A Minimal Physiologically Based Pharmacokinetic Model to Characterize CNS Distribution of Metronidazole in Neuro Care ICU Patients
Abstract
:1. Introduction
2. Results
2.1. PBPK Analysis
2.2. Sensitivity Analysis
2.2.1. Impact of Brain Pathophysiological Changes
2.2.2. Impact of EVD
2.3. Evaluation of Drug Permeability across the BBB and BCSFB
3. Discussion
4. Materials and Methods
4.1. Patients, Metronidazole Administration, Sample Collection and Quantification of Metronidazole Concentrations
4.2. Population PK Analysis
4.3. Sensitivity Analysis
4.3.1. Impact of Brain Pathophysiological Changes
4.3.2. Impact of EVD
4.4. Evaluation of Drug Permeability across the BBB and BCSFB
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A. In Vitro Bidirectional Transport Assay of Metronidazole
- Caco-2 Cell Culture
- Metronidazole transport experiments
- Metronidazole quantification
- Data analysis
Apparent Permeability (Papp) | Efflux Ratio | ||
---|---|---|---|
(AP-to-BL) direction | BL-to-AP direction | ||
Metronidazole | 9.0 ± 5.0 × 10−6 cm/s | 13.2 ± 4.0 × 10−6 cm/s | 1.47 |
11.1 ± 4.6 × 10-6 cm/s |
References
- Helms, H.C.; Abbott, N.J.; Burek, M.; Cecchelli, R.; Couraud, P.-O.; Deli, M.A.; Förster, C.; Galla, H.J.; Romero, I.A.; Shusta, E.V.; et al. In Vitro Models of the Blood–Brain Barrier: An Overview of Commonly Used Brain Endothelial Cell Culture Models and Guidelines for Their Use. J. Cereb. Blood Flow Metab. 2016, 36, 862–890. [Google Scholar] [CrossRef] [PubMed]
- Ball, K.; Bouzom, F.; Scherrmann, J.-M.; Walther, B.; Declèves, X. Development of a Physiologically Based Pharmacokinetic Model for the Rat Central Nervous System and Determination of an In Vitro–In Vivo Scaling Methodology for the Blood–Brain Barrier Permeability of Two Transporter Substrates, Morphine and Oxycodone. J. Pharm. Sci. 2012, 101, 4277–4292. [Google Scholar] [CrossRef] [PubMed]
- Kielbasa, W.; Stratford, R.E. Exploratory Translational Modeling Approach in Drug Development to Predict Human Brain Pharmacokinetics and Pharmacologically Relevant Clinical Doses. Drug Metab. Dispos. 2012, 40, 877–883. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Välitalo, P.A.; Wong, Y.C.; Huntjens, D.R.; Proost, J.H.; Vermeulen, A.; Krauwinkel, W.; Beukers, M.W.; Kokki, H.; Kokki, M.; et al. Prediction of Human CNS Pharmacokinetics Using a Physiologically-Based Pharmacokinetic Modeling Approach. Eur. J. Pharm. Sci. 2018, 112, 168–179. [Google Scholar] [CrossRef]
- Westerhout, J.; van den Berg, D.-J.; Hartman, R.; Danhof, M.; de Lange, E.C.M. Prediction of Methotrexate CNS Distribution in Different Species—Influence of Disease Conditions. Eur. J. Pharm. Sci. 2014, 57, 11–24. [Google Scholar] [CrossRef]
- Chenel, M.; Limosin, A.; Marchand, S.; Paquereau, J.; Mimoz, O.; Couet, W. Norfloxacin-Induced Electroencephalogram Alteration and Seizures in Rats Are Not Triggered by Enhanced Levels of Intracerebral Glutamate. Antimicrob. Agents Chemother. 2003, 47, 3660–3662. [Google Scholar] [CrossRef]
- Imani, S.; Buscher, H.; Marriott, D.; Gentili, S.; Sandaradura, I. Too Much of a Good Thing: A Retrospective Study of β-Lactam Concentration–Toxicity Relationships. J. Antimicrob. Chemother. 2017, 72, 2891–2897. [Google Scholar] [CrossRef]
