Urinary Tract Infections in Elderly Patients: A 10-Year Study on Their Epidemiology and Antibiotic Resistance Based on the WHO Access, Watch, Reserve (AWaRe) Classification
Abstract
:1. Introduction
2. Results
2.1. Demographic Characteristics, Sample Types
2.2. Distribution of Relevant Pathogens in the UTIs Affecting Elderly Patients
2.3. Antimicrobial Resistance Rates of Bacterial Uropathogens Based on the WHO AWaRe Classification
3. Discussion
4. Materials and Methods
4.1. Study Site, Study Design, Data Collection
4.2. Identification of Bacterial Isolates
4.3. Antimicrobial Susceptibility Testing of Relevant Isolates
4.4. Statistical Analysis
4.5. Limitation of the Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.G.; Hultgren, S.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Johansen, T.E.B.; Botto, H.; Cek, M.; Grabe, M.; Tenke, P.; Wagenlehner, F.M.; Naber, K.G. Critical review of current definitions of urinary tract infections and proposal of an EAU/ESIU classification system. Int. J. Antimicrob. Agents 2011, 38, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Fajfr, M.; Balik, M.; Cermakova, E.; Bostik, P. Effective Treatment for Uncomplicated Urinary Tract Infections with Oral Fosfomycin, Single Center Four Year Retrospective Study. Antibiotics 2020, 9, 511. [Google Scholar] [CrossRef] [PubMed]
- Foxman, B. Urinary tract infection syndromes: Occurrence, recurrence, bacteriology, risk factors and disease burden. Infect. Dis. Clin. 2014, 28, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Rozenkiewicz, D.; Esteve-Palau, E.; Arenas-Miras, M.; Grau, S.; Duran, X.; Sorlí, L.; Montero, M.; Horcajada, J. Clinical and Economic Impact of Community-Onset Urinary Tract Infections Caused by ESBL-Producing Klebsiella pneumoniae Requiring Hospitalization in Spain: An Observational Cohort Study. Antibiotics 2021, 10, 585. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.D.; Hultgren, S.J. Urinary tract infections: Microbial pathogenesis, host–pathogen interactions and new treatment strategies. Nat. Rev. Microbiol. 2020, 18, 211–226. [Google Scholar] [CrossRef] [PubMed]
- Kot, B.; Grużewska, A.; Szweda, P.; Wicha, J.; Parulska, U. Antibiotic Resistance of Uropathogens Isolated from Patients Hospitalized in District Hospital in Central Poland in 2020. Antibiotics 2021, 10, 447. [Google Scholar] [CrossRef] [PubMed]
- Behzadi, P.; Urbán, E.; Matuz, M.; Benkő, R.; Gajdács, M. The Role of Gram-Negative Bacteria in Urinary Tract Infections: Current Concepts and Therapeutic Options. Adv. Exp. Med. Biol. 2020, 1323, 35–69. [Google Scholar] [CrossRef]
- Gajdács, M.; Ábrók, M.; Lázár, A.; Burián, K. Comparative Epidemiology and Resistance Trends of Common Urinary Pathogens in a Tertiary-Care Hospital: A 10-Year Surveillance Study. Medicina 2019, 55, 356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hrbacek, J.; Cermak, P.; Zachoval, R. Current antibiotic resistance patterns of rare uropathogens: Survey from Central European Urology Department 2011–2019. BMC Urol. 2021, 21, 1–8. [Google Scholar] [CrossRef]
- Kasanga, M.; Mukosha, R.; Siyanga, M.; Mudenda, S.; Solochi, B.B.; Chileshe, M.; Mwiikisa, M.J.; Gondwe, T.; Kantenga, T.; Shibemba, A.L.; et al. Antimicrobial resistance patterns of bacterial pathogens: Their distribution in university teaching hospitals in Zambia. Future Microbiol. 2021, 16, 811–824. [Google Scholar] [CrossRef] [PubMed]
- Petca, R.-C.; Negoiță, S.; Mareș, C.; Petca, A.; Popescu, R.-I.; Chibelean, C. Heterogeneity of Antibiotics Multidrug-Resistance Profile of Uropathogens in Romanian Population. Antibiotics 2021, 10, 523. [Google Scholar] [CrossRef] [PubMed]
