Changing Paradigms in Antibiotic Resistance in Salmonella Species with Focus on Fluoroquinolone Resistance: A 5-Year Retrospective Study of Enteric Fever in a Tertiary Care Hospital in Kolkata, India
Abstract
:1. Introduction
2. Results
Antibiotic Resistance Patterns
3. Discussion
4. Materials and Method
4.1. Study Type and Study Settings
4.2. Collection of Samples
4.3. Processing of Samples
4.4. Identification of Salmonella spp.
4.5. Serotyping of Salmonella spp.
4.6. Antibiotic Susceptibility Testing (AST)
4.7. Minimum Inhibitory Concentration (MIC) Determination
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petersiel, N.; Shresta, S.; Tamrakar, R.; Koju, R.; Madhup, S.; Shresta, A.; Bedi, T.; Zmora, N.; Paran, Y.; Schwartz, E.; et al. The epidemiology of typhoid fever in the Dhulikhel area, Nepal: A prospective cohort study. PLoS ONE 2018, 13, e0204479. [Google Scholar] [CrossRef]
- Harris, J.B.; Brooks, W.A. Typhoid and paratyphoid (enteric) fever. In Hunter’s Tropical Medicine and Emerging Infectious Diseases, 9th ed.; Magill, A.J., Ryan, E.T., Hill, D.R., Solomon, T., Eds.; Elsevier: Philadelphia, PA, USA, 2013; pp. 568–576. [Google Scholar]
- Crump, J.A. Typhoid fever and the challenge of nonmalaria febrile illness in sub-saharan Africa. Clin. Infect. Dis. 2012, 54, 1107–1109. [Google Scholar] [CrossRef] [PubMed]
- D’Acremont, V.; Kilowoko, M.; Kyungu, E.; Philipina, S.; Sangu, W.; Kahama-Maro, J.; Lengeler, C.; Cherpillod, P.; Kaiser, L.; Genton, B. Beyond malaria—Causes of fever in outpatient Tanzanian children. N. Engl. J. Med. 2014, 370, 809–817. [Google Scholar] [CrossRef] [PubMed]
- Acestor, N.; Cooksey, R.; Newton, P.N.; Ménard, D.; Guerin, P.J.; Nakagawa, J. Mapping the Aetiology of Non-Malarial Febrile Illness in Southeast Asia through a Systematic Review—Terra Incognita Impairing Treatment Policies. PLoS ONE 2012, 7, e44269. [Google Scholar]
- Deen, J.; von Seidlein, L.; Andersen, F.; Elle, N.; White, N.J.; Lubell, Y. Community acquired bacterial bloodstream infections in developing countries in South and Southeast Asia: A systematic review. Lancet Infect. Dis. 2012, 12, 480–487. [Google Scholar] [CrossRef]
- Ochiai, R.L.; Wang, X.; von Seidlein, L.; Yang, J.; Bhutta, Z.A.; Bhattacharya, S.K.; Agtini, M.; Deen, J.L.; Wain, J.; Kim, D.R.; et al. Salmonella paratyphi A rates, Asia. Emerg. Infect. Dis. 2005, 11, 1764–1766. [Google Scholar] [CrossRef] [PubMed]
- Vollaard, A.M.; Ali, S.; Widjaja, S.; Asten, H.A.; Visser, L.G.; Surjadi, C.; van Dissel, J.T. Identification of typhoid fever and paratyphoid fever cases at presentation in outpatient clinics in Jakarta, Indonesia. Trans. R. Soc. Trop. Med. Hyg. 2005, 99, 440–450. [Google Scholar] [CrossRef]
- World Health Organisation. Vaccines and Biologicals. Background Document: The Diagnosis, Treatment and Prevention of Typhoid Fever. Geneva. 2003. Available online: https://www.glowm.com/pdf/WHO-diagnosis%20treatment%20prevention%20of%20typhoid%20fever-2003-CustomLicense.pdf (accessed on 18 April 2019).
- Wain, J.; Diep, T.S.; Ho, V.A.; Walsh, A.M.; Hoa, N.T.T.; Parry, C.M.; White, N.J. Quantitation of bacteria in blood of typhoid fever patients and relationship between counts and clinical features, transmissibility, and antibiotic resistance. J. Clin. Microbiol. 1998, 36, 1683–1687. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. Global Strategy for Containment of Antimicrobial Resistance. Available online: https://www.who.int/drugresistance/WHO_Global_Strategy_English.pdf?ua=1 (accessed on 22 November 2018).
