Etiology of Mastitis and Antimicrobial Resistance in Dairy Cattle Farms in the Western Part of Romania
Abstract
:1. Introduction
2. Results
2.1. Microbiological Results
- -
- S. aureus, twenty-four strains (48.0%);
- -
- S. intermedius, six strains (12%);
- -
- S. hycus subsp. hycus, two strains (4%);
2.2. Antimicrobial Susceptibility Assay
3. Discussions
4. Conclusions
5. Materials and Methods
5.1. Study Farms
5.2. Samples Collection
- Presence of signs of udder inflammation: redness, hotness, pain at local palpation.
- Obvious changes in milk (milk consistency, presence of blood, clots, and flakes).
- Generalized clinical symptoms: fever, loss of appetite, severe udder inflammation.
5.3. Bacterial Isolation and Identification
5.4. In Vitro Antibiotic Susceptibility Test
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Statistical Analysis
References
- Petrovski, K.; Trajcev, M.; Buneski, G. A review of the factors affecting the costs of bovine mastitis: Review article. J. S. Afr. Vet. Assoc. 2006, 77, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Pol, M.; Ruegg, P. Relationship Between Antimicrobial Drug Usage and Antimicrobial Susceptibility of Gram-Positive Mastitis Pathogens. J. Dairy Sci. 2007, 90, 262–273. [Google Scholar] [CrossRef]
- Nielsen, C. Economic Impact of Mastitis in Dairy Cows. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2009. [Google Scholar]
- Oliver, S.P.; Murinda, S.E.; Jayarao, B.M. Impact of Antibiotic Use in Adult Dairy Cows on Antimicrobial Resistance of Veterinary and Human Pathogens: A Comprehensive Review. Foodborne Pathog. Dis. 2011, 8, 337–355. [Google Scholar] [CrossRef]
- Beyene, T.J.; Hayishe, H.; Gizaw, F.; Beyi, A.F.; Abunna, F.; Mammo, B.; Ayana, D.; Waktole, H.; Abdi, R.D. Prevalence and antimicrobial resistance profile of Staphylococcus in dairy farms, abattoir and humans in Addis Ababa, Ethiopia. BMC Res. Notes 2017, 10, 171. [Google Scholar] [CrossRef] [Green Version]
- Ruegg, P.L. A 100-Year Review: Mastitis detection, management, and prevention. J. Dairy Sci. 2017, 100, 10381–10397. [Google Scholar] [CrossRef] [Green Version]
- Taponen, S.; Liski, E.; Heikkilä, A.-M.; Pyörälä, S. Factors associated with intramammary infection in dairy cows caused by coagulase-negative staphylococci, Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, Corynebacterium bovis, or Escherichia coli. J. Dairy Sci. 2017, 100, 493–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeryehun, T.; Abera, G. Prevalence and Bacterial Isolates of Mastitis in Dairy Farms in Selected Districts of Eastern Harrarghe Zone, Eastern Ethiopia. J. Vet. Med. 2017, 2017, 6498618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ndahetuye, J.B.; Persson, Y.; Nyman, A.-K.; Tukei, M.; Ongol, M.P.; Båge, R. Aetiology and prevalence of subclinical mastitis in dairy herds in peri-urban areas of Kigali in Rwanda. Trop. Anim. Health Prod. 2019, 51, 2037–2044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abrahmsén, M.; Persson, Y.; Kanyima, B.M.; Båge, R. Prevalence of subclinical mastitis in dairy farms in urban and peri-urban areas of Kampala, Uganda. Trop. Anim. Health Prod. 2013, 46, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Abebe, R.; Hatiya, H.; Abera, M.; Megersa, B.; Asmare, K. Bovine mastitis: Prevalence, risk factors and isolation of Staphylococcus aureus in dairy herds at Hawassa milk shed, South Ethiopia. BMC Vet. Res. 2016, 12, 270. [Google Scholar] [CrossRef] [Green Version]
