Evaluation of In Vitro Activity of Double-Carbapenem Combinations against KPC-2-, OXA-48- and NDM-Producing Escherichia coli and Klebsiella pneumoniae
Abstract
:1. Introduction
2. Results
2.1. Genetic Characterization and Antibiotic Susceptibility
2.2. Time-Lapse Microscopy Screening and Spot Assay with Clinical Isolates
2.3. Associations between Antibiotic Susceptibility, Carbapenemase Genes and Synergy
2.4. Time-Kill Experiments with Clinical Isolates
2.5. Time-Kill Experiments with Constructed and Wild-Type E. coli
3. Discussion
4. Materials and Methods
4.1. Strains, Growth Conditions and Antibiotics
4.2. Strain Construction
4.3. Antibiotic Susceptibility Testing
4.4. Screening Using Time-Lapse Microscopy
4.5. Spot Assay
4.6. Time-Kill Experiments
4.7. Definitions of Synergy, Antagonism and Bactericidal Effect
4.8. Resistance Development
4.9. Growth Rate Measurements
4.10. Whole Genome Sequencing and Genetic Characterization
4.11. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Magiorakos, A.P.; Burns, K.; Rodríguez Baño, J.; Borg, M.; Daikos, G.; Dumpis, U.; Lucet, J.C.; Moro, M.L.; Tacconelli, E.; Simonsen, G.S.; et al. Infection prevention and control measures and tools for the prevention of entry of carbapenem-resistant Enterobacteriaceae into healthcare settings: Guidance from the European Centre for Disease Prevention and Control. Antimicrob. Resist. Infect Control 2017, 6, 113. [Google Scholar] [CrossRef] [PubMed]
- Sheu, C.-C.; Chang, Y.-T.; Lin, S.-Y.; Chen, Y.-H.; Hsueh, P.-R. Infections Caused by Carbapenem-Resistant Enterobacteriaceae: An Update on Therapeutic Options. Front. Microbiol. 2019, 10, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bush, K.; Bradford, P.A. Epidemiology of β-Lactamase-Producing Pathogens. Clin. Microbiol. Rev. 2020, 33, e00047-19. [Google Scholar] [CrossRef] [PubMed]
- Carrara, E.; Savoldi, A.; Piddock, L.J.V.; Franceschi, F.; Ellis, S.; Sharland, M.; Brink, A.J.; Harris, P.N.A.; Levy-Hara, G.; Rohit, A.; et al. Clinical management of severe infections caused by carbapenem-resistant Gram-negative bacteria: A worldwide cross-sectional survey addressing the use of antibiotic combinations. Clin. Microbiol. Infect. 2022, 28, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Papp-Wallace, K.M.; Endimiani, A.; Taracila, M.A.; Bonomo, R.A. Carbapenems: Past, Present, and Future. Antimicrob. Agents Chemother. 2021, 55, 4943–4960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Queenan, A.M.; Bush, K. Carbapenemases: The Versatile β-Lactamases. Clin. Microbiol. Rev. 2007, 20, 440–458. [Google Scholar] [CrossRef] [Green Version]
- Bush, K.; Bradford, P.A. Interplay between β-lactamases and new β-lactamase inhibitors. Nat. Rev. Microbiol. 2019, 17, 295–306. [Google Scholar] [CrossRef]
- Bush, K. Past and Present Perspectives on β-Lactamases. Antimicrob. Agents Chemother. 2018, 62, e01076-18. [Google Scholar] [CrossRef] [Green Version]
- Bulik, C.C.; Nicolau, D.P. Double-Carbapenem Therapy for Carbapenemase-Producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2011, 55, 3002–3004. [Google Scholar] [CrossRef] [Green Version]
- Oliva, A.; Scorzolini, L.; Cipolla, A.; Mascellino, M.T.; Cancelli, F.; Castaldi, D.; D’Abramo, A.; D’Agostino, C.; Russo, G.; Ciardi, M.R.; et al. In vitro evaluation of different antimicrobial combinations against carbapenemase-producing Klebsiella pneumoniae: The activity of the double-carbapenem regimen is related to meropenem MIC value. J. Antimicrob. Chemother. 2017, 72, 1981–1984. [Google Scholar] [CrossRef]