- Molander, V.; Elisson, C.; Balaji, V.; Backhaus, E.; John, J.; Vargheese, R.; Jayaraman, R.; Andersson, R. Invasive pneumococcal infections in Vellore, India: Clinical characteristics and distribution of serotypes. BMC Infect. Dis. 2013, 13, 532. [Google Scholar] [CrossRef]
- Britto, C.D.; Wong, V.K.; Dougan, G.; Pollard, A.J. A systematic review of antimicrobial resistance in Salmonella enterica serovar Typhi, the etiological agent of typhoid. PLoS Negl. Trop. Dis. 2018, 12, e0006779. [Google Scholar] [CrossRef]
- Azmatullah, A.; Qamar, F.N. Systematic review of the global epidemiology, clinical and laboratory profile of enteric fever. J. Glob. Health 2015, 5, 020407. [Google Scholar] [CrossRef] [PubMed]
- Parry, C.M.; Hien, T.T.; Dougan, G.; White, N.J.; Farrar, J.J. Typhoid Fever. N. Engl. J. Med. 2002, 347, 1770–1782. [Google Scholar] [CrossRef] [PubMed]
- Ugboko, H.; De, N. Mechanisms of Antibiotic resistance in Salmonella typhi. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 461–476. [Google Scholar]
- Thanh, D.P.; Thompson, C.N.; Rabaa, M.; Sona, S.; Sopheary, S.; Kumar, V.; Moore, C.; Thieu, N.T.V.; Wijedoru, L.; Holt, K.; et al. The Molecular and Spatial Epidemiology of Typhoid Fever in Rural Cambodia. PLoS Negl. Trop. Dis. 2016, 10, e0004785. [Google Scholar]
- World Health Organization: Global AMR Surveillance System. In 2nd High Level Technical Meeting on Surveillance of Antimicrobial Resistance for Local and Global Action: Meeting Report; World Health Organization: Geneva, Switzerland, 2017.
- Sridhar, H.; Macaden, R.; Laxmidevi, M.L.; Bhat, P. Chloramphenicol resistance of Salmonella typhi in Bangalore. Indian J. Med. Res. 1983, 78, 314–318. [Google Scholar] [PubMed]
- Vandenbroucke, J.P.; von Elm, E.; Altman, D.G.; Gotzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M.; STROBE Initiative. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and elaboration. Epidemiology 2007, 18, 805–835. [Google Scholar] [CrossRef] [PubMed]
- John, J.; Van Aart, C.J.C.; Grassly, N.C. The Burden of Typhoid and Paratyphoid in India: Systematic Review and Meta-analysis. PLoS Negl. Trop. Dis. 2016, 10, e0004616. [Google Scholar] [CrossRef] [PubMed]
- Bhunia, R.; Hutin, Y.; Ramakrishnan, R.; Pal, N.; Sen, T.; Murhekar, M. A typhoid fever outbreak in a slum of South Dumdum municipality, West Bengal, India, 2007: Evidence for foodborne and waterborne transmission. BMC Public Health 2009, 9, 115. [Google Scholar] [CrossRef] [PubMed]
- Jesudason, M.V.; John, T.J. Plasmid mediated multidrug resistance in Salmonella Typhi. Indian J. Med. Res. 1992, 95, 66–67. [Google Scholar]
- Saha, M.R.; Dutta, P.; Niyogi, S.K.; Dutta, S.; Mitra, U.; Ramamurthy, T.; Manna, B.; Bhattacharya, S.K. Decreasing trend in the occurrence of Salmonella enterica serotype Typhi amongst hospitalized children in Kolkata, India during 1990–2000. Indian J. Med. Res. 2002, 115, 46–48. [Google Scholar]