- León-Galván, M.F.; Barboza-Corona, J.E.; Lechuga-Arana, A.A.; Valencia-Posadas, M.; Aguayo, D.D.; Cedillo-Peláez, C.; Martínez-Ortega, E.A.; Gutierrez-Chavez, A.J. Molecular Detection and Sensitivity to Antibiotics and Bacteriocins of Pathogens Isolated from Bovine Mastitis in Family Dairy Herds of Central Mexico. BioMed Res. Int. 2015, 2015, 615153. [Google Scholar] [CrossRef] [PubMed]
- Östensson, K.; Lam, V.; Sjögren, N.; Wredle, E. Prevalence of subclinical mastitis and isolated udder pathogens in dairy cows in Southern Vietnam. Trop. Anim. Health Prod. 2012, 45, 979–986. [Google Scholar] [CrossRef] [PubMed]
- dos Reis, C.B.M.; Barreiro, J.R.; Mestieri, L.; Porcionato, M.A.D.F.; dos Santos, M.V. Effect of somatic cell count and mastitis pathogens on milk composition in Gyr cows. BMC Vet. Res. 2013, 9, 67. [Google Scholar] [CrossRef] [Green Version]
- Paduch, J.-H.; Krömker, V. Colonization of the teat skin and the teat canal by mastitis pathogens in dairy cattle. Tierarztl. Prax. Ausg. G Grosstiere—Nutztiere 2011, 39, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Amer, S.; Gálvez, F.L.A.; Fukuda, Y.; Tada, C.; Jimenez, I.L.; Valle, W.F.M.; Nakai, Y. Prevalence and etiology of mastitis in dairy cattle in El Oro Province, Ecuador. J. Vet. Med. Sci. 2018, 80, 861–868. [Google Scholar] [CrossRef] [Green Version]
- Mpatswenumugabo, J.P.; Bebora, L.C.; Gitao, G.C.; Mobegi, V.A.; Iraguha, B.; Kamana, O.; Shumbusho, B. Prevalence of Subclinical Mastitis and Distribution of Pathogens in Dairy Farms of Rubavu and Nyabihu Districts, Rwanda. J. Vet. Med. 2017, 2017, 8456713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Jakee, J.; Aref, N.E.; Gomaa, A.; ElHariri, M.; Galal, H.M.; Omar, S.A.; Samir, A. Emerging of coagulase negative staphylococci as a cause of mastitis in dairy animals: An environmental hazard. Int. J. Vet. Sci. Med. 2013, 1, 74–78. [Google Scholar] [CrossRef] [Green Version]
- Piessens, V.; Van Coillie, E.; Verbist, B.; Supré, K.; Braem, G.; Van Nuffel, A.; De Vuyst, L.; Heyndrickx, M.; De Vliegher, S. Distribution of coagulase-negative Staphylococcus species from milk and environment of dairy cows differs between herds. J. Dairy Sci. 2011, 94, 2933–2944. [Google Scholar] [CrossRef]
- Vakkamäki, J.; Taponen, S.; Heikkilä, A.M.; Pyörälä, S. Bacteriological etiology and treatment of mastitis in Finnish dairy herds. Acta Vet. Scand. 2017, 59, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhosale, R.; Osmani, R.A.; Ghodake, P.P.; Shaikh, S.M.; Chavan, S.R. Mastitis: An intensive crisis in veterinary science. Int. J. Pharma Res. Health Sci. 2014, 2, 96–103. [Google Scholar]
- Barkema, H.; Schukken, Y.; Zadoks, R. Invited Review: The Role of Cow, Pathogen, and Treatment Regimen in the Therapeutic Success of Bovine Staphylococcus aureus Mastitis. J. Dairy Sci. 2006, 89, 1877–1895. [Google Scholar] [CrossRef] [Green Version]