- Ceccarelli, G.; Falcone, M.; Giordano, A.; Mezzatesta, M.L.; Caio, C.; Stefani, S.; Venditti, M. Successful Ertapenem-Doripenem Combination Treatment of Bacteremic Ventilator-Associated Pneumonia Due to Colistin-Resistant KPC-Producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2013, 57, 2900–2901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliva, A.; Gizzi, F.; Mascellino, M.T.; Cipolla, A.; D’Abramo, A.; D’Agostino, C.; Trinchieri, V.; Russo, G.; Tierno, F.; Iannetta, M.; et al. Bactericidal and synergistic activity of double-carbapenem regimen for infections caused by carbapenemase-producing Klebsiella pneumoniae. Clin. Microbiol. Infect. 2016, 22, 147–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Wang, J.; Wang, R.; Cai, Y. Double-carbapenem therapy in the treatment of multidrug resistant Gram-negative bacterial infections: A systematic review and meta-analysis. BMC Infect. Dis. 2020, 20, 408. [Google Scholar] [CrossRef] [PubMed]
- Mashni, O.; Nazer, L.; Le, J. Critical Review of Double-Carbapenem Therapy for the Treatment of Carbapenemase-Producing Klebsiella pneumoniae. Ann. Pharmacother. 2019, 53, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Cancelli, F.; Oliva, A.; De Angelis, M.; Mascellino, M.T.; Mastroianni, C.M.; Vullo, V. Role of Double-Carbapenem Regimen in the Treatment of Infections due to Carbapenemase Producing Carbapenem-Resistant Enterobacteriaceae: A Single-Center, Observational Study. Biomed. Res. Int. 2018, 2018, 2785696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Pascale, G.; Martucci, G.; Montini, L.; Panarello, G.; Cutuli, S.L.; Di Carlo, D.; Di Gravio, V.; Di Stefano, R.; Capitanio, G.; Vallecoccia, M.S.; et al. Double carbapenem as a rescue strategy for the treatment of severe carbapenemase-producing Klebsiella pneumoniae infections: A two-center, matched case–control study. Crit. Care 2017, 21, 173. [Google Scholar] [CrossRef] [Green Version]
- Giamarellou, H.; Galani, L.; Baziaka, F.; Karaiskos, I. Effectiveness of a Double-Carbapenem Regimen for Infections in Humans Due to Carbapenemase-Producing Pandrug-Resistant Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2013, 57, 2388–2390. [Google Scholar] [CrossRef] [Green Version]
- Venugopalan, V.; Nogid, B.; Le, T.N.; Rahman, S.M.; Bias, T.E. Double carbapenem therapy (DCT) for bacteremia due to carbapenem-resistant Klebsiella pneumoniae (CRKP): From test tube to clinical practice. Infect. Dis. 2017, 49, 867–870. [Google Scholar] [CrossRef]
- Giamarellou, H.; Karaiskos, I. Current and Potential Therapeutic Options for Infections Caused by Difficult-to-Treat and Pandrug Resistant Gram-Negative Bacteria in Critically Ill Patients. 8. Antibiotics 2022, 11, 1009. [Google Scholar] [CrossRef]
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef]
- Poirel, L.; Kieffer, N.; Nordmann, P. In vitro evaluation of dual carbapenem combinations against carbapenemase-producing Enterobacteriaceae. J. Antimicrob. Chemother. 2016, 71, 156–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fredborg, M.; Sondergaard, T.E.; Wang, M. Synergistic activities of meropenem double and triple combinations against carbapenemase-producing Enterobacteriaceae. Diagn. Microbiol. Infect. Dis. 2017, 88, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Erdem, F.; Abulaila, A.; Aktas, Z.; Oncul, O. In vitro evaluation of double carbapenem and colistin combinations against OXA-48, NDM carbapenemase-producing colistin-resistant Klebsiella pneumoniae strains. Antimicrob. Resist. Infect. Control 2020, 9, 70. [Google Scholar] [CrossRef] [PubMed]