- Butt, T.; Ahmad, R.N.; Mahmood, A.; Zaidi, S. Ciprofloxacin treatment failure in typhoid fever case, Pakistan. Emerg. Infect. Dis. 2003, 9, 1621–1622. [Google Scholar] [CrossRef] [PubMed]
- Effa, E.E.; Lassi, Z.S.; Critchley, J.A.; Garner, P.; Sinclair, D.; Olliaro, P.L.; Bhutta, Z.A. Fluoroquinolones for treating typhoid and paratyphoid fever (enteric fever). Cochrane Database Syst. Rev. 2011, 10, CD004530. [Google Scholar] [CrossRef]
- Manchanda, V.; Bhalla, P.; Sethi, M.; Sharma, P.K. Treatment of enteric fever in children on the basis of current trends of antimicrobial susceptibility of Salmonella enterica serovar Typhi and Paratyphi A. Indian J. Med. Microbiol. 2006, 24, 101–106. [Google Scholar] [PubMed]
- Kumar, S.; Rizvi, M.; Berry, N. Rising prevalence of enteric fever due to multidrug-resistant Salmonella: An epidemiological study. J. Med. Microbiol. 2008, 57, 1247–1250. [Google Scholar] [CrossRef]
- Chowta, M.N.; Chowta, N.K. Study of clinical profile and antibiotic response in typhoid fever. Indian J. Med. Microbiol. 2005, 23, 125–127. [Google Scholar] [CrossRef]
- Sinha, A.; Sazawal, S.; Kumar, R.; Sood, S.; Reddaiah, V.P.; Singh, B.; Rao, M.; Naficy, A.; Clemens, J.D.; Bhan, M.K. Typhoid fever in children aged less than 5 years. Lancet 1999, 354, 734–737. [Google Scholar] [CrossRef]
- Ochiai, R.L.; Acosta, C.J.; Danovaro-Holliday, M.C.; Baiqing, D.; Bhattacharya, S.K.; Agtini, M.D.; Bhutta, Z.A.; Canh, D.G.; Ali, M.; Shin, S.; et al. A study of typhoid fever in five Asian countries: Disease burden and implications for controls. Bull. World Health Organ. 2008, 86, 260–268, Erratum in Bull. World Health Organ. 2015, 93, 284, 440. [Google Scholar] [CrossRef]
- Karkey, A.; Arjyal, A.; Anders, K.L.; Boni, M.F.; Dongol, S.; Koirala, S.; My, P.V.; Nga, T.V.; Clements, A.C.; Holt, K.E.; et al. The burden and characteristics of enteric fever at a healthcare facility in a densely populated area of Kathmandu. PLoS ONE 2010, 5, e13988. [Google Scholar] [CrossRef]
- Gupta, V.; Singla, N.; Bansal, N.; Kaistha, N.; Chander, J. Trends in the antibiotic resistance patterns of enteric Fever isolates—A three year report from a tertiary care centre. Malays. J. Med. Sci. 2013, 20, 71–75. [Google Scholar]
- Brown, J.C.; Shanahan, P.M.; Jesudason, M.V.; Thomson, C.J.; Amyes, S.G. Mutations responsible for reduced susceptibility to 4quinolones in clinical isolates of multi-resistant Salmonella typhi in India. J. Antimicrob. Chemother. 1996, 37, 891–900. [Google Scholar] [CrossRef]
- Chitnis, V.; Chitnis, D.; Verma, S.; Hemvani, N. Multidrug-resistant Salmonella typhi in India. Lancet 1999, 354, 514–515. [Google Scholar] [CrossRef]
- Kapil, A.; Renuka, B.D. Nalidixic acid susceptibility test to screen ciprofloxacin resistance in Salmonella typhi. Indian J. Med. Res. 2002, 115, 49–54. [Google Scholar] [PubMed]
