar] [CrossRef]
- Wang, N.; Wicht, K.J.; Wang, L.; Lu, W.J.; Misumi, R.; Wang, M.Q.; El Gokha, A.A.; Kaiser, M.; El Sayed, I.E.T.; Egan, T.J.; et al. Synthesis and in Vitro testing of antimalarial activity of non-natural-type neocryptolepines: Structure-activity relationship study of 2,11- And 9,11-disubstituted 6-methylindolo[2,3-b]quinolines. Chem. Pharm. Bull. 2013, 61, 1282–1290. [Google Scholar] [CrossRef] [Green Version]
- Altwaijry, N.; El-Ghlban, S.; El Sayed, I.E.-T.; El-Bahnsawye, M.; Bayomi, A.I.; Samaka, R.M.; Shaban, E.; Elmongy, E.I.; El-Masry, T.A.; Ahmed, H.M.A.; et al. In Vitro and In Vivo Antitumor Activity of Indolo[2,3-b] Quinolines, Natural Product Analogs from Neocryptolepine Alkaloid. Molecules 2021, 26, 754. [Google Scholar] [CrossRef]
- de Paiva, R.E.F.; Vieira, E.G.; da Silva, D.R.; Wegermann, C.A.; Ferreira, A.M.C. Anticancer Compounds Based on Isatin-Derivatives: Strategies to Ameliorate Selectivity and Efficiency. Front. Mol. Biosci. 2021, 7, 627272. [Google Scholar] [CrossRef]
- Susithra, E.; Rajkumar, S.; Komal, S.; Pansare, W.; Praveena, S.; Parvati Sai Arun, P.V.; Chekkara, R.; Kiran, G. Design, Synthesis, Antimicrobial and Anticancer Activity of some Novel Benzoxazole-Isatin Conjugates Biointerface. Res. Appl. Chem. 2022, 12, 2392–2403. [Google Scholar]
- Tumosienė, I.; Jonuškienė, I.; Kantminienė, K.; Mickevičius, V.; Petrikaitė, V. Novel N-Substituted Amino Acid Hydrazone-Isatin Derivatives: Synthesis, Antioxidant Activity, and Anticancer Activity in 2D and 3D Models In Vitro. Int. J. Mol. Sci. 2021, 22, 7799. [Google Scholar] [CrossRef]
- Nath, P.; Mukherjee, A.; Mukherjee, S.; Banerjee, S.; Das, S.; Banerjee, S. Isatin: A Scaffold with Immense Biodiversity. Mini-Rev. Med. Chem. 2021, 21, 1096–1112. [Google Scholar] [CrossRef]
- Al-Sha’alan, N.H. Antimicrobial activity and spectral, magneticand thermal studies of some transition metal complexes of a Schiff base hydrazone containing a quinoline moiety. Molecules 2007, 12, 1080–1091. [Google Scholar] [CrossRef]
- Aboelnaga, A.; El-Sayed, T.H. Click synthesis of new 7-chloroquinoline derivatives by using ultrasound irradiation and evaluation of their biological activity. Green Chem. Lett. Rev. 2018, 11, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.-Y.; Chen, H.; Li, D.-D.; Li, A.-L.; Wang, W.-Y.; Gu, W. Design, synthesis, and anticancer evaluation of novel quinoline derivatives of ursolic acid with hydrazide, oxadiazole, and thiadiazole moieties as potent MEK inhibitors. J. Enzym. Inhib. Med. Chem. 2019, 34, 955–972. [Google Scholar] [CrossRef] [Green Version]