- Chibelean, C.B.; Petca, R.-C.; Mareș, C.; Popescu, R.-I.; Enikő, B.; Mehedințu, C.; Petca, A. A Clinical Perspective on the Antimicrobial Resistance Spectrum of Uropathogens in a Romanian Male Population. Microorganisms 2020, 8, 848. [Google Scholar] [CrossRef] [PubMed]
- Gajdács, M.; Ábrók, M.; Lázár, A.; Burián, K. Epidemiology and antibiotic resistance profile of bacterial uropathogens in male patients: A 10-year retrospective study. Farmacia 2021, 69, 530–539. [Google Scholar] [CrossRef]
- Ngowi, B.N.; Sunguya, B.; Herman, A.; Chacha, A.; Maro, E.; Rugarabamu, L.F.; Bartlett, J.; Balandya, E.; Mteta, K.A.; Mmbaga, B.T. Prevalence of Multidrug Resistant UTI Among People Living with HIV in Northern Tanzania. Infect. Drug Resist. 2021, 14, 1623–1633. [Google Scholar] [CrossRef]
- Omran, A.R. The Epidemiologic Transition: A Theory of the Epidemiology of Population Change. In The Milbank Memorial Fund Quarterly; John and Wiely and Sons: Hoboken, NJ, USA, 2005; Volume 83, pp. 731–757. [Google Scholar] [CrossRef] [Green Version]
- Jakovljevic, M.B.; Milovanovic, O. Growing Burden of Non-Communicable Diseases in the Emerging Health Markets: The Case of BRICS. Front. Public Health 2015, 3, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ioannou, P.; Plexousaki, M.; Dimogerontas, K.; Aftzi, V.; Drougkaki, M.; Konidaki, M.; Paschalidis, K.; Maraki, S.; Kofteridis, D.P. Characteristics of urinary tract infections in older patients in a tertiary care hospital in Greece. Geriatr. Gerontol. Int. 2020, 20, 1228–1233. [Google Scholar] [CrossRef]
- Tannou, T.; Koeberle, S.; Manckoundia, P.; Aubry, R. Multifactorial immunodeficiency in frail elderly patients: Contributing factors and management. Med. Mal. Infect. 2019, 49, 167–172. [Google Scholar] [CrossRef]
- Falcone, M.; Paul, M.; Tiseo, G.; Yahav, D.; Prendki, V.; Friberg, L.E.; Guerri, R.; Gavazzi, G.; Mussini, C.; Tinelli, M. Considerations for the optimal management of antibiotic therapy in elderly patients. J. Glob. Antimicrob. Resist. 2020, 22, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Abbo, L.M.; Hooton, T.M. Antimicrobial Stewardship and Urinary Tract Infections. Antibiotics 2014, 3, 174–192. [Google Scholar] [CrossRef]
- Petca, R.-C.; Mareș, C.; Petca, A.; Negoiță, S.; Popescu, R.-I.; Boț, M.; Barabás, E.; Chibelean, C.B. Spectrum and Antibiotic Resistance of Uropathogens in Romanian Females. Antibiotics 2020, 9, 472. [Google Scholar] [CrossRef]
- Tandogdu, Z.; Wagenlehner, F.M. Global epidemiology of urinary tract infections. Curr. Opin. Infect. Dis. 2016, 29, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Zeng, G.; Zhu, W.; Lam, W.; Bayramgil, A. Treatment of urinary tract infections in the old and fragile. World J. Urol. 2020, 38, 2709–2720. [Google Scholar] [CrossRef] [PubMed]
- Higutia, N.I.A.; Bronze, M.S. On the Subject of Urinary Tract Infections in the Elderly. Am. J. Med. Sci. 2020, 360, 209–210. [Google Scholar] [CrossRef]
- Shiralizadeh, S.; Taghizadeh, S.; Asgharzadeh, M.; Shokouhi, B.; Gholizadeh, P.; Rahbar, M.; Kafil, H.S. Urinary tract infections: Raising problem in developing countries. Rev. Med. Microbiol. 2018, 29, 159–165. [Google Scholar] [CrossRef]
- Gajdács, M. The Importance of Reporting Clinical and Epidemiological Data in Urology: Local Experiences and Insights from the International Literature. Medicina 2020, 56, 581. [Google Scholar] [CrossRef]
- WHO. AWaRe Classification Database of Antibiotics for Evaluation and Monitoring of Use. 2019. Available online: https://www.who.int/publications/i/item/WHOEMPIAU2019.11 (accessed on 1 August 2021).