- Norrby, S.R. Neurotoxicity of Carbapenem Antibiotics: Consequences for Their Use in Bacterial Meningitis. J. Antimicrob. Chemother. 2000, 45, 5–7. [Google Scholar] [CrossRef]
- Dorsett, M.; Liang, S.Y. Diagnosis and Treatment of Central Nervous System Infections in the Emergency Department. Emerg. Med. Clin. North Am. 2016, 34, 917–942. [Google Scholar] [CrossRef]
- Hussein, K.; Bitterman, R.; Shofty, B.; Paul, M.; Neuberger, A. Management of Post-Neurosurgical Meningitis: Narrative Review. Clin. Microbiol. Infect. 2017, 23, 621–628. [Google Scholar] [CrossRef] [Green Version]
- Van de Beek, D.; Drake, J.M.; Tunkel, A.R. Nosocomial Bacterial Meningitis. N. Engl. J. Med. 2010, 362, 146–154. [Google Scholar] [CrossRef] [PubMed]
- López-Álvarez, B.; Martín-Láez, R.; Fariñas, M.C.; Paternina-Vidal, B.; García-Palomo, J.D.; Vázquez-Barquero, A. Multidrug-Resistant Acinetobacter Baumannii Ventriculitis: Successful Treatment with Intraventricular Colistin. Acta Neurochir. 2009, 151, 1465–1472. [Google Scholar] [CrossRef] [PubMed]
- Nau, R.; Sörgel, F.; Eiffert, H. Penetration of Drugs through the Blood-Cerebrospinal Fluid/Blood-Brain Barrier for Treatment of Central Nervous System Infections. Clin. Microbiol. Rev. 2010, 23, 858–883. [Google Scholar] [CrossRef] [PubMed]
- Simon, M.J.; Iliff, J.J. Regulation of Cerebrospinal Fluid (CSF) Flow in Neurodegenerative, Neurovascular and Neuroinflammatory Disease. Biochim. Biophys. Acta 2016, 1862, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Bothwell, S.W.; Janigro, D.; Patabendige, A. Cerebrospinal Fluid Dynamics and Intracranial Pressure Elevation in Neurological Diseases. Fluids Barriers CNS 2019, 16, 9. [Google Scholar] [CrossRef] [PubMed]
- Greve, M.W.; Zink, B.J. Pathophysiology of Traumatic Brain Injury. Mt. Sinai J. Med. J. Transl. Pers. Med. 2009, 76, 97–104. [Google Scholar] [CrossRef]
- Bouzat, P.; Sala, N.; Payen, J.-F.; Oddo, M. Beyond Intracranial Pressure: Optimization of Cerebral Blood Flow, Oxygen, and Substrate Delivery after Traumatic Brain Injury. Ann. Intensive Care 2013, 3, 23. [Google Scholar] [CrossRef]
- Lennihan, L.; Mayer, S.A.; Fink, M.E.; Beckford, A.; Paik, M.C.; Zhang, H.; Wu, Y.-C.; Klebanoff, L.M.; Raps, E.C.; Solomon, R.A. Effect of Hypervolemic Therapy on Cerebral Blood Flow After Subarachnoid Hemorrhage: A Randomized Controlled Trial. Stroke 2000, 31, 383–391. [Google Scholar] [CrossRef]
- Lu, C.; Zhang, Y.; Chen, M.; Zhong, P.; Chen, Y.; Yu, J.; Wu, X.; Wu, J.; Zhang, J. Population Pharmacokinetics and Dosing Regimen Optimization of Meropenem in Cerebrospinal Fluid and Plasma in Patients with Meningitis after Neurosurgery. Antimicrob. Agents Chemother. 2016, 60, 6619–6625. [Google Scholar] [CrossRef]
- Jalusic, K.O.; Hempel, G.; Arnemann, P.; Spiekermann, C.; Kampmeier, T.; Ertmer, C.; Gastine, S.; Hessler, M. Population Pharmacokinetics of Vancomycin in Patients with External Ventricular Drain-associated Ventriculitis. Br. J. Clin. Pharmacol. 2021, 87, 2502–2510. [Google Scholar] [CrossRef]