- Solomon, V.R.; Pundir, S.; Lee, H. Examination of Novel 4-Aminoquinoline Derivatives Designed and Synthesized by a Conjugates Pharmacophore Approach to Enhance Their Anticancer Activities. Sci. Rep. 2019, 9, 6315. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, J.; Ejaz, S.A.; Khan, I.; Ausekle, E.; Miliutina, M.; Langer, P. Exploration of Quinolone and Quinoline Derivatives as Potential Anticancer Agents. J. Pharm. Sci. 2019, 27, 613–626. [Google Scholar] [CrossRef]
- Martorana, A.; La Monica, G.; Lauria, A. Quinoline-Based Molecules Targeting c-Met, EGF, and VEGF Receptors and the Proteins Involved in Related Carcinogenic Pathways. Molecules 2020, 25, 4279. [Google Scholar] [CrossRef]
- Lauria, A.; La Monica, G.; Bono, A.; Martorana, A. Quinoline anticancer agents active on DNA and DNA-interacting proteins: From classical to emerging therapeutic targets. Eur. J. Med. Chem. 2021, 220, 133555. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, H.; Yang, Y.; Chen, Z.S.; Zou, C.; Zhang, J. Chloroquine against malaria, cancers and viral diseases. Drug Discov. 2020, 25, 2012–2022. [Google Scholar] [CrossRef]
- Ferreira, P.M.P.; de Sousa, R.W.R.; Ferreira, J.R.D.O.; Militão, G.C.G.; Bezerra, D.P. Chloroquine and hydroxychloroquine in antitumor therapies based on autophagy-related mechanisms. Pharmacol. Res. 2021, 168, 105582. [Google Scholar] [CrossRef]
- Guo, H. Isatin derivatives and their anti-bacterial activities. Eur. J. Med. Chem. 2019, 164, 678–688. [Google Scholar] [CrossRef]
- Feng, L.S.; Liu, M.L.; Zhang, S.; Chai, Y.; Wang, B.; Zhang, Y.B.; Lv, K.; Guan, Y.; Guo, H.Y.; Xiao, C.L. Synthesis and in vitro antimycobacterial activity of 8-OCH3 ciprofloxacin methylene and ethylene isatin derivatives. Eur. J. Med. Chem. 2011, 46, 341–348. [Google Scholar] [CrossRef]
- Xu, Z.; Song, X.F.; Fan, J.; Lv, Z.-S. Design, synthesis, and in vitro antimycobacterial evaluation of propylene-1H-1,2,3-triazole-4-methylene-tethered (Thio)semicarbazone-isatin-moxifloxacin hybrids. J. Heterocycl. Chem. 2018, 55, 77–82. [Google Scholar] [CrossRef]
- Maddela, S.; Makula, A. Design, synthesis and docking study of some novel isatinquinoline hybrids as potential antitubercular agents. AntiInfective Agents. 2016, 14, 53–62. [Google Scholar] [CrossRef]
- Ding, Z.; Zhou, M.; Zeng, C. Recent advances in isatin hybrids as potential anticancer agents. Arch. Pharm. 2020, 353, e1900367. [Google Scholar] [CrossRef]
- Gut, J.; Rosenthal, P.J.; Kumar, V. β-amino-alcoholtethered 4-aminoquinoline-isatinconjugates: Synthesis andantimalarial evaluation. Eur. J. Med. Chem. 2014, 84, 566–573. [Google Scholar]