- Krishnan, P.; Stalin, M.; Balasubramanian, S. Changing trends in antimicrobial resistance of Salmonella enterica serovar typhi and salmonella enterica serovar paratyphi A in Chennai. Indian J. Pathol. Microbiol. 2009, 52, 505–508. [Google Scholar] [CrossRef] [PubMed]
- Nagshetty, K.; Channappa, S.T.; Gaddad, S.M. Antimicrobial susceptibility of Salmonella Typhi in India. J. Infect. Dev. Ctries 2010, 4, 70–73. [Google Scholar] [CrossRef]
- Harish, B.N.; Menezes, G.A. Preserving efficacy of chloramphenicol against typhoid fever in a tertiary care hospital, India. In Regional Health Forum. WHO South-East Asia Regional; WHO: Geneva, Switzerland, 2011; Volume 15, pp. 92–96. [Google Scholar]
- Skov, R.; Matuschek, E.; Sjölund-Karlsson, M.; Åhman, J.; Petersen, A.; Stegger, M.; Torpdahl, M.; Kahlmeter, G. Development of a Pefloxacin Disk Diffusion Method for Detection of Fluoroquinolone-Resistant Salmonella enterica. J. Clin. Microbiol. 2015, 53, 3411–3417. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Raoult, D.; Rolain, J.M. A bioinformatic approach to understanding antibiotic resistance in intracellular bacteria through whole genome analysis. Int. J. Antimicrob. Agents 2008, 32, 207–220. [Google Scholar] [CrossRef] [PubMed]
- Dalhoff, A. Global fluoroquinolone resistance epidemiology and implictions for clinical use. Interdiscip. Perspect. Infect. Dis. 2012, 2012, 976273. [Google Scholar] [CrossRef]
- Redgrave, L.S.; Sutton, S.B.; Webber, M.A.; Piddock, L.J.V. Fluoroquinolone resistance: Mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol. 2014, 22, 438–445. [Google Scholar] [CrossRef]
- Ruiz, J. Transferable mechanisms of quinolone resistance from 1998 onward. Clin. Microbiol. Rev. 2019, 32, e00007-19. [Google Scholar] [CrossRef]
- ICMR. Annual Report 2021: Antimicrobial Resistance Research and Surveillance Network (icmr.nic.in); ICMR: New Delhi, India, 2021.
- Birger, R.; Antillón, M.; Bilcke, J.; Dolecek, C.; Dougan, G.; Pollard, A.J.; Neuzil, K.M.; Frost, I.; Laxminarayan, R.; Pitzer, V.E.; et al. Estimating the effect of vaccination on antimicrobial-resistant typhoid fever in 73 countries supported by Gavi: A mathematical modelling study. Lancet Infect. Dis. 2022, 22, 679–691. [Google Scholar] [CrossRef]
- Andrews, J.R.; Baker, S.; Marks, F.; Alsan, M.; Garrett, D.; Gellin, B.G.; Saha, S.K.; Qamar, F.N.; Yousafzai, M.T.; Bogoch, I.; et al. Typhoid conjugate vaccines: A new tool in the fight against antimicrobial resistance. Lancet Infect. Dis. 2019, 19, e26–e30. [Google Scholar] [CrossRef]
- WHO. Typhoid Fever. 2020. Available online: https://www.who.int/teams/health-product-policy-and-standards/standards-and-specifications/vaccine-standardization/typhoid-fever (accessed on 17 August 2022).
- WHO. Typbar TCV from Bharat Biotech, World’s First Typhoid Conjugate Vaccine Prequalified by WHO. 3 January 2018. Available online: https://www.who.int/medicines/news/2017/Bharat-Biotech-TypbarTCV-WHO-PQ-Press-Release-Global-Final.pdf?ua=1 (accessed on 17 August 2022).