- Toner, L.; Papa, N.; Aliyu, S.H.; Dev, H.; Lawrentschuk, N.; Al-Hayek, S. Vancomycin resistant enterococci in urine cultures: Antibiotic susceptibility trends over a decade at a tertiary hospital in the United Kingdom. Investig. Clin. Urol. 2016, 57, 129–134. [Google Scholar] [CrossRef]
- Kothari, A.; Sagar, V. Antibiotic resistance in pathogens causing community-acquired urinary tract infections in India: A multicenter study. J. Infect. Dev. Ctries. 2008, 2, 354–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, J.F.; Sobel, J.D.; Kauffman, C.A.; Newman, C.A. Candida Urinary Tract Infections—Treatment. Clin. Infect. Dis. 2011, 52, S457–S466. [Google Scholar] [CrossRef] [Green Version]
- Behzadi, P.; Behzadi, E.; Ranjbar, R. Urinary tract infections and Candida albicans. Cent. Eur. J. Urol. 2015, 68, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Platt, R.; Polk, B.F.; Murdock, B.; Rosner, B. Risk factors for nosocomial urinary tract infection. Am. J. Epidemiol. 1986, 124, 977–985. [Google Scholar] [CrossRef]
- Deorukhkar, S.C.; Saini, S.; Mathew, S. Non-albicans CandidaInfection: An Emerging Threat. Interdiscip. Perspect. Infect. Dis. 2014, 2014, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behzadi, P.; Baráth, Z.; Gajdács, M. It’s Not Easy Being Green: A Narrative Review on the Microbiology, Virulence and Therapeutic Prospects of Multidrug-Resistant Pseudomonas aeruginosa. Antibiotics 2021, 10, 42. [Google Scholar] [CrossRef] [PubMed]
- Bandy, A.; Tantry, B. ESBL Activity, MDR, and Carbapenem Resistance among Predominant Enterobacterales Isolated in 2019. Antibiotics 2021, 10, 744. [Google Scholar] [CrossRef] [PubMed]
- Benkő, R.; Gajdács, M.; Matuz, M.; Bodó, G.; Lázár, A.; Hajdú, E.; Papfalvi, E.; Hannauer, P.; Erdélyi, P.; Pető, Z. Prevalence and Antibiotic Resistance of ESKAPE Pathogens Isolated in the Emergency Department of a Tertiary Care Teaching Hospital in Hungary: A 5-Year Retrospective Survey. Antibiotics 2020, 9, 624. [Google Scholar] [CrossRef] [PubMed]
- Menhert-Kay, S.A. Diagnosis and Management of Uncomplicated Urinary Tract Infections. Am. Fam. Physician 2005, 72, 451–456. [Google Scholar]
- Adriaenssens, N.; Bruyndonckx, R.; Versporten, A.; Hens, N.; Monnet, D.L.; Molenberghs, G.; Goossens, H.; Weist, K.; Coenen, S.; Strauss, R.; et al. Quality appraisal of antibiotic consumption in the community, European Union/European Economic Area, 2009 and 2017. J. Antimicrob. Chemother. 2021, 76, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Bonkat, G.; Müller, G.; Rieken, M.; Frei, R.; Widmer, A.F.; Feicke, A.; Wyler, S.; Rentsch, C.A.; Ebinger-Mundorff, N.; Subotic, S.; et al. Epidemiology of urinary tract infections caused by extended-spectrum beta-lactamase (ESBL) producing pathogens at a tertiary care swiss University Hospital. J. Urol. 2011, 185, e545. [Google Scholar] [CrossRef]
- Almomani, B.A.; Khasawneh, R.A.; Saqan, R.; Alnajjar, M.S.; Al-Natour, L. Predictive utility of prior positive urine culture of extended- spectrum β -lactamase producing strains. PLoS ONE 2020, 15, e0243741. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, J.; Kang, Y.; Yang, Q.; Xu, Y. Analysis of Susceptibilities of Carbapenem Resistant Enterobacterales to Colistin in Intra-Abdominal, Respiratory and Urinary Tract Infections from 2015 to 2017. Infect. Drug Resist. 2020, 13, 1937–1948. [Google Scholar] [CrossRef]
- Durante-Mangoni, E.; Andini, R.; Zampino, R. Management of carbapenem-resistant Enterobacteriaceae infections. Clin. Microbiol. Infect. 2019, 25, 943–950. [Google Scholar] [CrossRef]
- Meletis, G.; Exindari, M.; Vavatsi, N.; Sofianou, D.; Diza, E. Mechanisms responsible for the emergence of carbapenem resistance in Pseudomonas aeruginosa. Hippokratia 2012, 16, 303–307. [Google Scholar] [PubMed]