- Raj, R.; Biot, C.; Carrère-Kremer, S.; Kremer, L.; Guérardel, Y.; Gut, J.; Rosenthal, P.J.; Forge, D.; Kumar, V. 7-Chloroquinoline–isatin Conjugates: Antimalarial, Antitubercular, and Cytotoxic Evaluation. Chem. Biol. Drug Des. 2014, 83, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Kavita, B.; Jyoti, B.; Manish, K.G.; Singh, J.V.; Harmandeep, K.; Gulati, A.; Singh, K.; Kaur, G.; Kaur, S.; Sharma, A.; et al. Design, Synthesis, Antimicrobial Evaluation, and Molecular Modeling Studies of Novel Indolinedione–Coumarin Molecular Hybrids. ACS Omega 2019, 4, 8720–8730. [Google Scholar]
- Swetha, Y.; Rajiv, T.; Suman, K.; Lingamallu, G.; Ganji, P.; Reddy Shetty, P. Bioactive isatin (oxime)-triazole-thiazolidinedione ferrocene molecular conjugates: Design, synthesis and antimicrobial activities, J. Organomet. Chem. 2021, 937, 121716. [Google Scholar]
- Mogana, R.; Wiart, C. Anti-Inflammatory, Anticholinesterase, and Antioxidant Potential of Scopoletin Isolated from Canarium patentinervium Miq. (Burseraceae Kunth). Evid. Based Complement. Alternat. Med. 2013, 2013, 734824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horan, T.C.; Andrus, M. CDC/NHSN surveillance definition of health care associated infection and criteria for specific types of infections in the acute care setting. Am. J. Infect. Control. 2008, 36, 309–329. [Google Scholar] [CrossRef] [PubMed]
- Andrews, J.M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 2001, 48 (Suppl. 1), 5–16. [Google Scholar] [CrossRef] [Green Version]
- Lovering, A.L.; Gretes, M.C.; Safadi, S.S.; Danel, F.; de Castro, L.; Page, M.G.P.; Strynadka, N.C.J. Structural Insights into the Anti-methicillin-resistant Staphylococcus aureus (MRSA) Activity of Ceftobiprole. J. Biol. Chem. 2012, 287, 32096–32102. [Google Scholar] [CrossRef] [Green Version]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Daina, A.; Michielin, O.; Zoete, V. iLOGP: A Simple, Robust, and Efficient Description of n-Octanol/Water Partition Coefficient for Drug Design Using the GB/SA Approach. J. Chem. Inf. Model. 2014, 54, 3284–3301. [Google Scholar] [CrossRef]
- Gupta, M.; Lee, H.J.; Barden, C.J.; Weaver, D.F. The Blood–Brain barrier (BBB) score. J. Med. Chem. 2019, 62, 9824–9836. [Google Scholar] [CrossRef]
- Elmongy, E.I.; Altwaijry, N.; Attallah, N.G.M.; AlKahtani, M.M.; Henidi, H.A. In-Silico Screening of Novel Synthesized Thienopyrimidines Targeting Fms Related Receptor Tyrosine Kinase-3 and Their In-Vitro Biological Evaluation. Pharmaceuticals 2022, 15, 170. [Google Scholar] [CrossRef]
- De, D.; Bayers, L.D.; Krogstad, D.J. Antimalarial: Synthesis of 4-aminoquinoline that Circumvent Drug resistance in malaria parasites. J. Heterocycl. Chem. 1997, 34, 315–320. [Google Scholar] [CrossRef]