- World Health Organization. Meeting of the Strategic Advisory Group of Experts on immunization, October 2017—Conclusions and recommendations. Wkly. Epidemiol. Rec. 2017, 92, 729–747. [Google Scholar]
- Kumar, P.; Kumar, R. Enteric fever. Indian J. Pediatr. 2017, 84, 227–230. [Google Scholar] [CrossRef]
- Klemm, E.J.; Shakoor, S.; Page, A.J.; Qamar, F.N.; Judge, K.; Saeed, D.K.; Wong, V.K.; Dallman, T.J.; Nair, S.; Baker, S.; et al. Emergence of an Extensively Drug-Resistant Salmonella enterica Serovar Typhi Clone Harboring a Promiscuous Plasmid Encoding Resistance to Fluoroquinolones and Third-Generation Cephalosporins. mBio 2018, 9, e00105-18. [Google Scholar] [CrossRef]
- Kumarasamy, K.; Krishnan, P. Report of a Salmonella enerica serovar Typhi isolate from India producing CMY-2 AmpCβ-lactamase. J. Antimicrob. Chemother. 2012, 67, 775–776. [Google Scholar] [CrossRef]
- Gokul, B.N.; Menezes, G.A.; Harish, B.N. ACC-1 beta-lactamase-producing Salmonella enterica serovar Typhi, India. Emerg. Infect. Dis. 2010, 16, 1170–1171. [Google Scholar] [CrossRef] [PubMed]
- DevangaRagupathi, N.K.; MuthiuilandiSethuvel, D.P.; Shankar, B.A.; Munusamy, E.; Anandan, S.; Veeraraghavan, B. Draft genome sequence of blaTEM-1-meditaed cephalosporin-resistant Salmonella enterica serovar Typhi from bloodstream infection. J. Glob. Antimicrob. Resist. 2016, 7, 11–12. [Google Scholar] [CrossRef] [PubMed]
- Jacob, J.J.; Pragasam, A.K.; Vasudevan, K.; Veeraraghavan, B.; Kang, G.; John, J.; Nagvekar, V.; Mutreja, A. Salmonella Typhi acquires diverse plasmids from other Enterobacteriaceae to develop cephalosporin resistance. Genomics 2021, 113, 2171–2176. [Google Scholar] [CrossRef] [PubMed]
- Kokare, R.; Bari, A.K.; Pereira, J.V.; Patel, K.; Poojary, A. Minimum inhibitory concentration (MIC) of Ceftriaxone and Azithromycin for blood culture isolates of Salmonella enterica spp. J. Infect. Dev. Ctries. 2021, 15, 538–543. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.K.; Talukder, S.Y.; Islam, M.; Saha, S. A highly ceftriaxone resistant Salmonella typhi in Bangladesh. Pediatr. Infect. Dis. J. 1999, 18, 387. [Google Scholar] [CrossRef] [PubMed]
- Pietsch, M.; Simon, S.; Meinen, A.; Trost, E.; Banerji, S.; Pfeifer, Y.; Flieger, A. Third generation cephalosporin resistance in clinical non-typhoidal Salmonella enteric in Germany and emergence of blaCTX-M-harbouringpESI plasmids. Microb. Genom. 2021, 7, 000698. [Google Scholar]
- Ali Shah, S.A.; Nadeem, M.; Syed, S.A.; Fatima Abidi, S.T.; Khan, N.; Bano, N. Antimicrobial Sensitivity Pattern of Salmonella Typhi: Emergence of Resistant Strains. Cureus 2020, 12, e11778. [Google Scholar] [CrossRef] [PubMed]
- Wilvon, M.L.; Weinstein, M.P.; Reinier, L.G.; Mirretr, S.; Reller, L.B. Controlled comparison of the BacT/Alert and BACTEC 660/730 nonradiometric blood culture systems. J. Clin. Microbiol. 1992, 30, 323–329. [Google Scholar]