- Kosar, I.; Dinc, G.; Eren, E.; Aykemat, Y.; Kilic, M.; Kilic, H.; Doganay, M. Investigation of double-carbapenem efficiency in experimental sepsis of colistin-resistant Klebsiella pneumoniae. North Clin. Istanb. 2021, 8, 113–118. [Google Scholar] [PubMed]
- Ungphakorn, W.; Lagerbäck, P.; Nielsen, E.I.; Tängdén, T. Automated time-lapse microscopy a novel method for screening of antibiotic combination effects against multidrug-resistant Gram-negative bacteria. Clin. Microbiol. Infect. 2018, 24, 778.e7–778.e14. [Google Scholar] [CrossRef] [Green Version]
- Wistrand-Yuen, P.; Olsson, A.; Skarp, K.-P.; Friberg, L.E.; Nielsen, E.I.; Lagerbäck, P.; Tängdén, T. Evaluation of polymyxin B in combination with 13 other antibiotics against carbapenemase-producing Klebsiella pneumoniae in time-lapse microscopy and time-kill experiments. Clin. Microbiol. Infect. 2020, 26, 1214–1221. [Google Scholar] [CrossRef] [Green Version]
- Olsson, A.; Hong, M.; Al-Farsi, H.; Giske, C.G.; Lagerbäck, P.; Tängdén, T. Interactions of polymyxin B in combination with aztreonam, minocycline, meropenem and rifampicin against Escherichia coli producing NDM and OXA-48-group carbapenemases. Antimicrob. Agents Chemother. 2021, 65, e0106521. [Google Scholar] [CrossRef]
- Feng, H.; Liu, X.; Wang, S.; Fleming, J.; Wang, D.-C.; Liu, W. The mechanism of NDM-1-catalyzed carbapenem hydrolysis is distinct from that of penicillin or cephalosporin hydrolysis. Nat. Commun. 2017, 8, 2242. [Google Scholar] [CrossRef] [Green Version]
- Nabarro, L.E.B.; Veeraraghavan, B. Combination therapy for carbapenem-resistant Enterobacteriaceae: Increasing evidence, unanswered questions, potential solutions. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 2307–2311. [Google Scholar] [CrossRef]
- Anderson, K.F.; Lonsway, D.R.; Rasheed, J.K.; Biddle, J.; Jensen, B.; McDougal, L.K.; Carey, R.B.; Thompson, A.; Stocker, S.; Limbago, B.; et al. Evaluation of Methods To Identify the Klebsiella pneumoniae Carbapenemase in Enterobacteriaceae. J. Clin. Microbiol. 2007, 45, 2723–2725. [Google Scholar] [CrossRef]
- Rahme, C.; Butterfield, J.M.; Nicasio, A.M.; Lodise, T.P. Dual beta-lactam therapy for serious Gram-negative infections: Is it time to revisit? Diagn. Microbiol. Infect. Dis. 2014, 80, 239–259. [Google Scholar] [CrossRef] [PubMed]
- Sutaria, D.S.; Moya, B.; Green, K.B.; Kim, T.H.; Tao, X.; Jiao, Y.; Louie, A.; Drusano, G.L.; Bulitta, J.B. First Penicillin-Binding Protein Occupancy Patterns of β-Lactams and β-Lactamase Inhibitors in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2018, 62, e00282-18. [Google Scholar] [CrossRef] [Green Version]
- Brouwers, R.; Vass, H.; Dawson, A.; Squires, T.; Tavaddod, S.; Allen, R.J. Stability of β-lactam antibiotics in bacterial growth media. PLoS ONE 2020, 15, e0236198. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Denisuik, A.; Vashisht, S.; Yachison, C.; Adam, H.J.; Hoban, D.J. Pharmacodynamic activity of ertapenem versus genotypically characterized extended-spectrum β-lactamase (ESBL)-, KPC- or NDM-producing Escherichia coli with reduced susceptibility or resistance to ertapenem using an in vitro model. J. Antimicrob. Chemother. 2014, 69, 2448–2452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhanel, G.G.; Wiebe, R.; Dilay, L.; Thomson, K.; Rubinstein, E.; Hoban, D.J.; Noreddin, A.M.; Karlowsky, J.A. Comparative review of the carbapenems. Drugs 2007, 67, 1027–1052. [Google Scholar]