- Wadi, I.; Prasad, D.; Batra, N.; Srivastava, K.; Anvikar, A.R.; Valecha, N.; Nath, M. Targeting Asexual and Sexual Blood Stages of the Human Malaria Parasite P.falciparum with 7-Chloroquinoline-Based 1,2,3-Triazoles. ChemMedChem 2019, 14, 484–493. [Google Scholar]
- Daoud, A.; Malika, D.; Bakari, S.; Hfaiedh, N.; Mnafgui, K.; Kadri, A.; Gharsallah, N. Assessment of polyphenol composition, antioxidant and antimicrobial properties of various extracts of date palm pollen (DPP) from two tunisian cultivars. Arab. J. Chem. 2015, 12, 3075–3086. [Google Scholar] [CrossRef] [Green Version]
- Eloff, J. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med. 1998, 64, 711–713. [Google Scholar]
- Ozturk, S.; Ercisli, S. Chemical composition and in vitro antibacterial activity of Seseli libanotis. World J. Microbiol. Biotechnol. 2006, 22, 261–265. [Google Scholar] [CrossRef]
- Petersen, P.; Wang, T.; Dushin, R.; Bradford, P.A. Comparative in vitro activities of AC98-6446, a novel semisynthetic glycopeptide derivative of the natural product mannopeptimycin alpha, and other antimicrobial agents against gram-positive clinical isolates. Antimicrob. Agents Chemother. 2004, 48, 739–746. [Google Scholar]
- Datta, A.; Ghoshdastidar, S.; Singh, M. Antimicrobial property of Piper betel leaf against clinical isolates of Bacteria. Int. J. Pharm. Sci. 2011, 2, 104–109. [Google Scholar]
- Badger-Emeka, L.I.; Emeka, P.M.; Ibrahim, H.I.M. A Molecular Insight into the Synergistic Mechanism of Nigella sativa (Black Cumin) with β- Lactam Antibiotics against Clinical Isolates of Methicillin-Resistant Staphylococcus aureus. Appl. Sci. 2021, 11, 3206. [Google Scholar]
- Elmongy, E.I.; Attallah, N.G.M.; Altwaijry, N.; AlKahtani, M.M.; Henidi, H.A. Design and synthesis of new thiophene/thieno[2,3d]pyrimidines along with their cytotoxic biological evaluation as tyrosine kinase inhibitors in addition to their apoptotic and autophagic induction. Molecules 2021, 27, 123. [Google Scholar] [CrossRef]
- Chemical Computing Group Inc. Molecular Operating Environment (MOE); Chemical Computing Group Inc.: Montreal, QC, Canada, 2012; p. 10. [Google Scholar]
FT-IR υ (cm−1) | 1H-NMR δ (ppm) | 13C-NMR δ (ppm) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Com. | NH | υ (CH) Aliphatic | υ (C=O) Isatin | υ (N-C=O) Isatin | υ (C=N) Quinoline | NH-CH2 Quinoline | N-CH2 Isatin | CH=NAr Quinoline | CH=NAr Quinoline | N-C=O Isatin | C=O (C-3) Isatin | C=O (C-2) hydrazide |
10a | 3374 | 2930 | 1710 | 1675 | 1562 | 3.79 | 8.54 | 153.10 | 167.35 | 183.20 | ||
10b | 3319 | 2936 | 1703 | 1665 | 1577 | 3.78 | 3.88 | 8.77 | 150.61 | 158.17 | 183.40 | -------- |
10c | 3397 | 2931 | 1713 | 1654 | 1559 | 3.77 | 4.28 | 8.55 | 155.49 | 162.34 | 184.53 | -------- |
10d | 3360 | 2933 | 1732 | 1655 | 1587 | 3.26 | 3.91 | 8.82 | 158.24 | 162.55 | 183.29 | -------- |