- Silveira-Filho, V.M.; Luz, I.S.; Campos, A.P.F.; Silva, W.M.; Barros, M.P.S.; Medeiros, E.; Freitas, M.F.L.; Mota, R.A.; Sena, M.J.; Leal-Balbino, T.C. Antibiotic Resistance and Molecular Analysis of Staphylococcus aureus Isolated from Cow’s Milk and Dairy Products in Northeast Brazil. J. Food Prot. 2014, 77, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Laven, R.; Balcomb, C.; Tulley, W.; Lawrence, K.; Laven, R.; Lawrence, K. Effect of dry period length on the effect of an intramammary teat sealant on the risk of mastitis in cattle treated with antibiotics at drying off. N. Z. Vet. J. 2014, 62, 214–220. [Google Scholar] [CrossRef]
- Oliveira, L.; Ruegg, P. Treatments of clinical mastitis occurring in cows on 51 large dairy herds in Wisconsin. J. Dairy Sci. 2014, 97, 5426–5436. [Google Scholar] [CrossRef] [Green Version]
- Stevens, M.; Piepers, S.; De Vliegher, S. Mastitis prevention and control practices and mastitis treatment strategies associated with the consumption of (critically important) antimicrobials on dairy herds in Flanders, Belgium. J. Dairy Sci. 2016, 99, 2896–2903. [Google Scholar] [CrossRef] [Green Version]
- Ruegg, P.L. Management of mastitis on organic and conventional dairy farms1. J. Anim. Sci. 2009, 87, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.; Khadr, A.; Elshemy, T.; Hamoda, H.; Mohamed, E.S. Role of Coagulase Positive and Coagulase Negative Staphylococci in Bovine Mastitis with Special Reference to Some of Their Virulence Genes and Antimicrobial Sensitivity. Alex. J. Vet. Sci. 2015, 46, 83. [Google Scholar] [CrossRef]
- Constable, P.D.; Hinchcliff, K.W.; Done, S.H.; Grünberg, W. Veterinary Medicine. A Text Book of the Disease of Cattle, Horses, Sheep, Pigs and Goats, 11th ed.; ELSEVIER Ltd.: St. Louis, MI, USA, 2017; pp. 1904–1964. [Google Scholar]
- Quinn, J.; Markey, B.K.; Leonard, F.C.; FitzPatrick, E.S.; Fanning, S.; Hartigan, P.J. Veterinary Microbiology and Microbial Disease, 2nd ed.; Wiley-Blackwell, A John Wiley & Sons Ltd. Publications: Ames, IA, USA, 2011. [Google Scholar]
- Ashraf, A.; Imran, M. Diagnosis of bovine mastitis: From laboratory to farm. Trop. Anim. Health Prod. 2018, 50, 1193–1202. [Google Scholar] [CrossRef]
- Condas, L.A.; De Buck, J.; Nobrega, D.B.; Carson, D.A.; Naushad, S.; De Vliegher, S.; Zadoks, R.N.; Middleton, J.R.; Dufour, S.; Kastelic, J.P.; et al. Prevalence of non-aureus staphylococci species causing intramammary infections in Canadian dairy herds. J. Dairy Sci. 2017, 100, 5592–5612. [Google Scholar] [CrossRef] [Green Version]
- Verbeke, J.; Piepers, S.; Supré, K.; De Vliegher, S. Pathogen-specific incidence rate of clinical mastitis in Flemish dairy herds, severity, and association with herd hygiene. J. Dairy Sci. 2014, 97, 6926–6934. [Google Scholar] [CrossRef] [Green Version]
- Al-Harbi, H.; Ranjbar, S.; Moore, R.J.; Alawneh, J.I. Bacteria Isolated from Milk of Dairy Cows with and without Clinical Mastitis in Different Regions of Australia and Their AMR Profiles. Front. Vet. Sci. 2021, 8, 743725. [Google Scholar] [CrossRef]