- Chauzy, A.; Nadji, A.; Combes, J.-C.; Defrance, N.; Bouhemad, B.; Couet, W.; Chavanet, P. Cerebrospinal Fluid Pharmacokinetics of Ceftaroline in Neurosurgical Patients with an External Ventricular Drain. J. Antimicrob. Chemother. 2019, 74, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Lodise, T.P.; Nau, R.; Kinzig, M.; Drusano, G.L.; Jones, R.N.; Sörgel, F. Pharmacodynamics of Ceftazidime and Meropenem in Cerebrospinal Fluid: Results of Population Pharmacokinetic Modelling and Monte Carlo Simulation. J. Antimicrob. Chemother. 2007, 60, 1038–1044. [Google Scholar] [CrossRef] [PubMed]
- Ullah, S.; Beer, R.; Fuhr, U.; Taubert, M.; Zeitlinger, M.; Kratzer, A.; Dorn, C.; Arshad, U.; Kofler, M.; Helbok, R. Brain Exposure to Piperacillin in Acute Hemorrhagic Stroke Patients Assessed by Cerebral Microdialysis and Population Pharmacokinetics. Neurocrit. Care 2020, 33, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Dahyot-Fizelier, C.; Timofeev, I.; Marchand, S.; Hutchinson, P.; Debaene, B.; Menon, D.; Mimoz, O.; Gupta, A.; Couet, W. Brain Microdialysis Study of Meropenem in Two Patients with Acute Brain Injury. Antimicrob. Agents Chemother. 2010, 54, 3502–3504. [Google Scholar] [CrossRef]
- Liu, X.; Smith, B.J.; Chen, C.; Callegari, E.; Becker, S.L.; Chen, X.; Cianfrogna, J.; Doran, A.C.; Doran, S.D.; Gibbs, J.P.; et al. Use of a Physiologically Based Pharmacokinetic Model to Study the Time to Reach Brain Equilibrium: An Experimental Analysis of the Role of Blood-Brain Barrier Permeability, Plasma Protein Binding, and Brain Tissue Binding. J. Pharmacol. Exp. Ther. 2005, 313, 1254–1262. [Google Scholar] [CrossRef]
- Ball, K.; Bouzom, F.; Scherrmann, J.-M.; Walther, B.; Declèves, X. A Physiologically Based Modeling Strategy during Preclinical CNS Drug Development. Mol. Pharm. 2014, 11, 836–848. [Google Scholar] [CrossRef]
- Gaohua, L.; Neuhoff, S.; Johnson, T.N.; Rostami-Hodjegan, A.; Jamei, M. Development of a Permeability-Limited Model of the Human Brain and Cerebrospinal Fluid (CSF) to Integrate Known Physiological and Biological Knowledge: Estimating Time Varying CSF Drug Concentrations and Their Variability Using In Vitro Data. Drug Metab. Pharmacokinet. 2016, 31, 224–233. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Välitalo, P.A.; van den Berg, D.-J.; Hartman, R.; van den Brink, W.; Wong, Y.C.; Huntjens, D.R.; Proost, J.H.; Vermeulen, A.; Krauwinkel, W.; et al. A Generic Multi-Compartmental CNS Distribution Model Structure for 9 Drugs Allows Prediction of Human Brain Target Site Concentrations. Pharm. Res. 2017, 34, 333–351. [Google Scholar] [CrossRef]
- Frasca, D.; Dahyot-Fizelier, C.; Adier, C.; Mimoz, O.; Debaene, B.; Couet, W.; Marchand, S. Metronidazole and Hydroxymetronidazole Central Nervous System Distribution: 2. Cerebrospinal Fluid Concentration Measurements in Patients with External Ventricular Drain. Antimicrob. Agents Chemother. 2014, 58, 1024–1027. [Google Scholar] [CrossRef]