10e | 3312 | 2949 | 1731 | 1657 | 1555 | 3.45 | 3.81 | 8.81 | 151.02 | 167.17 | 181.95 | -------- |
10f | 3343 | 2934 | 1705 | 1653 | 1587 | 3.75 | 3.84 | 8.65 | 158.41 | 165.41 | 183.40 | -------- |
11a | 3405 | 2935 | 1718 | 1668 | 1577 | 3.46 | 3.79 | 8.79 | 152.24 | 152.82 | 184.52 | 171.88 |
11b | 3297 | 2933 | 1721 | 1664 | 1577 | 3.42 | 3.79 | 8.77 | 151.12 | 162.62 | 184.31 | 176.13 |
11c | 3343 | 2933 | 1705 | 1676 | 1566 | 3.47 | 3.86 | 8.78 | 152.50 | 152.94 | 182.65 | 170.29 |
11d | 3352 | 2937 | 1710 | 1657 | 1564 | 3.77 | 4.20 | 8.38 | 157.75 | 160.91 | 181.96 | 178.31 |
11e | 3324 | 2938 | 1715 | 1654 | 1556 | 3.49 | 3.79 | 8.77 | 149.08 | 150.71 | 184.52 | 170.14 |
11f | 3365 | 2937 | 1731 | 1651 | 1555 | 3.78 | 4.31 | 8.77 | 150.55 | 157.75 | 183.90 | 178.83 |
Conjugates | Zone of Inhibition ZOI (mm) 1 | MRSA | MRSA ATCC 43300 | ||||
---|---|---|---|---|---|---|---|
Minimum Bactericidal Concentration MBC 2 | Minimum Inhibitory Concentration MIC 3 | MBC/MIC | MBC | MIC | MBC/MIC | ||
1a | 13 ± 1 | 10 | 2.5 | 4(+) | 10 | 5 | 2(+) |
1b | 13.3 ± 0.6 | 10 | 2.5 | 4(+) | 10 | 5 | 2(+) |
4 | 12.3 ± 0.6 | 20 | 2.5 | 8(+) | 20 | 5 | 4(+) |
10a | 24.31 ± 0.60 | 0.05 | 0.006 | 8 (+) | 0.05 | 0.025 | 2(+) |
10b | 25.00 ± 1.00 | 0.05 | 0.0125 | 4 (+) | 0.05 | 0.025 | 2(+) |
10c | 23.00 ± 1.00 | 0.05 | 0.025 | 2(+) | 0.05 | 0.025 | 2(+) |
10d | 23.75 ± 0.60 | 0.05 | 0.025 | 2(+) | 0.05 | 0.0125 | 4 (+) |
10e | 24.73 ± 0.60 | 0.05 | 0.025 | 2(+) | 0.05 | 0.025 | 2(+) |
10f | 24.78 ± 0.60 | 0.05 | 0.025 | 2(+) | 0.05 | 0.0125 | 4 (+) |
11a | 47.33 ± 0.60 | 0.625 | 0.156 | 4 (+) | 0.156 | 0.08 | 2 (+) |
11b | 24.00 ± 1.00 | 2.5 | 1.25 | 2(+) | 5 | 2.5 | 2 (+) |
11c | 30.72 ± 1.00 | 0.312 | 0.156 | 2(+) | 0.625 | 0.312 | 2 (+) |
11d | 20.00 ± 1.00 | 2.5 | 1.25 | 2(+) | 5 | 2.5 | 2 (+) |
11e | 18.31 ± 0.60 | 2.5 | 1.25 | 2(+) | 5 | 2.5 | 2 (+) |
11f | 16.34 ± 0.60 | 5 | 1.25 | 4 (+) | 5 | 2.5 | 2 (+) |
Ampicilin | 14.77 ± 0.60 | 6.25 | 3.13 | 2(+) | 6.25 | 1.56 | 4 (+) |
Chloramphnicol | 14.32 ± 0.60 | 3.13 | 0.78 | 4(+) | 12.5 | 8 | 1.6(+) |
Conjugates | Zone of Inhibition ZOI (mm) 1 | Streptococcus mutans | Streptococcus mutans ATCC 35668 | ||||
---|---|---|---|---|---|---|---|
Minimum Bactericidal Concentration MBC 2 | Minimum Inhibitory Concentration MIC 3 | MBC/MIC | MBC | MIC | MBC/MIC | ||
1a | 14 ± 1 | 10 | 1.25 | 8(+) | 10 | 2.5 | 4(+) |
1b | 13 ± 1 | 5 | 1.25 | 4(+) | 10 | 2.5 | 4(+) |
4 | 14.3 ± 0.6 | 20 | 2.5 | 8(+) | 20 | 5 | 4(+) |
10a | 23 ± 1 | 0.0008 | 0.0004 | 1.9 (+) | 0.003 | 0.0015 | 2 (+) |
10b | 20.3 ± 0.6 | 0.003 | 0.0008 | 4 (+) | 0.003 | 0.0008 | 4 (+) |
10c | 18 ± 1 | 0.0016 | 0.0008 | 2 (+) | 0.003 | 0.0015 | 2 (+) |