- Berthoin, K.; Le Duff, C.S.; Marchand-Brynaert, J.; Carryn, S.; Tulkens, P.M. Stability of meropenem and doripenem solutions for administration by continuous infusion. J. Antimicrob. Chemother. 2010, 65, 1073–1075. [Google Scholar] [CrossRef] [Green Version]
- Chetri, S.; Singha, M.; Bhowmik, D.; Nath, K.; Chanda, D.D.; Chakravarty, A.; Bhattacharjee, A. Transcriptional response of OmpC and OmpF in Escherichia coli against differential gradient of carbapenem stress. BMC Res. Notes 2019, 12, 138. [Google Scholar] [CrossRef] [Green Version]
- Li, X.-Z.; Plésiat, P.; Nikaido, H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin. Microbiol. Rev. 2015, 28, 337–418. [Google Scholar] [CrossRef] [Green Version]
- Kidd, J.M.; Livermore, D.M.; Nicolau, D.P. The difficulties of identifying and treating Enterobacterales with OXA-48-like carbapenemases. Clin. Microbiol. Infect. 2020, 26, 401–403. [Google Scholar] [CrossRef]
- International Standard 20776-1; Susceptibility Testing of Infectious Agents and Evaluation of Performance of Antimicrobial Susceptibility Test Devices—Part 1: Reference Method for Testing the In Vitro Activity of Antimicrobial Agents Against Rapidly Growing Aerobic Bacteria Involved in Infectious Diseases. ISO: Geneva, Switzerland, 2006.
- The European Committee on Antimicrobial Susceptibility Testing. Routine and Extended Internal Quality Control for MIC Determination and Disk Diffusion as Recommended by EUCAST. Version 11.0. 2021. Available online: http://www.eucast.org (accessed on 1 September 2022).
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and Zone Diameters. Version 12.0. 2022. Available online: http://www.eucast.org (accessed on 1 September 2022).
- NCCLS. Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline; DOCUMENT M26-A: National Commit- tee for Clinical Laboratory Standards: Wayne, PA, USA, 1999. [Google Scholar]
- Thulin, M. BAT: An Online Tool for Analysing Growth Curves. 2018. Available online: http://www.mansthulin.se/bat/ (accessed on 15 July 2021).
E. coli Strain | Carbapenemase | Other β-Lactamases | OmpC | OmpF | MIC (mg/L) | ETP + MEM | ETP + DOR | MEM + DOR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ETP | MEM | DOR | Time-lapse 6 h | Time-lapse 24 h | Spot Assay | Time-lapse 6 h | Time-lapse 24 h | Spot Assay | Time-lapse 6 h | Time-lapse 24 h | Spot Assay | |||||
ARU887 | KPC-2 | - | 2 (R) | 0.25 (S) | 0.25 (S) | |||||||||||
ARU888 | KPC-2 | - | 8 (R) | 2 (S) | 1 (S) | |||||||||||
ARU894 | KPC-2 | TEM-1A, OXA-9 (W112 *) | 16 (R) | 2 (S) | 1 (S) | |||||||||||
ARU1141 | KPC-2 | CTX-M-15, TEM-1B | 32 (R) | 8 (I) | 4 (R) | |||||||||||
ARU716 | OXA-48 | CTX-M-14 | 8 (R) | 2 (S) | 1 (S) | |||||||||||
ARU722 | OXA-48 | CTX-M-15, OXA-1 | Y254fs N259 * | 16 (R) | 2 (S) | 2 (I) | ||||||||||
ARU889 | OXA-48 | - | 4 (R) | 1 (S) | 1 (S) | |||||||||||
ARU890 | OXA-48 | - | 4 (R) | 1 (S) | 1 (S) | |||||||||||
ARU891 | OXA-48 | TEM-1B | 2 (R) | 0.5 (S) | 1 (S) | |||||||||||
ARU896 | OXA-48 | CTX-M-15 | 4 (R) | 0.5 (S) | 0.25 (S) | |||||||||||
ARU898 | OXA-48 | CTX-M-15 | 8 (R) | 0.5 (S) | 0.5 (S) | |||||||||||
ARU903 | OXA-48 | CTX-M-15, TEM-1B, OXA-1 | 2 (R) | 0.5 (S) | 0.25 (S) | |||||||||||