- Olaru, I.D.; Popoiu, M.; Breuil, J.; Aramă, V.; Hristea, A. Urinary tract infection caused by carbapenem-resistant K. pneumoniae and P. aeruginosa. Rom. J. Intern. Med. 2011, 49, 289–294. [Google Scholar] [PubMed]
- Shields, R.K.; Zhou, Y.; Kanakamedala, H.; Cai, B. Burden of illness in US hospitals due to carbapenem-resistant Gram-negative urinary tract infections in patients with or without bacteraemia. BMC Infect. Dis. 2021, 21, 1–12. [Google Scholar] [CrossRef]
- Heintz, B.H.; Halilovic, J.; Christensen, C.L. Vancomycin-Resistant Enterococcal Urinary Tract Infections. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2010, 30, 1136–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, O.; Slavin, M.A.; Teh, B.W.; Bajel, A.; Douglas, A.P.; Worth, L.J. Epidemiology, treatment and outcomes of bloodstream infection due to vancomycin-resistant enterococci in cancer patients in a vanB endemic setting. BMC Infect. Dis. 2020, 20, 228. [Google Scholar] [CrossRef] [PubMed]
- Gajdács, M.; Ábrók, M.; Lázár, A.; Burián, K. Microbiology of urine samples obtained through suprapubic bladder aspiration: A 10-year epidemiological snapshot. Dev. Heal. Sci. 2019, 2, 76–78. [Google Scholar] [CrossRef]
- Artero, A.; Esparcia, A.; Eiros, J.M.; Madrazo, M.; Alberola, J.; Nogueira, J.M. Effect of Bacteremia in Elderly Patients with Urinary Tract Infection. Am. J. Med. Sci. 2016, 352, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Kofteridis, D.; Papdimitraki, E.; Mantadakis, E.; Maraki, S.; Papadakis, J.A.; Tzida, G.; Samonis, G. Effect of Diabetes Mellitus on the Clinical and Microbiological Features of Hospitalized Elderly Patients with Acute Pyelonephritis. J. Am. Geriatr. Soc. 2009, 57, 2125–2128. [Google Scholar] [CrossRef] [PubMed]
- López-De-Andrés, A.; Albaladejo-Vicente, R.; Palacios-Ceña, D.; Carabantes-Alarcon, D.; Zamorano-Leon, J.J.; De Miguel-Diez, J.; Lopez-Herranz, M.; Jiménez-García, R. Time Trends in Spain from 2001 to 2018 in the Incidence and Outcomes of Hospitalization for Urinary Tract Infections in Patients with Type 2 Diabetes Mellitus. Int. J. Environ. Res. Public Health 2020, 17, 9427. [Google Scholar] [CrossRef]
- Serretiello, E.; Folliero, V.; Santella, B.; Giordano, G.; Santoro, E.; De Caro, F.; Pagliano, P.; Ferro, M.; Aliberti, S.M.; Capunzo, M.; et al. Trend of Bacterial Uropathogens and Their Susceptibility Pattern: Study of Single Academic High-Volume Center in Italy (2015–2019). Int. J. Microbiol. 2021, 2021, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Düzkaya, D.S.; Uysal, G.; Bozkurt, G.; Yakut, T.; Citak, A. Povidone-Iodine, 0.05% Chlorhexidine Gluconate, or Water for Periurethral Cleaning Before Indwelling Urinary Catheterization in a Pediatric Intensive Care: A Randomized Controlled Trial. J. Wound Ostomy Cont. Nurs. 2017, 44, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Pinna, A.; Donadu, M.G.; Usai, D.; Dore, S.; D’Amico-Ricci, G.; Boscia, F.; Zanetti, S. In vitro antimicrobial activity of a new ophthalmic solution containing povidone-iodine 0.6% (IODIM®). Acta Ophthalmol. 2020, 98, e178–e180. [Google Scholar] [CrossRef]
- Eliakim-Raz, N.; Babitch, T.; Shaw, E.; Addy, I.; Wiegand, I.; Wank, C.; Torre-Vallejo, L.; Joan-Miguel, V.; Steve, M.; Grier, S.; et al. Risk Factors for Treatment Failure and Mortality Among Hospitalized Patients with Complicated Urinary Tract Infection: A Multicenter Retrospective Cohort Study (RESCUING Study Group). Clin. Infect. Dis. 2019, 68, 29–36. [Google Scholar] [PubMed]
- Hungarian Central Statistical Office (KSH) Age Pyramid. Available online: https://www.ksh.hu/interaktiv/korfak/orszag.html (accessed on 1 August 2021).