- Pedersen, R.R.; Krömker, V.; Bjarnsholt, T.; Dahl-Pedersen, K.; Buhl, R.; Jørgensen, E. Biofilm Research in Bovine Mastitis. Front. Vet. Sci. 2021, 8, 449. [Google Scholar] [CrossRef] [PubMed]
- Pascu, C.; Herman, V.; Costinar, L.; Iancu, I. Antimicrobial susceptibility of pathogenic bacteria isolated from swine lungs. Rom. Biotechnol. Lett. 2019, 24, 506–512. [Google Scholar] [CrossRef]
- Imre, K.; Herman, V.; Morar, A. Scientific Achievements in the Study of the Occurrence and Antimicrobial Susceptibility Profile of Major Foodborne Pathogenic Bacteria in Foods and Food Processing Environments in Romania: Review of the Last Decade. BioMed Res. Int. 2020, 2020, 5134764. [Google Scholar] [CrossRef]
- Persson, Y.; Katholm, J.; Landin, H.; Mörk, M.J. Efficacy of enrofloxacin for the treatment of acute clinical mastitis caused by Escherichia coli in dairy cows. Vet. Rec. 2015, 176, 673. [Google Scholar] [CrossRef]
- Royster, E.; Wagner, S. Treatment of Mastitis in Cattle. Vet. Clin. N. Am. Food Anim. Pract. 2015, 31, 17–46. [Google Scholar] [CrossRef]
- Wang, W.; Lin, X.; Jiang, T.; Peng, Z.; Xu, J.; Yi, L.; Li, F.; Fanning, S.; Baloch, Z. Prevalence and Characterization of Staphylococcus aureus Cultured from Raw Milk Taken from Dairy Cows with Mastitis in Beijing, China. Front. Microbiol. 2018, 9, 1123. [Google Scholar] [CrossRef]
- Atalay, B.; Ergin, F.; Cekinmez, M.; Caner, H.; Altinors, N. Brain abscess caused by Staphylococcus intermedius. Acta Neurochir. 2004, 147, 347–348. [Google Scholar] [CrossRef]
- Arslan, E.; Çelebi, A.; Açik, L.; Uçan, U.S. Characterization of coagulase positive Staphylococcus species isolated from bovine mastitis using protein and plasmid patterns. Turk. J. Vet. Anim. Sci. 2009, 33, 493–500. [Google Scholar]
- Wald, R.; Hess, C.; Urbantke, V.; Wittek, T.; Baumgartner, M. Characterization of Staphylococcus Species Isolated from Bovine Quarter Milk Samples. Animals 2019, 9, 200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitkälä, A.; Haveri, M.; Pyörälä, S.; Myllys, V.; Honkanen-Buzalski, T. Bovine Mastitis in Finland 2001—Prevalence, Distribution of Bacteria, and Antimicrobial Resistance. J. Dairy Sci. 2004, 87, 2433–2441. [Google Scholar] [CrossRef] [Green Version]
- Roberson, J.R.; Fox, L.K.; Hancock, D.D.; Gay, J.M.; Besser, T.E. Prevalence of coagulase-positive staphylococci, other than Staphylococcus aureus, in bovine mastitis. Am. J. Vet. Res. 1996, 57, 54–58. [Google Scholar] [PubMed]
- Keefe, G.; Dohoo, I.; Spangler, E. Herd Prevalence and Incidence of Streptococcus agalactiae in the Dairy Industry of Prince Edward Island. J. Dairy Sci. 1997, 80, 464–470. [Google Scholar] [CrossRef]
- Hogan, J.S.; Smith, K.L. Occurrence of clinical and subclinical environmental streptococci mastitis. In Proceedings of the Udder Health Management for Environmental Streptococci Symposium, Guelph, ON, Canada, 22 June 1997; pp. 36–41. [Google Scholar]
- Smith, K.L.; Hogan, J.S. Environmental mastitis caused by species of Streptococcus and Enterococcus: Risk factors and control. In Proceedings of the Arizona Dairy Extension Conference, Tucson, AZ, USA, 15 October 2003. [Google Scholar]