ARU991 | OXA-48 | TEM-1B | 4 (R) | 1 (S) | 2 (I) | |||||||||||
ARU992 | OXA-48 | CTX-M-14 | 8 (R) | 2 (S) | 2 (I) | |||||||||||
ARU711 | NDM-1 | CTX-M-27 | 32 (R) | 32 (R) | 32 (R) | |||||||||||
ARU713 | NDM-1 | CTX-M-27 | >32 (R) | 32 (R) | >32 (R) | |||||||||||
ARU714 | NDM-1 | CTX-M-27 | >32 (R) | 32 (R) | 32 (R) | |||||||||||
ARU892 | NDM-1 | - | 32 (R) | 32 (R) | 16 (R) | |||||||||||
ARU709 | NDM-5 | CTX-M-15, TEM-1B, CMY-2, OXA-1 | >32 (R) | 32 (R) | 32 (R) | |||||||||||
ARU717 | NDM-5 | TEM-1B | >32 (R) | 32 (R) | 32 (R) | |||||||||||
ARU910 | NDM-5 | CMY-42 | Y254fs N259 * | >32 (R) | >32 (R) | >32 (R) | ||||||||||
ARU912 | NDM-5 | CTX-M-15, TEM-1B, OXA-1 | Y254fs N259 * | >32 (R) | >32 (R) | >32 (R) | ||||||||||
ARU913 | NDM-5 | TEM-1B | 32 (R) | 32 (R) | 16 (R) | |||||||||||
ARU917 | NDM-5 | CTX-M-15, TEM-1B, OXA-1 | Y254fs N259 * | >32 (R) | >32 (R) | 32 (R) |
K. pneumoniae Strain | Carbapenemase | Other β-Lactamases | OmpK36 | OmpK35 | MIC (mg/L) | ETP + MEM | ETP + DOR | MEM + DOR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ETP | MEM | DOR | Time-lapse 6 h | Time-lapse 24 h | Spot Assay | Time-lapse 6 h | Time-lapse 24 h | Spot Assay | Time-lapse 6 h | Time-lapse 24 h | Spot Assay | |||||
ARU737 | KPC-2 | SHV-187 (K3M, L33Q) | E312 * | >32 (R) | >32 (R) | >32 (R) | ||||||||||
ARU869 | KPC-2 | TEM-1A (S128fs), OXA-9 (W112 *), SHV-187 (K3M, L33Q) | E42fs G111 * | >32 (R) | >32 (R) | >32 (R) | ||||||||||
ARU871 | KPC-2 | CTX-M-15, TEM-1B, CMY-2, OXA-9 (W112 *), OXA-10, SHV-187 (K3M, L33Q) | E42fs G111 * | >32 (R) | >32 (R) | >32 (R) | ||||||||||
ARU919 | KPC-2 | CTX-M-65, TEM-1B, SHV-12 | N29fs I69 * | >32 (R) | >32 (R) | >32 (R) | ||||||||||
ARU920 | KPC-2 | TEM-1A, OXA-9 (W112*), SHV-12 | E42fs G111 * | >32 (R) | >32 (R) | >32 (R) | ||||||||||
ARU1011 | KPC-2 | CTX-M-15, SHV-28 | >32 (R) | 32 (R) | 16 (R) | |||||||||||
ARU1015 | KPC-2 | TEM-1A, OXA-9 (M1Del, W112 *), SHV-12 | E42fs G111 * | >32 (R) | >32 (R) | >32 (R) | ||||||||||
ARU1016 | KPC-2 | TEM-1A, OXA-9 (W112 *), SHV-187 (K3M, L33Q) | E42fs G111* | >32 (R) | >32 (R) | >32 (R) | ||||||||||
ARU1019 | KPC-2 | TEM-1A, OXA-9 (W112 *), SHV-187 (K3M) | L63 * | >32 (R) | >32 (R) | >32 (R) | ||||||||||
ARU1144 | KPC-2 | CTX-M-15, TEM-1B, OXA-1, SHV-187 (K3M, L33Q) | 4 (R) | 1 (S) | 1 (S) | |||||||||||
ARU731 | OXA-48 | CTX-M-15, TEM-1A, OXA-1, OXA-9, SHV-187 (K3M) | G62fs L63 * | >32 (R) | 32 (R) | 32 (R) | ||||||||||
ARU734 | OXA-48 | CMY-4, SHV-187 (K3M, L33Q) | >32 (R) | >32 (R) | 32 (R) | |||||||||||
ARU735 | OXA-48 | CMY-4, SHV-187 (K3M, L33Q) | 4 (R) | 1 (S) | 1 (S) | |||||||||||
ARU736 | OXA-48 | CMY-4, SHV-187 (K3M, L33Q) | L32 * | >32 (R) | 32 (R) | 32 (R) | ||||||||||
ARU873 | OXA-48 | CTX-M-15, TEM-1B, OXA-1, SHV-11 | 16 (R) | 2 (S) | 2 (I) | |||||||||||
ARU874 | OXA-48 | CTX-M-15, TEM-1B, OXA-1, SHV-11 | 8 (R) | 2 (S) | 2 (I) | |||||||||||
ARU1005 | OXA-48 | CTX-M-15, TEM-1B, OXA-1, SHV-28 | 8 (R) | 2 (S) | 2 (I) | |||||||||||
ARU601 | NDM-1 | CTX-M-15, TEM-1B, OXA-1, OXA-9, CMY-4, SHV-187 (K3M, L33Q) | >32 (R) | >32 (R) | >32 (R) | |||||||||||
ARU725 | NDM-1 | CTX-M-15, TEM-1B, SHV-12 | T123fs Q172 * | >32 (R) | >32 (R) | >32 (R) | ||||||||||
ARU726 | NDM-1 | CTX-M-15, SHV-11 | D84fs L103 * | >32 (R) | 16 (R) | 32 (R) | ||||||||||
ARU884 | NDM-1 | CTX-M-15, TEM-1B, OXA-1, OKP-A-8 | 32 (R) | 8 (I) | 8 (R) | |||||||||||
ARU923 | NDM-1 | CTX-M-15, OXA-1, SHV-187 (K3M, L33Q) | >32 (R) | 8 (I) | 16 (R) | |||||||||||