- Hospital Bed Count and Patient Turnover Report National Health Insurance Fund of Hungary. Available online: http://www.neak.gov.hu/felso_menu/szakmai_oldalak/publikus_forgalmi_adatok/gyogyito_megelozo_forgalmi_adat/fekvobeteg_szakellatas/korhazi_agyszam.html (accessed on 1 August 2021).
- World (WHO 2000–2025) Standard. Available online: https://seer.cancer.gov/stdpopulations/world.who.html (accessed on 1 September 2021).
- Hungarian Ministry of Health. Guidelines for the Microbiological Diagnostics of Uncomplicated Urinary Tract Infections. Available online: https://old-kollegium.aeek.hu/conf/upload/oldiranyelvek/ORV-MIK_A%20klasszikus%20h%c3%bagy%c3%bati%20infekci%c3%b3k%20mikrobiol%c3%b3giai%20diagnosztik%c3%a1j%c3%a1r%c3%b3l_mod0_v0.pdf (accessed on 1 August 2021).
- Ábrók, M.; Tigyi, P.; Kostrzewa, M.; Burián, K.; Deák, J. Evaluation of the Results of Group B Streptococcus Screening by MALDI-TOF MS among Pregnant Women in a Hungarian Hospital. Pathogens 2019, 9, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EUCAST Clinical Breakpoints and Dosing. Available online: https://www.eucast.org/clinical_breakpoints/ (accessed on 1 August 2021).
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.; Carmeli, Y.; Falagas, M.; Giske, C.; Harbarth, S.; Hindler, J.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leclercq, R.; Cantón, R.; Brown, D.; Giske, C.; Heisig, P.; MacGowan, A.; Mouton, J.; Nordmann, P.; Rodloff, A.; Rossolini, G.M.; et al. EUCAST expert rules in antimicrobial susceptibility testing. Clin. Microbiol. Infect. 2013, 19, 141–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Age Range | Outpatients (n, %) | Inpatients (n, %) |
---|---|---|
65–69 yrs | 1119 (22.59%) | 840 (19.93%) |
70–74 yrs | 1101 (22.23%) | 919 (21.80%) |
75–79 yrs | 1091 (22.03%) | 1008 (23.92%) |
80–84 yrs | 872 (17.61%) | 815 (19.34%) |
85 yrs or older | 769 (15.54%) | 632 (15.01%) |
2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | Overall (n, %) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Acinetobacter spp. | 41 | 0.83 | ||||||||||
A. baumannii | 3 | 4 | 2 | 3 | 12 | 0.24 | ||||||
A. haemolyticus | 1 | 1 | 0.02 | |||||||||
A. johnsonii | 1 | 1 | 2 | 3 | 1 | 8 | 0.16 | |||||
A. junii | 1 | 2 | 2 | 2 | 7 | 0.14 | ||||||
A. lwoffii | 2 | 1 | 1 | 1 | 1 | 6 | 0.12 | |||||
A. nosocomialis | 1 | 1 | 0.02 | |||||||||
A. pittii | 1 | 1 | 1 | 3 | 0.06 | |||||||
A. schindleri | 1 | 1 | 0.02 | |||||||||
A. tjernbergiae | 1 | 1 | 0.02 | |||||||||