- Schukken, Y.; Chuff, M.; Moroni, P.; Gurjar, A.; Santisteban, C.; Welcome, F.; Zadoks, R. The “other” gram-negative bacteria in mastitis: Klebsiella, serratia, and more. Vet. Clin. N. Am. Food Anim. Pract. 2012, 28, 239–256. [Google Scholar] [CrossRef]
- Gao, J.; Barkema, H.; Zhang, L.; Liu, G.; Deng, Z.; Cai, L.; Shan, R.; Zhang, S.; Zou, J.; Kastelic, J.; et al. Incidence of clinical mastitis and distribution of pathogens on large Chinese dairy farms. J. Dairy Sci. 2017, 100, 4797–4806. [Google Scholar] [CrossRef]
- Brussow, H.; Canchaya, C.; Hardt, W.-D. Phages and the Evolution of Bacterial Pathogens: From Genomic Rearrangements to Lysogenic Conversion. Microbiol. Mol. Biol. Rev. 2004, 68, 560–602. [Google Scholar] [CrossRef] [Green Version]
- Pantosti, A.; Sanchini, A.; Monaco, M. Mechanisms of antibiotic resistance in Staphylococcus aureus. Future Microbiol. 2007, 2, 323–334. [Google Scholar] [CrossRef]
- Jamali, H.; Radmehr, B.; Ismail, S. Short communication: Prevalence and antibiotic resistance of Staphylococcus aureus isolated from bovine clinical mastitis. J. Dairy Sci. 2014, 97, 2226–2230. [Google Scholar] [CrossRef]
- Ondiek, J.; Kemboi, F. Bovine Mastitis Prevalence, Aetiology, Therapeutics and Control in Tatton Agriculture Park, Egerton University. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 3417–3426. [Google Scholar] [CrossRef]
- Kaczorek, E.; Małaczewska, J.; Wójcik, R.; Rękawek, W.; Siwicki, A. Phenotypic and genotypic antimicrobial susceptibility pattern of Streptococcus spp. isolated from cases of clinical mastitis in dairy cattle in Poland. J. Dairy Sci. 2017, 100, 6442–6453. [Google Scholar] [CrossRef]
- Degi, J.; Herman, V.; Iancu, I.; Pascu, C.; Florea, T.; Dascalu, R. Carriage of Multidrug Resistance Staphylococci in Shelter Dogs in Timisoara, Romania. Antibiotics 2021, 10, 801. [Google Scholar]
- Oliveira, M.; Nunes, S.; Carneiro, C.; Bexiga, R.; Bernardo, F.; Vilela, C. Time course of biofilm formation by Staphylococcus aureus and Staphylococcus epidermidis mastitis isolates. Vet. Microbiol. 2007, 124, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Schönborn, S.; Krömker, V. Detection of the biofilm component polysaccharide intercellular adhesin in Staphylococcus aureus infected cow udders. Vet. Microbiol. 2016, 196, 126–128. [Google Scholar] [CrossRef] [PubMed]
- Wyres, K.; Holt, K. Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Curr. Opin. Microbiol. 2018, 45, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Wyres, K.L.; Hawkey, J.; Hetland, M.A.K.; Fostervold, A.; Wick, R.R.; Judd, L.; Hamidian, M.; Howden, B.; Löhr, I.H.; Holt, K. Emergence and rapid global dissemination of CTX-M-15-associated Klebsiella pneumoniae strain ST307. J. Antimicrob. Chemother. 2019, 74, 577–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thrusfield, M. Veterinary Epidemiology, 3rd ed.; Blackwell Science, Ltd.: London, UK, 2005; pp. 181–189. [Google Scholar]
- Biosafety Manual of the University Veterinary Clinics of Timisoara. 2019. Available online: https://www.usab-tm.ro/utilizatori/medicinaveterinara/file/Manual%20Biosecuritate\%20CVU%202019.pdf (accessed on 6 September 2021).