ARU733 | NDM-1 | TEM-1B, OXA-1, SHV-187 (K3M, L33Q) | >32 (R) | >32 (R) | >32 (R) | |||||||||||
ARU928 | NDM-5 | CTX-M-15, TEM-1B, OXA-1, SHV-187 (K3M, L33Q) | K226fs E256 * | >32 (R) | 32 (R) | >32 (R) | ||||||||||
ARU724 | NDM-1 + OXA-48 | CTX-M-15, TEM-1B, OXA-1, SHV-11 | K3fs Ins29 * | >32 (R) | 16 (R) | 32 (R) | ||||||||||
ARU879 | NDM-1 + OXA-48 | CTX-M-15, TEM-1B, OXA-1, SHV-28 | N240fs E256 * | >32 (R) | >32 (R) | >32 (R) | ||||||||||
ARU882 | NDM-1 + OXA-48 | CTX-M-15, SHV-28 | N240fs E256 * | >32 (R) | >32 (R) | >32 (R) |
Strain | Genotype | MIC (mg/L) | ||
---|---|---|---|---|
ETP | MEM | DOR | ||
ARU961 | ATCC 25922 wild-type | 0.0078 (S) | 0.016 (S) | 0.031 (S) |
ARU1026 | ATCC 25922 bglG/F/B::blaKPC-2 | 4 (R) | 2 (S) | 1 (S) |
ARU1027 | ATCC 25922 bglG/F/B::blaNDM-1 | 16 (R) | 16 (R) | 16 (R) |
ARU1028 | ATCC 25922 bglG/F/B::blaOXA-48 | 0.125 (S) | 0.031 (S) | 0.062 (S) |
Strain | Antibiotic Concentrations (mg/L) | 0 h | 2 h | 6 h | 24 h | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
log10 CFU/mL ± SD | log10 CFU/mL ± SD | Δ a | Δ b | log10 CFU/mL ± SD | Δa | Δb | log10 CFU/mL ± SD | Δ a | Δ b | ||
E. coli KPC-2 (ARU888) | Growth control | 6.87 ± 0.16 | 8.36 ± 0.07 | 1.49 | 9.18 ± 0.21 | 2.31 | 9.43 ± 0.00 | 2.56 | |||
ETP 16 | 6.75 ± 0.22 | 3.10 ± 0.43 | −3.65 | 5.34 ± 0.08 | −1.41 | 9.35 ± 0.01 | 2.6 | ||||
MEM 16 | 6.88 ± 0.25 | 2.92 ± 0.61 | −3.96 | 3.88 ± 2.28 | −3 | 9.35 ± 0.16 | 2.47 | ||||
DOR 8 | 6.92 ± 0.06 | 2.71 ± 0.04 | −4.21 | 2.80 ± 1.20 | −4.12 | 6.99 ± 3.13 | 0.07 | ||||
ETP 16 +MEM 16 | 6.88 ± 0.16 | 2.30 ± 0.16 | −0.63 | −4.58 | 1.94 ± 0.48 | −1.94 | −4.94 | 9.04 ± 0.35 | −0.31 | 2.16 | |
ETP 16 + DOR 8 | 6.86 ± 0.20 | 3.31 ± 1.64 | 0.6 | −3.55 | 2.40 ± 0.24 | −0.4 | −4.46 | 5.74 ± 3.95 | −1.25 | −1.12 | |
MEM 16 + DOR 8 | 6.84 ± 0.26 | 2.19 ± 0.16 | −0.52 | −4.65 | 4.24 ± 2.77 | 1.45 | −2.6 | 5.04 ± 0.62 | −1.96 | −1.80 | |
E. coli KPC-2 (ARU1141) | Growth control | 6.19 ± 0.1 | 7.99 ± 0.13 | 1.8 | 9.23 ± 0.1 | −3.04 | 9.10 ± 0.01 | 2.91 | |||
ETP 16 | 6.17 ± 0.19 | 3.87 ± 1.62 | −2.3 | 6.18 ± 1.61 | −0.01 | 9.17 ± 0.01 | 3.00 | ||||
MEM 16 | 6.23 ± 0.11 | 1.99 ± 0.97 | −4.24 | 1.35 ± 0.49 | −4.88 | 4.51 ± 4.96 | −1.72 | ||||
MEM 64 | 6.25 ± 0.16 | 1.30 ± 0.42 | −4.95 | 1.45 ± 0.64 | −4.8 | 3.80 ± 1.82 | −2.45 | ||||
DOR 8 | 6.22 ± 0.11 | 3.87 ± 0.03 | −2.35 | 1.96 ± 1.36 | −4.26 | 7.12 ± 2.73 | 0.90 | ||||
ETP 16 + MEM 64 | 6.27 ± 0.11 | 2.05 ± 1.48 | 0.75 | −4.22 | 3.01 ± 2.84 | 1.56 | −3.26 | 4.08 ± 2.83 | 0.28 | −2.19 | |
ETP 16 + DOR 8 | 6.16 ± 0.12 | 1.91 ± 0.86 | −1.96 | −4.25 | 2.08 ± 1.53 | 0.12 | −4.08 | 2.05 ± 1.48 | −5.07 | −4.11 | |
MEM 16 + DOR 8 | 6.18 ± 0.11 | 2.46 ± 1.07 | 0.47 | −3.72 | 1.00 ± 0.00 | −0.35 | −5.18 | 2.05 ± 1.48 | −2.47 | −4.13 | |
E. coli OXA-48 (ARU891) | Growth control | 6.80 ± 0.13 | 8.32 ± 0.06 | 1.52 | 8.97 ± 0.09 | 2.17 | 9.42 ± 0.07 | 2.62 | |||
ETP 0.5 | 6.79 ± 0.07 | 7.54 ± 0.47 | 0.75 | 9.03 ± 0.01 | 2.24 | 9.32 ± 0.06 | 2.53 | ||||
MEM 2 | 6.83 ± 0.12 | 2.83 ± 0.77 | −4 | 3.17 ± 1.52 | −3.66 | 9.32 ± 0.02 | 2.49 | ||||
DOR 1 | 6.85 ± 0.04 | 4.35 ± 0.27 | −2.5 | 8.36 ± 0.31 | 1.51 | 9.38 ± 0.08 | 2.53 | ||||
ETP 0.5 + MEM 2 | 6.81 ± 0.08 | 2.88 ± 0.32 | 0.05 | −3.93 | 2.43 ± 1.07 | −0.74 | −4.38 | 8.65 ± 0.97 | −0.67 | 1.84 | |
ETP 0.5 + DOR 1 | 6.83 ± 0.10 | 4.24 ± 1.81 | −0.11 | −2.59 | 6.04 ± 1.94 | −2.31 | −0.79 | 9.39 ± 0.05 | 0.07 | 2.56 | |
MEM 2 + DOR 1 | 6.81 ± 0.10 | 2.67 ± 0.67 | −0.16 | −4.14 | 1.36 ± 0.32 | −1.81 | −5.45 | 6.40 ± 4.68 | −2.93 | −0.41 | |