10d | 17.3 ± 0.6 | 0.0004 | 0.0002 | 2 (+) | 0.0008 | 0.0004 | 2 (+) |
10e | 20.7 ± 0.6 | 0.0004 | 0.0002 | 2 (+) | 0.0004 | 0.0002 | 2 (+) |
10f | 20 ± 1 | 0.0004 | 0.0002 | 2 (+) | 0.0004 | 0.0002 | 2 (+) |
11a | 46.3 ± 1 | 0.156 | 0.08 | 1.9 (+) | 0.625 | 0.312 | 2 (+) |
11b | 22 ± 1 | 1.25 | 0.312 | 4 (+) | 2.5 | 1.25 | 2(+) |
11c | 24 ± 1 | 0.625 | 0.156 | 4 (+) | 1.25 | 0.625 | 2 (+) |
11d | 21.7 ± 0.6 | 0.625 | 0.156 | 4 (+) | 1.25 | 0.625 | 2 (+) |
11e | 20.3 ± 0.6 | 0.312 | 0.156 | 2 (+) | 0.156 | 0.08 | 2 (+) |
11f | 14.3 ± 0.6 | 5 | 2.5 | 2 (+) | 10 | 5 | 2(+) |
Ampicilin | 12 ± 1 | 3.13 | 1.565 | 2 (+) | 6.25 | 3.13 | 2(+) |
Chloramphnicol | 12.7 ± 0.6 | 6.25 | 1.56 | 4 (+) | 12.5 | 6.25 | 2(+) |
Conjugates | Zone of Inhibition ZOI (mm) 1 | Klebsiella pneumoniae | Klebsiella pneumoniae ATCC 700603 | ||||
---|---|---|---|---|---|---|---|
Minimum Bactericidal Concentration MBC 2 | Minimum Inhibitory Concentration MIC 3 | MBC/MIC | MBC | MIC | MBC/MIC | ||
1a | 13.7 ± 0.6 | 5 | 1.25 | 4(+) | 10 | 5 | 2 |
1b | 12 ± 1 | 10 | 2.5 | 4(+) | 10 | 5 | 2 |
4 | 11 ± 1 | 40 | 5 | 8(+) | 20 | 5 | 4 |
10a | 23 ± 1 | 0.003 | 0.0008 | 4(+) | 0.006 | 0.003 | 2(+) |
10b | 17 ± 1 | 0.0125 | 0.006 | 2(+) | 0.025 | 0.0125 | 2(+) |
10c | 22 ± 1 | 0.625 | 0.156 | 4(+) | 0.625 | 0.312 | 2(+) |
10d | 19 ± 1 | 0.0125 | 0.006 | 2(+) | 0.0125 | 0.006 | 2(+) |
10e | 21 ± 1 | 0.003 | 0.0008 | 4(+) | 0.006 | 0.003 | 2(+) |
10f | 21.3 ± 0.6 | 0.006 | 0.003 | 2(+) | 0.0125 | 0.006 | 2(+) |
11a | 41.6 ± 0.6 | 0.156 | 0.04 | 4 (+) | 0.312 | 0.156 | 2(+) |
11b | 23 ± 1 | 1.25 | 0.625 | 2(+) | 2.5 | 1.25 | 2(+) |
11c | 25.3 ± 0.6 | 0.312 | 0.08 | 4(+) | 0.625 | 0.312 | 2(+) |
11d | 23.7 ± 0.6 | 0.625 | 0.156 | 4(+) | 1.25 | 0.625 | 2(+) |
11e | 25 ± 1 | 0.312 | 0.08 | 4(+) | 0.312 | 0.156 | 2(+) |
11f | 16 ± 1 | 5 | 1.25 | 4(+) | 5 | 2.5 | 2(+) |
Ampicilin | 14.3 ± 0.6 | 8 | 4 | 2(+) | 6.25 | 3.125 | 2(+) |
Chloramphnicol | 8.7 ± 0.6 | 3.13 | 1.565 | 2 (+) | 6.25 | 1.56 | 4 (+) |
Conjugates | Zone of Inhibition ZOI (mm) 1 | Serratia marcescens | Serratia marcescens ATCC13880 | ||||
---|---|---|---|---|---|---|---|
Minimum Bactericidal Concentration MBC 2 | Minimum Inhibitory Concentration MIC 3 | MBC/MIC | MBC | MIC | MBC/MIC | ||
1a | 14.7 ± 0.6 | 5 | 2.5 | 2(+) | 10 | 5 | 2(+) |
1b | 14.5 ± 0.6 | 5 | 1.25 | 4(+) | 5 | 2.5 | 2(+) |
4 | 13.3 ± 0.6 | 20 | 5 | 4(+) | 20 | 10 | 2(+) |
10a | 21.7 ± 0.6 | 0.0008 | 0.0004 | 2(+) | 0.0018 | 0.0008 | 2(+) |
10b | 26.3 ± 0.6 | 0.003 | 0.0008 | 4(+) | 0.006 | 0.003 | 2(+) |
10c | 28 ± 1 | 0.0004 | 0.0002 | 2(+) | 0.0008 | 0.0004 | 2(+) |
10d | 23.7 ± 0.6 | 1.25 | 0.62 | 2(+) | 0.006 | 0.003 | 2(+) |