- Frasca, D.; Dahyot-Fizelier, C.; Adier, C.; Mimoz, O.; Debaene, B.; Couet, W.; Marchand, S. Metronidazole and Hydroxymetronidazole Central Nervous System Distribution: 1. Microdialysis Assessment of Brain Extracellular Fluid Concentrations in Patients with Acute Brain Injury. Antimicrob. Agents Chemother. 2014, 58, 1019–1023. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.Y.; Kan, E.; Lim, W.Y.; Chay, G.; Law, J.H.K.; Soo, G.W.; Bukhari, N.I.; Segarra, I. Metronidazole Leads to Enhanced Uptake of Imatinib in Brain, Liver and Kidney without Affecting Its Plasma Pharmacokinetics in Mice. J. Pharm. Pharmacol. 2011, 63, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Välitalo, P.A.; Huntjens, D.R.; Proost, J.H.; Vermeulen, A.; Krauwinkel, W.; Beukers, M.W.; van den Berg, D.-J.; Hartman, R.; Wong, Y.C.; et al. Predicting Drug Concentration-Time Profiles in Multiple CNS Compartments Using a Comprehensive Physiologically-Based Pharmacokinetic Model. CPT Pharmacomet. Syst. Pharmacol. 2017, 6, 765–777. [Google Scholar] [CrossRef] [PubMed]
- Hellinger, É.; Veszelka, S.; Tóth, A.E.; Walter, F.; Kittel, Á.; Bakk, M.L.; Tihanyi, K.; Háda, V.; Nakagawa, S.; Dinh Ha Duy, T.; et al. Comparison of Brain Capillary Endothelial Cell-Based and Epithelial (MDCK-MDR1, Caco-2, and VB-Caco-2) Cell-Based Surrogate Blood–Brain Barrier Penetration Models. Eur. J. Pharm. Biopharm. 2012, 82, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Hakkarainen, J.J.; Jalkanen, A.J.; Kääriäinen, T.M.; Keski-Rahkonen, P.; Venäläinen, T.; Hokkanen, J.; Mönkkönen, J.; Suhonen, M.; Forsberg, M.M. Comparison of in Vitro Cell Models in Predicting in Vivo Brain Entry of Drugs. Int. J. Pharm. 2010, 402, 27–36. [Google Scholar] [CrossRef]
- Garberg, P.; Ball, M.; Borg, N.; Cecchelli, R.; Fenart, L.; Hurst, R.D.; Lindmark, T.; Mabondzo, A.; Nilsson, J.E.; Raub, T.J.; et al. In Vitro Models for the Blood–Brain Barrier. Toxicol. Vitr. 2005, 19, 299–334. [Google Scholar] [CrossRef]
- Lindblad, C.; Nelson, D.W.; Zeiler, F.A.; Ercole, A.; Ghatan, P.H.; von Horn, H.; Risling, M.; Svensson, M.; Agoston, D.V.; Bellander, B.-M.; et al. Influence of Blood–Brain Barrier Integrity on Brain Protein Biomarker Clearance in Severe Traumatic Brain Injury: A Longitudinal Prospective Study. J. Neurotrauma 2020, 37, 1381–1391. [Google Scholar] [CrossRef]
- Marmarou, A.; Fatouros, P.P.; Barzó, P.; Portella, G.; Yoshihara, M.; Tsuji, O.; Yamamoto, T.; Laine, F.; Signoretti, S.; Ward, J.D.; et al. Contribution of Edema and Cerebral Blood Volume to Traumatic Brain Swelling in Head-Injured Patients. J. Neurosurg. 2000, 93, 183–193. [Google Scholar] [CrossRef]
- Dhar, R.; Chen, Y.; Hamzehloo, A.; Kumar, A.; Heitsch, L.; He, J.; Chen, L.; Slowik, A.; Strbian, D.; Lee, J.-M. Reduction in Cerebrospinal Fluid Volume as an Early Quantitative Biomarker of Cerebral Edema After Ischemic Stroke. Stroke 2020, 51, 462–467. [Google Scholar] [CrossRef]
- Marmarou, A.; Signoretti, S.; Fatouros, P.P.; Portella, G.; Aygok, G.A.; Bullock, M.R. Predominance of Cellular Edema in Traumatic Brain Swelling in Patients with Severe Head Injuries. J. Neurosurg. 2006, 104, 720–730. [Google Scholar] [CrossRef]
- Baron, J.C. Perfusion Thresholds in Human Cerebral Ischemia: Historical Perspective and Therapeutic Implications. Cerebrovasc. Dis. 2001, 11 (Suppl. S1), 2–8. [Google Scholar] [CrossRef] [PubMed]
- Poitiers University Hospital. Population Pharmacokinetic-Pharmacodynamic (PK-PD) Study of 9 Broad-Spectrum Anti-Infective Agents in the Cerebro Spinal Fluid (CSF) of Brain Injured Patients with an External Ventricular Drainage (EVD). 2021. Available online: clinicaltrials.gov (accessed on 13 September 2021).
