A Novel Method to Assess Antimicrobial Susceptibility in Commensal Oropharyngeal Neisseria—A Pilot Study
Abstract
:1. Introduction
- (i)
- There are a number of problems with using a posterior oropharyngeal/tonsillar swab to sample oropharyngeal Neisseria. First, this technique is unlikely to collect commensal Neisseria in other niches in the oral cavity, such as the tongue and buccal mucosa, which have been shown to be commonly colonized by commensal Neisseria [16]. Secondly, a posterior oropharyngeal/tonsillar swab is poorly tolerated. In one study, this sampling technique provoked an unpleasant gag reflex in more than half of the individuals [17,18]. In this study, the authors suggested that the absence of a gag reflex in the other individuals was caused by the inability to sample the posterior pharynx. As a result, not inducing a gag response was independently associated with a lower probability of detecting N. gonorrhoeae [17]. Additionally, a large variation in the detection rate of N. gonorrhoeae was found between the clinicians taking the samples, indicating a large inter-individual variability in accuracy [17]. A recent publication found that oral rinse samples are well tolerated and provide excellent results in terms of characterizing oral Neisseria species using whole genome sequencing data [19]. Our first innovation thus involved testing if oral rinse samples were able to detect the presence of commensal Neisseria as well as the currently recommended posterior oropharyngeal/tonsillar swab.
- (ii)
- As isolation, identification and assessment of antimicrobial susceptibility of commensal Neisseria on non-selective agar plates is laborious, we used LBVT.SNR agar plates selective for commensal Neisseria to reduce the workload and need for expensive equipment, such as MALDI-TOF-MS machines [20]. Additionally, instead of assessing the antimicrobial susceptibility of each individual colony, we assessed the proportion of commensal Neisseria that could grow on LBVT.SNR medium with 2 µg/mL azithromycin. This approach has been successfully used for a number of bacterial species to estimate the proportion of bacteria with antimicrobial resistance in a sample [21,22,23].
2. Materials and Methods
2.1. Study Design
2.2. Sample Collection
2.3. Sample Processing
2.4. Clinical Isolate Organism Identification
2.5. Data Analysis
2.6. Ethical Considerations
3. Results
3.1. Participants
3.2. Number of Different Neisseria Species
3.3. Colony Count
3.4. Azithromycin Resistance in Commensal Neisseria
3.5. Detection of Bacterial Species Other Than Neisseria
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, G.; Tang, C.M.; Exley, R.M. Non-pathogenic Neisseria: Members of an abundant, multi-habitat, diverse genus. Microbiology 2015, 161, 1297–1312. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.V.; Pham, L.Q.; Nguyen, H.T.; Nguyen, M.X.B.; Nguyen, T.V.; May, F.; Le, G.M.; Klausner, J.D. Decreased Cephalosporin Susceptibility of Oropharyngeal Neisseria Species in Antibiotic-using Men Who Have Sex with Men in Hanoi, Vietnam. Clin. Infect. Dis. 2020, 70, 1169–1175. [Google Scholar] [CrossRef]
- Dong, H.V.; Adamson, P.C.; Nguyen, H.T.; Nguyen, T.V.; Le, G.M.; Klausner, J.D. Reply to Laumen et al. Clin. Infect. Dis. 2021, 72, 364–365. [Google Scholar] [CrossRef] [PubMed]
- Laumen, J.G.E.; Van Dijck, C.; Abdellati, S.; Manoharan-Basil, S.S.; De Baetselier, I.; Martiny, D.; Crucitti, T.; Kenyon, C. Markedly Reduced Azithromycin and Ceftriaxone Susceptibility in Commensal Neisseria Species in Clinical Samples from Belgian Men Who Have Sex with Men. Clin. Infect. Dis. 2021, 72, 363–364. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, C.; Zhang, X.; Chen, M. Meningococcal quinolone resistance originated from several commen-sal neisseria species. Antimicrob. Agents Chemother. 2020, 64, e01494-19. [Google Scholar] [CrossRef]