- Nataro, J.; Bopp, C.; Fields, P.; Kaper, J.; Strockbine, N. Escherichia, Shigella, and Salmonella. In Manual of Clinical Microbiology, 10th ed.; Versalovic, J., Carroll, K., Funke, G., Jorgensen, J., Landry, M., Warnock, D., Eds.; ASM Press: Washington, DC, USA, 2011; pp. 603–626. [Google Scholar]
- Grimont, P.A.; Weill, F.X. Antigenic Formulae of the Salmonella Serovars, 9th ed.; WHO Collaborating Center for Reference and Research on Salmonella, Institute Pasteur: Paris, France, 2007. [Google Scholar]
- D’Aoust, J.; Maurer, J. Salmonella species. In Food Microbiology: Fundamentals and Frontiers, 3rd ed.; Doyle, M., Beuchat, L., Eds.; ASM Press: Washington, DC, USA, 2007; pp. 187–236. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
Year | Number of Samples Tested | Number of Salmonella Isolated | Percentage Positivity (%) |
---|---|---|---|
2017 | 334 | 2 | 0.59% |
2018 | 681 | 12 | 1.7% |
2019 | 938 | 15 | 1.5% |
2020 | 702 | 9 | 1.2% |
2021 | 996 | 4 | 0.4% |
2022 | 400 | 3 | 0.75% |
Percentage Positivity across Various Age Groups | |||||||
---|---|---|---|---|---|---|---|
Years | 10–15 | 16–20 | 21–30 | 31–40 | 41–50 | 51–60 | >60 |
2017 | 1/30 (3%) | 0/7 (0%) | 0/67 (0%) | 0/62 (0%) | 0/74 (0%) | 1/46 (2.17%) | 0/48 (0%) |
2018 | 0/17 (0%) | 4/31 (12.9%) | 3/273 (1.09%) | 1/104 (0.96%) | 2/72 (2.7%) | 1/90 (1.1%) | 1/94 (1.06%) |
2019 | 2/36 (5.5%) | 4/70 (5.7%) | 8/332 (2.4%) | 0/213 (0%) | 0/92 (0%) | 0/100 (0%) | 1/95 (1.05%) |
2020 | 0/20 (0%) | 3/30 (10%) | 5/261 (1.9%) | 0/91 (0%) | 1/153 (0.6%) | 0/100 (0%) | 0/47 (0%) |
2021 | 0/15 (0%) | 2/35 (5.7%) | 0/377 (0%) | 1/125 (0.8%) | 1/101 (0.9%) | 0/178 (0%) | 0/165 (0%) |
2022 | 0/8 (0%) | 1/15 (6.6%) | 2/153 (1.3%) | 0/100 (0%) | 0/85 (0%) | 0/14 (0%) | 0/25 (0%) |
Year | Salmonella Typhi | Salmonella Paratyphi A |
---|---|---|
2017 | 1 | 1 |
2018 | 11 | 1 |
2019 | 10 | 5 |
2020 | 7 | 2 |
2021 | 3 | 1 |
2022 | 3 | 0 |
Total | 35 | 10 |
Antibiotics | Salmonella Typhi (n = 35) | Salmonella Paratyphi A (n = 10) |
---|---|---|
Chloramphenicol | 0/35 (0%) | 0/10 (0%) |
Cotrimoxazole | 0/35 (0%) | 0/10 (0%) |
Ampicillin | 0/35 (0%) | 0/10 (0%) |
Ceftriaxone | 0/35 (0%) | 1/10 (10%) |
Azithromycin | 0/35 (0%) | 1/10 (10%) |
Ciprofloxacin | 28/35 (80%) | 9/10 (90%) |
Nalidixic Acid | 28/35 (80%) | 9/10 (90%) |
Pefloxacin | 28/35 (80%) | 9/10 (90%) |
Amoxycillin-Clavulanic Acid | 0/35 (0%) | 1/10 (10%) |
Piperacillin-Tazobactam | 0/35 (0%) | 1/10 (10%) |
Meropenem | 0/35 (0%) | 1/10 (10%) |
Cefixime | 1/35 (2.8%) | 3/10 (30%) |
2017 (n = 1) | 2018 (n = 11) | 2019 (n = 10) | 2020 (n = 7) | 2021 (n = 3) | 2022 (n = 3) | |
---|---|---|---|---|---|---|
Ampicillin | 0/1 (0%) | 0/11 (0%) | 0/10 (0%) | 0/7 (0%) | 0/3 (0%) | 0/3 (0%) |
Cotrimoxazole | 0/1 (0%) | 0/11 (0%) | 0/10 (0%) | 0/7 (0%) | 0/3 (0%) | 0/3 (0%) |
Azithromycin | 0/1 (0%) | 0/11 (0%) | 0/10 (0%) | 0/7 (0%) | 0/3 (0%) | 0/3 (0%) |
Chloramphenicol | 0/1 (0%) | 0/11 (0%) | 0/10 (0%) | 0/7 (0%) | 0/3 (0%) | 0/3 (0%) |
Ceftriaxone | 0/1 (0%) | 0/11 (0%) | 0/10 (0%) | 0/7 (0%) | 0/3 (0%) | 0/3 (0%) |
Cefixime | 0/1 (0%) | 0/11 (0%) | 1/10 (10%) | 0/7 (0%) | 0/3 (0%) | 0/3 (0%) |