- Akanuma, S.; Uchida, Y.; Ohtsuki, S.; Kamiie, J.; Tachikawa, M.; Terasaki, T.; Hosoya, K. Molecular-Weight-Dependent, Anionic-Substrate-Preferential Transport of β-Lactam Antibiotics via Multidrug Resistance-Associated Protein 4. Drug Metab. Pharmacokinet. 2011, 26, 602–611. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.H.T.; Mouksassi, M.; Holford, N.; Al-Huniti, N.; Freedman, I.; Hooker, A.C.; John, J.; Karlsson, M.O.; Mould, D.R.; Pérez Ruixo, J.J.; et al. Model Evaluation of Continuous Data Pharmacometric Models: Metrics and Graphics. CPT Pharmacomet. Syst. Pharmacol. 2017, 6, 87–109. [Google Scholar] [CrossRef] [PubMed]
- Dosne, A.-G.; Bergstrand, M.; Harling, K.; Karlsson, M.O. Improving the Estimation of Parameter Uncertainty Distributions in Nonlinear Mixed Effects Models Using Sampling Importance Resampling. J. Pharmacokinet. Pharmacodyn. 2016, 43, 583–596. [Google Scholar] [CrossRef]
- Rodgers, T.; Rowland, M. Physiologically Based Pharmacokinetic Modelling 2: Predicting the Tissue Distribution of Acids, Very Weak Bases, Neutrals and Zwitterions. J. Pharm. Sci. 2006, 95, 1238–1257. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Jusko, W.J. Applications of Minimal Physiologically-Based Pharmacokinetic Models. J. Pharmacokinet. Pharmacodyn. 2012, 39, 711–723. [Google Scholar] [CrossRef]
- Tunblad, K.; Hammarlund-Udenaes, M.; Jonsson, E.N. An Integrated Model for the Analysis of Pharmacokinetic Data from Microdialysis Experiments. Pharm. Res. 2004, 21, 1698–1707. [Google Scholar] [CrossRef]
- Westerhout, J.; Ploeger, B.; Smeets, J.; Danhof, M.; de Lange, E.C.M. Physiologically Based Pharmacokinetic Modeling to Investigate Regional Brain Distribution Kinetics in Rats. AAPS J. 2012, 14, 543–553. [Google Scholar] [CrossRef]
- Brown, R.P.; Delp, M.D.; Lindstedt, S.L.; Rhomberg, L.R.; Beliles, R.P. Physiological Parameter Values for Physiologically Based Pharmacokinetic Models. Toxicol. Ind. Health 1997, 13, 407–484. [Google Scholar] [CrossRef]
- Chemicalize—Instant Cheminformatics Solutions. Available online: https://chemicalize.com (accessed on 17 May 2022).