10e | 22.7 ± 0.6 | 0.05 | 0.0125 | 4(+) | 0.05 | 0.025 | 2(+) |
10f | 28 ± 1 | 0.003 | 0.0008 | 4(+) | 0.003 | 0.0008 | 4(+) |
11a | 43 ± 1 | 0.08 | 0.04 | 2(+) | 0.156 | 0.08 | 2(+) |
11b | 15.3 ± 0.6 | 1.25 | 0.312 | 4(+) | 2.5 | 1.25 | 2(+) |
11c | 32.3 ± 0.6 | 1.25 | 0.312 | 4(+) | 2.5 | 1.25 | 2(+) |
11d | 23.3 ± 0.6 | 5 | 1.25 | 4(+) | 5 | 2.5 | 2(+) |
11e | 17.3 ± 0.6 | 5 | 1.25 | 4(+) | 5 | 2.5 | 2(+) |
11f | 10.7 ± 0.6 | 160 | 40 | 4(+) | 160 | 80 | 2(+) |
Ampicilin | 8.7 ± 0.6 | 12.5 | 6.25 | 2(+) | 6.25 | 1.56 | 4 (+) |
Chloramphnicol | 13.3 ± 0.6 | 3.13 | 1.565 | 2 (+) | 3.13 | 1.565 | 2 (+) |
Conjugates | MBC | MIC | MBC/MIC Ratio |
---|---|---|---|
10a | 0.025 | 0.006 | 4 (+) |
10b | 0.05 | 0.0125 | 4(+) |
10c | 0.05 | 0.025 | 2(+) |
10d | 0.05 | 0.025 | 2(+) |
10e | 0.05 | 0.025 | 2(+) |
10f | 0.05 | 0.025 | 2(+) |
11a | 0.625 | 0.156 | 4 (+) |
11b | 2.5 | 1.25 | 2(+) |
11c | 0.312 | 0.156 | 2(+) |
11d | 2.5 | 1.25 | 2(+) |
11e | 2.5 | 1.25 | 2(+) |
11f | 5 | 1.25 | 4(+) |
Concentration (mg/mL) | 10a | 10b | 10c | 10d | 10e | 10f |
---|---|---|---|---|---|---|
10 | 79.4 ± 0.22 | 65.4 ± 0.05 | 68.3 ± 0.07 | 71.8 ± 0.06 | 77.4 ± 0.07 | 62.9 ± 0.07 |
5 | 75.5 ± 0.11 | 59.8 ± 0.08 | 61.3 ± 0.08 | 65.3 ± 0.05 | 70.9 ± 0.06 | 58.8 ± 0.07 |
2.5 | 57.2 ± 0.07 | 48.8 ± 0.07 | 46.8 ± 0.05 | 43.8 ± 0.07 | 61.4 ± 0.07 | 43.9 ± 0.07 |
1.25 | 38.5 ± 0.07 | 33.4 ± 0.05 | 32.8 ± 0.06 | 31.7 ± 0.06 | 46.4 ± 0.07 | 34.6 ± 0.08 |
Concentration (mg/mL) | 11a | 11b | 11c | 11d | 11e | 11f |
---|---|---|---|---|---|---|
10 | 83.6 ± 0.11 | 72.7 ± 0.06 | 77.7 ± 0.08 | 67.4 ± 0.11 | 58.8 ± 0.08 | 50.2 ± 0.11 |
5 | 78.4 ± 0.08 | 58.6 ± 0.08 | 62.5 ± 0.08 | 54.2 ± 0.11 | 47.5 ± 0.13 | 41.9 ± 0.06 |
2.5 | 62.6 ± 0.09 | 43.3 ± 0.08 | 53.8 ± 0.08 | 39.3 ± 0.11 | 32.3 ± 0.11 | 24.7 ± 0.14 |
1.25 | 48.8 ± 0.06 | 34.7 ± 0.07 | 44.4 ± 0.09 | 28.5 ± 0.09 | 24.9 ± 0.09 | 16.4 ± 0.11 |
Compound No. | Binding Affinity | Root Mean Square Deviation (RMSD) | Amino Acids Involved in Interactions at the Active Site |
---|---|---|---|
10a | −7.181 | 1.674 | THR600(H-donor), HIS583(H-acceptor), THR600(pi-H) |
10b | −6.501 | 1.616 | THR 600(H-donor), HIS583(H-acceptor), THR600(pi-H) |
10c | −6.805 | 1.873 | GLN521(H-donor), GLU447(pi-H) |
10d | −6.992 | 1.498 | MET641(H-acceptor) |
10e | −7.191 | 1.184 | THR 600(H-donor), THR 600(H-acceptor), THR 600(H-acceptor) |
10f | −7.171 | 2.030 | SER462(H-acceptor), SER598(H-acceptor), LYS639(pi-H) |
11a | −7.254 | 1.464 | THR 600(H-donor), THR 600(H-acceptor), ASN464(H-donor), ASN464(H-acceptor) |
11b | −7.323 | 1.300 | THR 600(H-donor), GLN521(pi-H) |
11c | −8.098 | 1.784 | GLU523(H-donor), TYR519(H-donor), GLN521 (H-donor), GLU447(H-donor), SER403(H-acceptor), SER462(pi-H) |