E. coli OXA-48 (ARU896) | Growth control | 6.35 ± 0.17 | 8.13 ± 0.18 | 1.78 | 8.83 ± 0.11 | 2.48 | 9.21 ± 0.02 | 2.86 | |||
ETP 0.5 | 6.36 ± 0.17 | 8.12 ± 0.09 | 1.76 | 8.76 ± 0.18 | 2.4 | 9.09 ± 0.05 | 2.73 | ||||
ETP 4 | 6.33 ± 0.14 | 2.65 ± 0.02 | −3.68 | 5.32 ± 0.03 | −1.01 | 9.18 ± 0.07 | 2.85 | ||||
MEM 0.25 | 6.35 ± 0.11 | 7.41 ± 0.23 | 1.06 | 8.90 ± 0.02 | 2.55 | 9.34 ± 0.07 | 2.99 | ||||
DOR 0.125 | 6.43 ± 0.12 | 7.43 ± 0.55 | 1 | 8.89 ± 0.05 | 2.46 | 9.35 ± 0.12 | 2.92 | ||||
ETP 4 + MEM 0.25 | 6.41 ± 0.12 | 2.00 ± 0.06 | −0.65 | −4.41 | 4.90 ± 0.07 | −0.42 | −1.51 | 9.24 ± 0.02 | 0.05 | 2.83 | |
ETP 0.5 + DOR 0.125 | 6.42 ± 0.16 | 4.93 ± 0.60 | −2.5 | −1.49 | 6.83 ± 2.49 | −1.84 | 0.41 | 9.32 ± 0.03 | 0.23 | 2.9 | |
MEM 0.25 + DOR 0.125 | 6.33 ± 0.09 | 3.93 ± 0.26 | −3.49 | −2.4 | 7.42 ± 0.57 | −1.47 | 1.09 | 9.35 ± 0.01 | 0.01 | 3.02 | |
K. pneumoniae KPC-2 (ARU1144) | Growth control | 6.68 ± 0.04 | 8.40 ± 0.06 | 1.72 | 9.20 ± 0.02 | 2.52 | 9.60 ± 0.14 | 2.92 | |||
ETP 16 | 6.80 ± 0.17 | 2.86 ± 0.07 | −3.94 | 1.80 ± 0.14 | −5.00 | 2.17 ± 0.46 | −4.63 | ||||
MEM 2 | 6.77 ± 0.03 | 4.47 ± 0.78 | −2.3 | 5.43 ± 1.89 | −1.34 | 5.97 ± 1.52 | −0.80 | ||||
DOR 1 | 6.66 ± 0.05 | 4.02 ± 0.08 | −2.64 | 2.96 ± 0.18 | −3.70 | 4.68 ± 0.09 | −1.98 | ||||
ETP 16 + MEM 2 | 6.76 ± 0.04 | 2.63 ± 0.08 | −0.23 | −4.13 | 2.09 ± 0.86 | 0.29 | −4.67 | 4.18 ± 0.14 | 2.02 | −2.58 | |
ETP 16 + DOR 1 | 6.65 ± 0.04 | 2.57 ± 0.07 | −0.29 | −4.08 | 1.86 ± 0.36 | 0.06 | −4.79 | 2.23 ± 1.74 | 0.07 | −4.42 | |
MEM 2 + DOR 1 | 6.69 ± 0.01 | 4.33 ± 0.01 | 0.3 | −2.36 | 2.72 ± 0.20 | −0.24 | −3.97 | 3.48 ± 0.88 | −1.2 | −3.21 | |
K. pneumoniae OXA-48 (ARU735) | Growth control | 6.91 ± 0.16 | 8.37 ± 0.15 | 1.46 | 9.07 ±0.04 | 2.16 | 9.60 ± 0.14 | 2.69 | |||
ETP 4 | 6.85 ± 0.12 | 5.87 ± 3.61 | −0.98 | 7.51 ± 2.24 | 0.66 | 9.60 ± 0.05 | 2.75 | ||||
MEM 2 | 6.98 ± 0.04 | 3.89 ± 0.22 | −3.09 | 6.00 ± 0.98 | −0.98 | 9.54 ± 0.19 | 2.56 | ||||
DOR 1 | 6.83 ± 0.18 | 6.21 ± 2.60 | −0.62 | 8.34 ± 0.48 | 1.51 | 9.54 ± 0.08 | 2.71 | ||||
ETP 4 + MEM 2 | 6.90 ± 00 | 3.38 ± 0.55 | −0.51 | −3.52 | 4.48 ± 1.93 | −1.52 | −2.42 | 7.81 ± 2.32 | −1.73 | 0.1 | |
ETP 4 + DOR 1 | 6.80 ± 0.07 | 4.04 ± 1.61 | −1.84 | −2.76 | 6.20 ± 2.93 | −1.3 | −0.6 | 9.40 ± 0.17 | −0.15 | 2.6 | |
MEM 2 + DOR 1 | 6.88 ± 0.12 | 3.48 ± 0.22 | −0.41 | −3.4 | 4.47 ± 1.83 | −1.53 | −2.41 | 7.16 ± 1.83 | −2.39 | 0.28 | |
K. pneumoniae OXA-48 (ARU736) | Growth control | 6.57 ± 0.15 | 8.20 ± 0.01 | 1.63 | 9.03 ± 0.02 | 2.46 | 9.55 ± 0.11 | 2.98 | |||
ETP 16 | 6.57 ± 0.06 | 7.58 ± 0.08 | 1.01 | 7.50 ± 0.19 | 0.93 | 9.18 ± 0.02 | 2.61 | ||||
MEM 16 | 6.58 ± 0.03 | 7.00 ± 0.29 | 0.42 | 7.19 ± 0.05 | 0.61 | 9.15 ± 0.1 | 2.57 | ||||
DOR 8 | 6.65 ± 0.09 | 7.62 ± 0.19 | 0.97 | 8.32 ± 0.05 | 1.67 | 9.35 ± 0.00 | 2.7 | ||||
DOR 32 | 6.67 ± 0.28 | 5.69 ± 0.63 | −0.98 | 4.37 ± 1.86 | −2.3 | 6.66 ± 3.66 | −0.1 | ||||
ETP 16 + MEM 16 | 6.63 ± 0.33 | 6.16 ± 0.08 | −0.85 | −0.47 | 6.30 ± 0.35 | −0.89 | −0.33 | 9.39 ± 0.04 | 0.24 | 2.76 | |
ETP 16 + DOR 32 | 6.60 ± 0.06 | 5.12 ± 0.90 | −0.57 | −1.48 | 3.39 ± 1.12 | −0.98 | −3.21 | 6.02 ± 4.20 | −0.65 | −0.58 | |
MEM 16 + DOR 8 | 6.67 ± 0.03 | 6.09 ± 0.18 | −0.91 | −0.58 | 5.01 ± 0.76 | −2.18 | −1.66 | 8.51 ± 0.26 | −0.65 | 1.84 | |
K. pneumoniae NDM-1 (ARU923) | Growth control | 6.72 ± 0.08 | 8.23 ± 0.25 | 1.51 | 8.74 ± 0.13 | 2.02 | 9.47 ± 0.01 | 2.75 | |||