Parameter | Symbol | Value (95% CI) a | IIV %CV (95% CI) a |
---|---|---|---|
Unbound blood partition coefficient for tissue compartment | Kp | 0.796 (0.693–0.923) | - |
Fraction of cardiac output going to the non-CNS tissue compartment | fd | 0.86 FIX b | |
Total blood clearance of unbound drug | CL (L/h) | 7.28 (5.77–9.53) | 35.2 (24.0–57.8) |
Rate of bidirectional passive unbound drug transfer across the BBB | PSECF (L/h) | 6.4 FIX c | |
Rate of bidirectional passive unbound drug transfer across the BCSFB | PSCSF (L/h) | 3.2 FIX d | |
Proportional residual variability for plasma | σprop,plasma (%) | 14.4 (9.74–19.1) | - |
Additive residual variability for plasma | σadd,plasma (µg/mL) | 1.18 (0.320–2.90) | - |
Proportional residual variability for ECF | σprop,ECF (%) | 22.8 (17.5–29.1) | - |
Proportional residual variability for CSF | σprop,CSF (%) | 28.2 (22.0–36.5) | - |
PScalculated | PSin vitro | PSestimated | |
---|---|---|---|
PSECF (L/h) | 6.4 | 8.0 | 0.904 |
PSCSF (L/h) | 3.2 * | 4.0 * | 0.398 |
Patients | ||||||||
---|---|---|---|---|---|---|---|---|
Parameter | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Age (yrs) | 55 | 64 | 52 | 65 | 73 | 51 | 52 | 34 |
Ht (cm) | 180 | 172 | 175 | 172 | 178 | 176 | 180 | 175 |
Sex a | M | M | M | M | M | M | M | M |
Wt (kg) | 90 | 90 | 77 | 79 | 90 | 80 | 115 | 75 |
Creatinine clearance (mL/min) b | 171 | 118 | 86 | 144 | 165 | 84 | 141 | 306 |
Serum albumin (g/L) | 22 | NA | 31 | 42 | NA | NA | NA | NA |
Serum total proteins (g/L) | 66 | 61 | 64 | 67 | 61 | 53 | 66 | 57 |
Admission type c | TBI | TBI | SAH | TBI | SAH | SAH | VH | SAH |
Sample types d | Blood + ECF | Blood + ECF | Blood + ECF | Blood + ECF | Blood + CSF | Blood + CSF | Blood + CSF | Blood + CSF |
Parameter | Definition | Value | Reference |
---|---|---|---|
System-Specific Parameters | |||
Qbulk | Bulk flow: flow rate from ECF to CSF | 0.0105 L/h | [48] |
Qsink, physio | Sink flow | 0.024 L/h | [48] |
CO | Cardiac output | 312 L/h | [49] |
Qbrain | Brain blood flow | 42 L/h | [2] |
VECF | ECF brain tissue volume | 0.24 L | [48] |
VCSF | Cranial CSF volume | 0.130 L | [27] |
Vblood | Blood volume | 5.85 L | [49] |
Vbrain,vasc | Brain vascular volume | 0.0637 L | [2] |
SABBB | Surface area of the BBB | 157 cm²/g brain | [2] |
BW | Brain weight | 1274 g | [2] |
Drug-Specific Parameters | |||
MW | Molecular weight | 171 g/mol | [50] |
log P | Octanol:water partition coefficient | −0.459 | [50] |
BP | Blood-to-plasma concentration ratio | 0.82 | PK-Sim prediction |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chauzy, A.; Bouchène, S.; Aranzana-Climent, V.; Clarhaut, J.; Adier, C.; Grégoire, N.; Couet, W.; Dahyot-Fizelier, C.; Marchand, S. A Minimal Physiologically Based Pharmacokinetic Model to Characterize CNS Distribution of Metronidazole in Neuro Care ICU Patients. Antibiotics 2022, 11, 1293. https://doi.org/10.3390/antibiotics11101293
Chauzy A, Bouchène S, Aranzana-Climent V, Clarhaut J, Adier C, Grégoire N, Couet W, Dahyot-Fizelier C, Marchand S. A Minimal Physiologically Based Pharmacokinetic Model to Characterize CNS Distribution of Metronidazole in Neuro Care ICU Patients. Antibiotics. 2022; 11(10):1293. https://doi.org/10.3390/antibiotics11101293
Chicago/Turabian StyleChauzy, Alexia, Salim Bouchène, Vincent Aranzana-Climent, Jonathan Clarhaut, Christophe Adier, Nicolas Grégoire, William Couet, Claire Dahyot-Fizelier, and Sandrine Marchand. 2022. "A Minimal Physiologically Based Pharmacokinetic Model to Characterize CNS Distribution of Metronidazole in Neuro Care ICU Patients" Antibiotics 11, no. 10: 1293. https://doi.org/10.3390/antibiotics11101293
APA StyleChauzy, A., Bouchène, S., Aranzana-Climent, V., Clarhaut, J., Adier, C., Grégoire, N., Couet, W., Dahyot-Fizelier, C., & Marchand, S. (2022). A Minimal Physiologically Based Pharmacokinetic Model to Characterize CNS Distribution of Metronidazole in Neuro Care ICU Patients. Antibiotics, 11(10), 1293. https://doi.org/10.3390/antibiotics11101293