11d | −7.115 | 2.134 | TYR446 (pi-H) |
11e | −7.444 | 1.987 | THR 600(H-donor), TYR446(pi-H), TYR446(pi-H) |
11f | −7.741 | 1.825 | THR 600(H-acceptor), THR 600(H-acceptor), GLY640(H-donor) |
RB6 | −6.9862 | 1.0736 | THR 600(H-acceptor), ASN464(H-acceptor), GLU447(H-donor), TYR519(H-donor) |
Molecule | MWt | HBA | HBD | TPSA | iLogP | GI Absorption | BBB Score | Drug Likeness Score | Bioavailability Score |
10a | 394.85 | 4 | 2 | 74.33 | 2.98 | High | 3.84 | 0.53 | 0.55 |
10b | 422.91 | 4 | 2 | 74.33 | 3.36 | High | 3.39 | 0.47 | 0.55 |
10c | 436.93 | 4 | 2 | 74.33 | 3.55 | High | 3.76 | 0.47 | 0.55 |
10d | 473.75 | 4 | 2 | 74.33 | 3.27 | High | 4.01 | 0.31 | 0.55 |
10e | 501.8 | 4 | 2 | 74.33 | 3.61 | High | 3.54 | 0.26 | 0.55 |
10f | 515.83 | 4 | 2 | 74.33 | 3.85 | High | 3.89 | 0.25 | 0.55 |
11a | 466.92 | 6 | 4 | 115.46 | 2.41 | High | 2.36 | 0.66 | 0.55 |
11b | 494.97 | 6 | 4 | 115.46 | 3.1 | High | 2.34 | 0.59 | 0.55 |
11c | 509 | 6 | 4 | 115.46 | 3.15 | High | 2.30 | 0.57 | 0.55 |
11d | 545.82 | 6 | 4 | 115.46 | 2.53 | High | 2.31 | 0.44 | 0.55 |
11e | 573.87 | 6 | 4 | 115.46 | 2.69 | High | 2.30 | 0.39 | 0.55 |
11f | 587.9 | 6 | 4 | 115.46 | 3.45 | High | 2.25 | 0.37 | 0.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elmongy, E.I.; Ahmed, A.A.S.; El Sayed, I.E.T.; Fathy, G.; Awad, H.M.; Salman, A.U.; Hamed, M.A. Synthesis, Biocidal and Antibiofilm Activities of New Isatin–Quinoline Conjugates against Multidrug-Resistant Bacterial Pathogens along with Their In Silico Screening. Antibiotics 2022, 11, 1507. https://doi.org/10.3390/antibiotics11111507
Elmongy EI, Ahmed AAS, El Sayed IET, Fathy G, Awad HM, Salman AU, Hamed MA. Synthesis, Biocidal and Antibiofilm Activities of New Isatin–Quinoline Conjugates against Multidrug-Resistant Bacterial Pathogens along with Their In Silico Screening. Antibiotics. 2022; 11(11):1507. https://doi.org/10.3390/antibiotics11111507
Chicago/Turabian StyleElmongy, Elshaymaa I., Abdullah A. S. Ahmed, Ibrahim El Tantawy El Sayed, Ghady Fathy, Hanem M. Awad, Ayah Usama Salman, and Mohamed A. Hamed. 2022. "Synthesis, Biocidal and Antibiofilm Activities of New Isatin–Quinoline Conjugates against Multidrug-Resistant Bacterial Pathogens along with Their In Silico Screening" Antibiotics 11, no. 11: 1507. https://doi.org/10.3390/antibiotics11111507
APA StyleElmongy, E. I., Ahmed, A. A. S., El Sayed, I. E. T., Fathy, G., Awad, H. M., Salman, A. U., & Hamed, M. A. (2022). Synthesis, Biocidal and Antibiofilm Activities of New Isatin–Quinoline Conjugates against Multidrug-Resistant Bacterial Pathogens along with Their In Silico Screening. Antibiotics, 11(11), 1507. https://doi.org/10.3390/antibiotics11111507