A. ursingii | 1 | 1 | 0.02 | |||||||||
Burkholderia cepacia | 1 | 1 | 3 | 5 | 0.10 | |||||||
Candida spp. | 26 | 0.53 | ||||||||||
C. albicans | 1 | 1 | 3 | 7 | 2 | 1 | 15 | 0.30 | ||||
C. glabrata | 1 | 1 | 0.02 | |||||||||
C. krusei | 1 | 1 | 0.02 | |||||||||
C. parapsilosis | 1 | 3 | 4 | 0.08 | ||||||||
C. tropicalis | 1 | 1 | 2 | 1 | 5 | 0.10 | ||||||
Citrobacter-Enterobacter-Serratia group | 94 | 1.90 | ||||||||||
C. braakii | 1 | 1 | 0.02 | |||||||||
C. freundii | 1 | 1 | 2 | 2 | 6 | 0.12 | ||||||
C. koseri | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 6 | 22 | 0.44 | |
Comamonas testosteroni | 1 | 1 | 0.02 | |||||||||
E. asburiae | 1 | 1 | 1 | 3 | 0.06 | |||||||
E. cloacae | 3 | 6 | 3 | 2 | 4 | 4 | 8 | 8 | 4 | 42 | 0.85 | |
E. hormaechei | 4 | 4 | 0.08 | |||||||||
E. kobei | 1 | 1 | 3 | 1 | 4 | 0.08 | ||||||
Enterococcus spp. | 998 | 20.15 | ||||||||||
E. avium | 1 | 1 | 1 | 3 | 0.06 | |||||||
E. faecalis | 58 | 64 | 66 | 41 | 46 | 73 | 109 | 176 | 139 | 188 | 960 | 19.39 |
E. faecium | 2 | 1 | 3 | 3 | 3 | 1 | 6 | 7 | 8 | 34 | 0.69 | |
E. gallinarum | 1 | 1 | 0.02 | |||||||||
Escherichia coli | 153 | 121 | 201 | 94 | 83 | 275 | 337 | 547 | 438 | 135 | 2384 | 48.14 |
Klebsiella spp. | 806 | 16.28 | ||||||||||
K. aerogenes | 1 | 1 | 3 | 2 | 1 | 2 | 1 | 3 | 2 | 5 | 21 | 0.42 |
K. oxytoca | 5 | 4 | 9 | 4 | 8 | 13 | 13 | 6 | 14 | 76 | 1.53 | |
K. pneumoniae | 16 | 48 | 68 | 34 | 29 | 77 | 80 | 106 | 183 | 65 | 706 | 14.26 |
K. variicola | 3 | 3 | 0.06 | |||||||||
Proteus-Providencia-Morganella group | 226 | 4.56 | ||||||||||
M. morganii | 1 | 2 | 2 | 1 | 3 | 3 | 3 | 15 | 0.30 | |||
P. hauseri | 3 | 3 | 0.06 | |||||||||
P. mirabilis | 5 | 2 | 3 | 10 | 14 | 17 | 22 | 33 | 35 | 46 | 187 | 3.78 |
P. vulgaris | 3 | 2 | 4 | 2 | 4 | 15 | 0.30 | |||||
Ralstonia picketti | 1 | 1 | 2 | 0.04 | ||||||||
P. rettgerii | 1 | 1 | 2 | 0.04 | ||||||||
P. stuartii | 4 | 4 | 0.08 | |||||||||
Pseudomonas spp. | 218 | 4.40 | ||||||||||
P. aeruginosa | 21 | 19 | 19 | 25 | 20 | 24 | 18 | 20 | 23 | 21 | 210 | 4.24 |
P. putida | 1 | 1 | 4 | 6 | 0.12 | |||||||
P. stutzeri | 1 | 1 | 2 | 0.04 | ||||||||
Raoultella ornythiolitica | 1 | 1 | 2 | 0.04 | ||||||||
S. marcescens | 1 | 1 | 5 | 1 | 8 | 0.16 | ||||||
Staphylococcus spp. | 77 | 1.55 | ||||||||||
S. aureus | 3 | 2 | 4 | 2 | 4 | 5 | 9 | 24 | 12 | 65 | 1.31 | |
S. hominis | 1 | 2 | 1 | 4 | 0.08 | |||||||
S. lugdunensis | 1 | 1 | 0.02 | |||||||||
S. saprophyticus | 2 | 2 | 2 | 1 | 7 | 0.14 | ||||||