Ciprofloxacin | 0/1 (0%) | 5/11 (45.45%) | 10/10 (100%) | 7/7 (100%) | 3/3 (100%) | 3/3 (100%) |
Nalidixic Acid | 0/1 (0%) | 5/11 (45.45%) | 10/10 (100%) | 7/7 (100%) | 3/3 (100%) | 3/3 (100%) |
Pefloxacin | 0/1 (0%) | 5/11 (45.45%) | 10/10 (100%) | 7/7 (100%) | 3/3 (100%) | 3/3 (100%) |
Meropenem | 0/1 (0%) | 0/11 (0%) | 0/10 (0%) | 0/7 (0%) | 0/3 (0%) | 0/3 (0%) |
2017 (n = 1) | 2018 (n = 1) | 2019 (n = 5) | 2020 (n = 2) | 2021 (n = 1) | 2022 (n = 0) | |
---|---|---|---|---|---|---|
Ampicillin | 0/1 (0%) | 0/1 (0%) | 0/5 (0%) | 0/2 (0%) | 0/1 (0%) | 0% |
Cotrimoxazole | 0/1 (0%) | 0/1 (0%) | 0/5 (0%) | 0/2 (0%) | 0/1 (0%) | 0% |
Azithromycin | 0/1 (0%) | 0/1 (0%) | 0/5 (0%) | 1/2 (50%) | 0/1 (0%) | 0% |
Chloramphenicol | 0/1 (0%) | 0/1 (0%) | 0/5 (0%) | 0/2 (0%) | 0/1 (0%) | 0% |
Ceftriaxone | 0/1 (0%) | 0/1 (0%) | 1/5 (20%) | 1/2 (50%) | 0/1 (0%) | 0% |
Cefixime | 0/1 (0%) | 0/1 (0%) | 2/5 (40%) | 1/2 (50%) | 0/1 (0%) | 0% |
Piperacillin/Tazobactam | 0/1 (0%) | 0/1 (0%) | 0/5 (0%) | 1/2 (50%) | 0/1 (0%) | 0% |
Amoxicillin/Clavulanic Acid | 0/1 (0%) | 0/1 (0%) | 0/5 (0%) | 1/2 (50%) | 0/1 (0%) | 0% |
Ciprofloxacin | 1/1 (100%) | 0/1 (0%) | 5/5 (100%) | 2/2 (100%) | 1/1 (100%) | 0% |
Nalidixic Acid | 1/1 (100%) | 0/1 (0%) | 5/5 (100%) | 2/2 (100%) | 1/1 (100%) | 0% |
Pefloxacin | 1/1 (100%) | 0/1 (0%) | 5/5 (100%) | 2/2 (100%) | 1/1 (100%) | 0% |
Meropenem | 0/1 (0%) | 0/1 (0%) | 0/5 (0%) | 1/2 (50%) | 0/1 (0%) | 0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biswas, M.; Biswas, S.; Gupta, B.; Mascellino, M.T.; Rakshit, A.; Chakraborty, B. Changing Paradigms in Antibiotic Resistance in Salmonella Species with Focus on Fluoroquinolone Resistance: A 5-Year Retrospective Study of Enteric Fever in a Tertiary Care Hospital in Kolkata, India. Antibiotics 2022, 11, 1308. https://doi.org/10.3390/antibiotics11101308
Biswas M, Biswas S, Gupta B, Mascellino MT, Rakshit A, Chakraborty B. Changing Paradigms in Antibiotic Resistance in Salmonella Species with Focus on Fluoroquinolone Resistance: A 5-Year Retrospective Study of Enteric Fever in a Tertiary Care Hospital in Kolkata, India. Antibiotics. 2022; 11(10):1308. https://doi.org/10.3390/antibiotics11101308
Chicago/Turabian StyleBiswas, Malabika, Silpak Biswas, Bishal Gupta, Maria Teresa Mascellino, Anindita Rakshit, and Banya Chakraborty. 2022. "Changing Paradigms in Antibiotic Resistance in Salmonella Species with Focus on Fluoroquinolone Resistance: A 5-Year Retrospective Study of Enteric Fever in a Tertiary Care Hospital in Kolkata, India" Antibiotics 11, no. 10: 1308. https://doi.org/10.3390/antibiotics11101308
APA StyleBiswas, M., Biswas, S., Gupta, B., Mascellino, M. T., Rakshit, A., & Chakraborty, B. (2022). Changing Paradigms in Antibiotic Resistance in Salmonella Species with Focus on Fluoroquinolone Resistance: A 5-Year Retrospective Study of Enteric Fever in a Tertiary Care Hospital in Kolkata, India. Antibiotics, 11(10), 1308. https://doi.org/10.3390/antibiotics11101308