- Shen, Y.; Chen, M. Prevalence, sequence type, and quinolone resistance of Neisseria lactamica carried in children younger than 15 years in Shanghai, China. J. Infect. 2020, 80, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Takei, H.; Takeuchi, N.; Hoshino, T.; Ohkusu, M.; Segawa, S.; Murata, S.; Ishiwada, N. Bacteriological analysis of Neisseria lactamica isolated from the respiratory tract in Japanese children. J. Infect. Chemother. 2020, 27, 65–69. [Google Scholar] [CrossRef]
- Laumen, J.G.E.; Van Dijck, C.; Abdellati, S.; De Baetselier, I.; Serrano, G.; Manoharan-Basil, S.S.; Bottieau, E.; Martiny, D.; Kenyon, C. Antimicrobial susceptibility of commensal Neisseria in a general population and men who have sex with men in Belgium. Sci. Rep. 2022, 12, 9. [Google Scholar] [CrossRef]
- Vanbaelen, T.; Van Dijck, C.; Laumen, J.G.E.; Gonzalez, N.; De Baetselier, I.; Manoharan-Basil, S.S.; De Block, T.; Kenyon, C. Global epidemiology of antimicrobial resistance in commensal Neisseria: A systematic review. J. Med. Microbiol. 2022. submitted. [Google Scholar]
- Fiore, M.A.; Raisman, J.C.; Wong, N.H.; Hudson, A.O.; Wadsworth, C.B. Exploration of the neisseria resistome reveals resistance mechanisms in commensals that may be acquired by N. Gonorrhoeae through horizontal gene transfer. Antibiotics 2020, 9, 656. [Google Scholar] [CrossRef]
- Spratt, B.G.; Bowler, L.D.; Zhang, Q.-Y.; Zhou, J.; Smith, J.M. Role of interspecies transfer of chromosomal genes in the evolution of penicillin resistance in pathogenic and commensal Neisseria species. J. Mol. Evol. 1992, 34, 115–125. [Google Scholar] [CrossRef]
- Wadsworth, C.B.; Arnold, B.J.; Sater, M.R.A.; Grad, Y.H. Azithromycin Resistance through Interspecific Acquisi-tion of an Epistasis-Dependent Efflux Pump Component and Transcriptional Regulator in Neisseria gonorrhoeae. MBio 2018, 9, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manoharan-Basil, S.S.; Laumen, J.G.E.; Van Dijck, C.; De Block, T.; De Baetselier, I.; Kenyon, C. Evidence of Horizontal Gene Transfer of 50S Ribosomal Genes rplB, rplD, and rplY in Neisseria gonorrhoeae. Front. Microbiol. 2021, 12, 683901. [Google Scholar] [CrossRef]
- Banhart, S.; Selb, R.; Oehlmann, S.; Bender, J.; Buder, S.; Jansen, K.; Heurer, F. The mosaic mtr locus as major genetic determinant of azithromycin resistance of Neisseria gonorrhoeae, Germany, 2018. J. Infect. Dis. 2021, 224, 1398–1404. [Google Scholar] [CrossRef]
- Kenyon, C.; Laumen, J.; Manoharan-Basil, S. Choosing New Therapies for Gonorrhoea: We Need to Consider the Impact on the Pan-Neisseria Genome. A Viewpoint. Antibiotics 2021, 10, 515. [Google Scholar] [CrossRef]
- Donati, C.; Zolfo, M.; Albanese, D.; Truong, D.T.; Asnicar, F.; Iebba, V.; Cavalieri, D.; Jousson, O.; De Filippo, C.; Huttenhower, C.; et al. Uncovering oral Neisseria tropism and persistence using metagenomic sequencing. Nat. Microbiol. 2016, 1, 16070. [Google Scholar] [CrossRef]
- Razali, M.F.; Fairley, C.K.; Hocking, J.; Bradshaw, C.S.; Chen, M.Y. Sampling technique and detection rates for pharyngeal gonorrhea using culture. Sex. Transm. Dis. 2010, 37, 522–524. [Google Scholar] [CrossRef]
- Ardelean, L.; Bortun, C.; Motoc, M. Gag Reflex in Dental Practice-Etiological Aspects. TMJ 2003, 53, 312–315. [Google Scholar]
- Caselli, E.; Fabbri, C.; D’Accolti, M.; Soffritti, I.; Bassi, C.; Mazzacane, S.; Franchi, M. Defining the oral microbiome by whole-genome sequencing and resistome analysis: The complexity of the healthy picture. BMC Microbiol. 2020, 20, 120. [Google Scholar] [CrossRef]
- Knapp, J.S.; Hook, E.W. Prevalence and persistence of Neisseria cinerea and other Neisseria spp. in adults. J. Clin. Microbiol. 1988, 26, 896–900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malhotra-Kumar, S.; Lammens, C.; Coenen, S.; Van Herck, K.; Goossens, H. Effect of azithromycin and clarithromycin therapy on pharyngeal carriage of macrolide-resistant streptococci in healthy volunteers: A randomised, double-blind, placebo-controlled study. Lancet 2007, 369, 482–490. [Google Scholar] [CrossRef]