- Sargeant, J.; Leslie, K.; Shirley, J.; Pulkrabek, B.; Lim, G. Sensitivity and Specificity of Somatic Cell Count and California Mastitis Test for Identifying Intramammary Infection in Early Lactation. J. Dairy Sci. 2001, 84, 2018–2024. [Google Scholar] [CrossRef]
- Šedo, O.; Voráč, A.; Zdrahal, Z. Optimization of mass spectral features in MALDI-TOF MS profiling of Acinetobacter species. Syst. Appl. Microbiol. 2011, 34, 30–34. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI) Document M31-A3. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, Approved Standard, 3rd ed.; CLSI: Wayne, NJ, USA, 2008. [Google Scholar]
Bacteria | Character of Primary Culture | Total of Isolates | Mastitis Type | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Monomicrobial | Polymicrobial | No | % | CM | SCM | |||||
No Isolates | % | No Isolates | % | No | % | No | % | |||
Staphylococcus spp. | 29 | 25.02 | 21 | 18.10 | 50 | 43.10 | 13 | 11.20 | 37 | 31.90 |
Streptococcus spp. | 19 | 16.37 | 7 | 6.03 | 26 | 22.41 | 11 | 9.48 | 15 | 12.94 |
Escherichia coli | 9 | 7.75 | 7 | 6.03 | 16 | 13.80 | 10 | 8.62 | 6 | 5.17 |
Corynebacterium spp. | 3 | 2.58 | 6 | 5.17 | 9 | 7.76 | 2 | 1.72 | 7 | 6.03 |
Enterococcus spp. | 6 | 5.17 | 4 | 3.45 | 10 | 8.62 | 2 | 1.72 | 8 | 6.90 |
Enterobacter spp. | 4 | 3.45 | 1 | 0.86 | 5 | 4.31 | - | - | 5 | 4.31 |
Total | 70 | 60.34 | 46 | 39.66 | 116 | 100 | 38 | 32.74 | 78 | 67.25 |
No | Antimicrobial | CPS Isolates | CNS Isolates | |||||
---|---|---|---|---|---|---|---|---|
S. aureus (n = 12) | S. intermedius (n = 3) | S. hycus subsp. Hycus (n = 1) | S. chromogenes (n = 2) | S. xylosus (n = 2) | S. hycus (n = 2) | S. capitis (n = 2) | ||
1 | Erythromycin | 9 | 1 | 1 | 0 | 1 | 0 | 0 |
2 | Polymyxin B | 8 | 2 | 0 | 1 | 2 | 1 | 2 |
3 | Amoxicillin-clavulanic acid | 3 | 3 | 1 | 2 | 1 | 2 | 0 |
4 | Gentamicin | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
5 | Tylozin | 6 | 2 | 0 | 2 | 2 | 1 | 1 |
6 | Oxacillin | 6 | 3 | 1 | 1 | 0 | 1 | 0 |
7 | Cephalothin | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
8 | Novobiocin | 5 | 2 | 0 | 1 | 1 | 1 | 0 |
9 | Ampicillin | 10 | 2 | 1 | 1 | 1 | 1 | 1 |
10 | Tetracyclin | 8 | 3 | 0 | 1 | 2 | 1 | 0 |
11 | Kanamycin | 2 | 1 | 0 | 1 | 2 | 1 | 0 |
12 | Methicillin | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
13 | Amoxicillin | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
14 | Rifampicin | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
No | Antimicrobial | Streptococcus spp. | Enterococcus spp. | ||
---|---|---|---|---|---|
Str. agalactiae (n = 8) | Str. Uberis (n = 4) | Str. Dysgalactiae (n = 4) | E. faecium (n = 6) | ||
1 | Erythromycin | 7 | 1 | 0 | 4 |