ETP 16 | 6.78 ± 0.02 | 4.41 ± 0.53 | −2.37 | 7.71 ± 0.25 | 0.93 | 9.15 ± 0.02 | 2.37 | ||||
MEM 64 | 6.85 ± 0.18 | 2.83 ± 0.33 | −4.02 | 5.92 ± 1.38 | −0.93 | 9.46 ± 0.21 | 2.61 | ||||
DOR 32 | 6.79 ± 0.18 | 4.19 ± 0.16 | −2.6 | 7.52 ± 0.35 | −0.73 | 9.43 ± 0.06 | 2.64 | ||||
ETP 16 + MEM 64 | 6.77 ± 0.08 | 2.81 ± 0.21 | −0.02 | −3.96 | 5.03 ± 0.03 | −0.89 | −1.74 | 9.39 ± 0.11 | −0.07 | 2.62 | |
ETP 16 + DOR 32 | 6.84 ± 0.10 | 4.05 ± 0.33 | −0.14 | −2.79 | 7.47 ± 0.42 | −0.04 | 0.63 | 9.48 ± 0.07 | 0.05 | 2.64 | |
MEM 64 + DOR 32 | 6.97 ± 0.28 | 2.69 ± 0.41 | −0.14 | −4.28 | 4.90 ± 0.25 | −1.02 | −2.07 | 9.40 ± 0.12 | −0.03 | 2.43 | |
K. pneumoniae NDM-5 (ARU928) | Growth control | 5.88 ± 0.35 | 7.64 ± 0.11 | 1.76 | 8.67 ± 0.21 | 2.79 | 8.91 ± 0.16 | 3.03 | |||
ETP 16 | 5.88 ± 0.59 | 4.89 ± 0.09 | −0.99 | 5.77 ± 0.78 | −0.11 | 8.82 ± 0.10 | 2.94 | ||||
MEM 64 | 5.82 ± 0.14 | 2.72 ± 0.29 | −3.1 | 3.63 ± 1.67 | −2.19 | 5.62 ± 2.89 | −0.2 | ||||
DOR 32 | 5. 95 ± 0.41 | 4.43 ± 0.11 | −1.52 | 4.13 ± 1.41 | −1.82 | 8.83 ± 0.04 | 2.88 | ||||
ETP 16 + MEM 64 | 5.91 ± 0.43 | 2.77 ± 0.24 | 0.05 | −3.14 | 2.73 ± 1.83 | −0.9 | −3.18 | 6.71 ± 3.09 | 1.09 | 0.8 | |
ETP 16 + DOR 32 | 5.93 ± 0.28 | 3.74 ± 0.18 | −0.69 | −2.19 | 3.98 ± 1.30 | −0.16 | −1.95 | 8.79 ± 0.13 | −0.03 | 2.86 | |
MEM 64 + DOR 32 | 5.82 ± 0.34 | 2.40 ± 0.17 | −0.32 | −3.42 | 2.09 ± 1.01 | −1.54 | −3.73 | 5.11 ± 3.27 | −0.52 | −0.71 | |
K. pneumoniae NDM-1+ OXA-48 (ARU724) | Growth control | 6. 55 ± 0.01 | 8.00 ± 0.08 | 1.45 | 8.79 ± 0.09 | 2.24 | 9.41 ± 0.05 | 2.86 | |||
ETP 16 | 6.47 ± 0.01 | 3.88 ± 0.1 | −2.59 | 6.52 ± 0.04 | 0.05 | 9.34 ± 0.01 | 2.87 | ||||
MEM 64 | 6.47 ± 0.01 | 3.63 ± 0.13 | −2.84 | 5.09 ± 0.33 | −1.38 | 9.24 ± 0.05 | 2.77 | ||||
DOR 32 | 6.53 ± 0.11 | 4.05 ± 0.05 | −2.48 | 6.96 ± 0.15 | 0.43 | 9.32 ± 0.01 | 2.79 | ||||
ETP 16 + MEM 64 | 6.48 ± 0.11 | 3.51 ± 0.02 | −0.12 | −2.97 | 4.91 ± 0.59 | −0.18 | −1.57 | 9.22 ± 0.04 | −0.02 | 2.74 | |
ETP 16 + DOR 32 | 6.52 ± 0.06 | 3.86 ± 0.01 | −0.02 | −2.66 | 6.28 ± 0.03 | −0.24 | −0.24 | 9.33 ± 0.06 | 0.01 | 2.81 | |
MEM 64 + DOR 32 | 6.48 ± 0.00 | 3.67 ± 0.01 | 0.04 | −2.81 | 4.94 ± 0.21 | −0.15 | −1.54 | 9.26 ± 0.06 | 0.02 | 2.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allander, L.; Vickberg, K.; Lagerbäck, P.; Sandegren, L.; Tängdén, T. Evaluation of In Vitro Activity of Double-Carbapenem Combinations against KPC-2-, OXA-48- and NDM-Producing Escherichia coli and Klebsiella pneumoniae. Antibiotics 2022, 11, 1646. https://doi.org/10.3390/antibiotics11111646
Allander L, Vickberg K, Lagerbäck P, Sandegren L, Tängdén T. Evaluation of In Vitro Activity of Double-Carbapenem Combinations against KPC-2-, OXA-48- and NDM-Producing Escherichia coli and Klebsiella pneumoniae. Antibiotics. 2022; 11(11):1646. https://doi.org/10.3390/antibiotics11111646
Chicago/Turabian StyleAllander, Lisa, Karin Vickberg, Pernilla Lagerbäck, Linus Sandegren, and Thomas Tängdén. 2022. "Evaluation of In Vitro Activity of Double-Carbapenem Combinations against KPC-2-, OXA-48- and NDM-Producing Escherichia coli and Klebsiella pneumoniae" Antibiotics 11, no. 11: 1646. https://doi.org/10.3390/antibiotics11111646
APA StyleAllander, L., Vickberg, K., Lagerbäck, P., Sandegren, L., & Tängdén, T. (2022). Evaluation of In Vitro Activity of Double-Carbapenem Combinations against KPC-2-, OXA-48- and NDM-Producing Escherichia coli and Klebsiella pneumoniae. Antibiotics, 11(11), 1646. https://doi.org/10.3390/antibiotics11111646