- van Winkelhoff, A.J.; Gonzales, D.H.; Winkel, E.G.; Dellemijn-Kippuw, N.; Vandenbroucke-Grauls, C.M.J.E.; Sanz, M. Antimicrobial resistance in the subgingival microflora in patients with adult periodontitis. J. Clin. Periodontol. 2000, 27, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Perry, J.D.; Laine, L.; Hughes, S.; Nicholson, A.; Galloway, A.; Gould, F.K. Recovery of antimicrobial-resistant Pseudomonas aeruginosa from sputa of cystic fibrosis patients by culture on selective media. J. Antimicrob. Chemother. 2008, 61, 1057–1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, J.S.; Jolley, K.A.; Earle, S.G.; Corton, C.; Bentley, S.D.; Parkhill, J.; Maiden, M.C.J. A genomic approach to bacterial taxonomy: An examination and proposed reclassification of species within the genus Neisseria. Microbiology 2012, 158, 1570–1580. [Google Scholar] [CrossRef]
Participant | Oral Rinse Sample | Swab Sample |
---|---|---|
1 | n = 2; Neisseria subflava Neisseria macacae | n = 2; Neisseria subflava Neisseria macacae |
2 | n = 3; Neisseria subflava Neisseria macacae Neisseria bacilliformis | n = 2; Neisseria subflava Neisseria macacae |
3 | n = 2; Neisseria subflava Neisseria macacae | n = 2; Neisseria subflava Neisseria macacae |
4 | n = 2; Neisseria subflava Neisseria macacae | n = 2; Neisseria subflava Neisseria macacae |
5 | n = 2; Neisseria subflava Neisseria elongata | n = 2; Neisseria subflava Neisseria elongata |
6 | n = 2; Neisseria subflava Neisseria macacae | n = 2; Neisseria subflava Neisseria macacae |
7 | n = 3; Neisseria subflava Neisseria macacae Neisseria elongata | n = 2; Neisseria subflava Neisseria macacae |
8 | n = 1; Neisseria subflava | n = 1; Neisseria subflava |
9 | n = 1; Neisseria subflava | n = 1; Neisseria subflava |
10 | n = 2; Neisseria subflava Neisseria oralis | n = 1; Neisseria subflava |
Participant | Oral Rinse CFU/mL (%) | Dilution Counted | Swab CFU/mL (%) | Dilution Counted |
---|---|---|---|---|
1 | 105 (46) | 10−2 | 104 (70) | 10−1 |
2 | 104 (7) | 10−1, 10−2 | 0 | / |
3 | 106 (50) | 10−3 | 104 (20) | 10−1 |
4 | 105 (79) | 10−3 | 105 (100) | 10−3 |
5 | 104 (100) | 10−2 | 106 (23) | 10−3 |
6 | 106 (100) | 10−3 | 106 (23) | 10−3 |
7 | 105 (60) | 10−3 | 105 (70) | 10−3 |
8 | 105 (35) | 10−2 | 0 | / |
9 | 105 (69) | 10−2 | 104 (59) | 10−2 |
10 | 105 (100) | 10−3 | 105 (76) | 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laumen, J.G.E.; Abdellati, S.; Van Dijck, C.; Martiny, D.; De Baetselier, I.; Manoharan-Basil, S.S.; Van den Bossche, D.; Kenyon, C. A Novel Method to Assess Antimicrobial Susceptibility in Commensal Oropharyngeal Neisseria—A Pilot Study. Antibiotics 2022, 11, 100. https://doi.org/10.3390/antibiotics11010100
Laumen JGE, Abdellati S, Van Dijck C, Martiny D, De Baetselier I, Manoharan-Basil SS, Van den Bossche D, Kenyon C. A Novel Method to Assess Antimicrobial Susceptibility in Commensal Oropharyngeal Neisseria—A Pilot Study. Antibiotics. 2022; 11(1):100. https://doi.org/10.3390/antibiotics11010100
Chicago/Turabian StyleLaumen, Jolein Gyonne Elise, Saïd Abdellati, Christophe Van Dijck, Delphine Martiny, Irith De Baetselier, Sheeba Santhini Manoharan-Basil, Dorien Van den Bossche, and Chris Kenyon. 2022. "A Novel Method to Assess Antimicrobial Susceptibility in Commensal Oropharyngeal Neisseria—A Pilot Study" Antibiotics 11, no. 1: 100. https://doi.org/10.3390/antibiotics11010100
APA StyleLaumen, J. G. E., Abdellati, S., Van Dijck, C., Martiny, D., De Baetselier, I., Manoharan-Basil, S. S., Van den Bossche, D., & Kenyon, C. (2022). A Novel Method to Assess Antimicrobial Susceptibility in Commensal Oropharyngeal Neisseria—A Pilot Study. Antibiotics, 11(1), 100. https://doi.org/10.3390/antibiotics11010100