2 | Penicillin | 5 | 1 | 1 | 3 |
3 | Amoxicillin-clavulanic acid | 4 | 3 | 1 | 5 |
4 | Gentamicin | 7 | 3 | 4 | 5 |
5 | Tylosin | 4 | 2 | 3 | 4 |
6 | Oxacillin | 6 | 3 | 3 | 1 |
7 | Cephalothin | 0 | 0 | 0 | 1 |
8 | Novobiocin | 8 | 4 | 4 | 2 |
9 | Ampicillin | 1 | 1 | 0 | 1 |
10 | Tetracycline | 8 | 4 | 4 | 4 |
11 | Kanamycin | 8 | 4 | 4 | 5 |
12 | Lincomycin | 5 | 3 | 3 | 1 |
13 | Bacitracin | 8 | 4 | 4 | 1 |
14 | Sulfamethoxazole/trimethorprim | 8 | 4 | 4 | 6 |
No | Antimicrobial | E. coli (n = 7) |
---|---|---|
1 | Erythromycin | 5 |
2 | Florfenicol | 0 |
3 | Gentamicin | 0 |
4 | Cephalothin | 2 |
5 | Ampicillin | 4 |
6 | Tetracycline | 5 |
7 | Enrofloxacin | 0 |
Bacteria | No of Isolates | Resistance Profile |
---|---|---|
Staphylococcu spp. | 8 | E;AMC;TY;AMP |
4 | E;AMC;AMP;TC;M | |
5 | M;TC;AMP;NV;E | |
2 | AMC;PB;OX;NV;AMP;TET;M | |
2 | PB;GEN;TYL;NV;AMP;TET;M;OX | |
Streptococcus spp. | 6 | GEN;OX;TET;K;STX |
3 | E;AMP;TET;K;B;STX | |
2 | E;B;L;K;TET;NV;OX;AMC | |
2 | STX;B;L;K;TET;NV;OX;TYL;AMC | |
1 | E;AMC;GEN;OX;NV;AMP;TET;K;B;STX | |
Enterococcus spp. | 1 | E;GEN;K;STX; |
1 | STX;K;TET;E;GEN;TY | |
1 | E;GEN;TY;TET;K;STX | |
1 | E;GEN;TY;OX;AMP;TET;K;L;B;STX |
Farm | Location | Breed | Herd Size/Lactating Cows | No. of Samples | ||
---|---|---|---|---|---|---|
Total | From CM Cases (%) | From SCM Cases (%) | ||||
1 | Arad | Holstein | 160/50 | 102 | 9 (5.00) | 93 (51.67) |
2 | Timis 1 | Holestein and Red Holstein | 75/33 | 31 | 5 (2.78) | 26 (14.44) |
3 | Timis 2 | Holestein | 60/24 | 27 | 3 (1.67) | 24 (13.33) |
4 | Bihor | Romanian Spotted Cattle | 40/20 | 20 | 1 (0.56) | 19 (10.56) |
Total | 335/127 | 180 | 18 (10.00) | 162 (90.00) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pascu, C.; Herman, V.; Iancu, I.; Costinar, L. Etiology of Mastitis and Antimicrobial Resistance in Dairy Cattle Farms in the Western Part of Romania. Antibiotics 2022, 11, 57. https://doi.org/10.3390/antibiotics11010057
Pascu C, Herman V, Iancu I, Costinar L. Etiology of Mastitis and Antimicrobial Resistance in Dairy Cattle Farms in the Western Part of Romania. Antibiotics. 2022; 11(1):57. https://doi.org/10.3390/antibiotics11010057
Chicago/Turabian StylePascu, Corina, Viorel Herman, Ionica Iancu, and Luminita Costinar. 2022. "Etiology of Mastitis and Antimicrobial Resistance in Dairy Cattle Farms in the Western Part of Romania" Antibiotics 11, no. 1: 57. https://doi.org/10.3390/antibiotics11010057
APA StylePascu, C., Herman, V., Iancu, I., & Costinar, L. (2022). Etiology of Mastitis and Antimicrobial Resistance in Dairy Cattle Farms in the Western Part of Romania. Antibiotics, 11(1), 57. https://doi.org/10.3390/antibiotics11010057