Stenotrophomonas maltophilia | 1 | 1 | 1 | 3 | 0.06 | |||||||
Streptococcus agalactiae | 4 | 6 | 8 | 2 | 8 | 14 | 16 | 10 | 68 | 1.37 | ||
Ureaplasma urealyticum | 1 | 1 | 1 | 1 | 1 | 5 | 0.10 | |||||
Overall | 278 | 276 | 397 | 220 | 225 | 504 | 621 | 973 | 918 | 542 | 4952 |
2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | Overall (n, %) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Achromobacter denitrificans | 1 | 1 | 0.02 | |||||||||
Acinetobacter spp. | 17 | 0.33 | ||||||||||
A. baumannii | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 10 | 0.24 | |||
A. junii | 1 | 1 | 2 | 0.05 | ||||||||
A. pittii | 1 | 1 | 2 | 0.05 | ||||||||
Aeromonas salmonicida | 1 | 1 | 0.02 | |||||||||
Burkholderia cepacia | 8 | 1 | 2 | 4 | 2 | 2 | 2 | 1 | 22 | 0.52 | ||
Candida spp. | 252 | 5.98 | ||||||||||
C. albicans | 4 | 9 | 12 | 3 | 7 | 14 | 26 | 24 | 21 | 42 | 162 | 3.84 |
C. glabrata | 3 | 1 | 2 | 2 | 4 | 17 | 5 | 8 | 42 | 1.00 | ||
C. guilliermondii | 2 | 2 | 4 | 0.09 | ||||||||
C. inconspicua | 1 | 1 | 0.02 | |||||||||
C. kefyr | 1 | 1 | 1 | 3 | 0.07 | |||||||
C. krusei | 3 | 1 | 1 | 1 | 6 | 0.14 | ||||||
C. lusitaniae | 4 | 1 | 5 | 0.12 | ||||||||
C. parapsilosis | 1 | 1 | 5 | 3 | 9 | 0.21 | ||||||
C. tropicalis | 2 | 2 | 1 | 3 | 2 | 6 | 4 | 20 | 0.47 | |||
Citrobacter-Enterobacter-Serratia group | 114 | 2.71 | ||||||||||
C. farmeri | 1 | 1 | 0.02 | |||||||||
C. freundii | 2 | 1 | 1 | 4 | 0.09 | |||||||
C. koseri | 1 | 1 | 3 | 2 | 3 | 3 | 3 | 16 | 0.38 | |||
Corynebacterium urealyticum | 1 | 1 | 0.02 | |||||||||
E. asburiae | 1 | 1 | 0.02 | |||||||||
E. cloacae | 6 | 6 | 16 | 4 | 5 | 11 | 7 | 3 | 6 | 4 | 68 | 1.61 |
E. kobei | 3 | 3 | 6 | 0.14 | ||||||||
E. ludwigii | 1 | 1 | 2 | 4 | 0.09 | |||||||
Enterococcus spp. | 907 | 21.52 | ||||||||||
E. avium | 1 | 1 | 0.02 | |||||||||
E. faecalis | 59 | 46 | 58 | 78 | 73 | 100 | 100 | 93 | 109 | 104 | 820 | 19.46 |
E. faecium | 3 | 11 | 5 | 5 | 5 | 11 | 8 | 7 | 19 | 12 | 86 | 2.04 |
E. gallinarum | 1 | 1 | 0.02 | |||||||||
Escherichia coli | 61 | 67 | 103 | 110 | 105 | 111 | 147 | 138 | 139 | 100 | 1081 | 25.65 |
Klebsiella spp. | 685 | 16.26 | ||||||||||
K. aerogenes | 2 | 2 | 3 | 4 | 1 | 1 | 4 | 1 | 1 | 1 | 20 | 0.47 |
K. oxytoca | 3 | 2 | 1 | 7 | 4 | 6 | 11 | 8 | 9 | 9 | 60 | 1.42 |
K. pneumoniae | 24 | 32 | 56 | 49 | 57 | 93 | 80 | 67 | 84 | 63 | 605 | 14.36 |
Proteus-Providencia-Morganella group | 462 | 10.96 | ||||||||||
Kocuria kristinae | 2 | 1 | 3 | 0.07 | ||||||||
M. morganii | 1 | 1 | 1 | 3 | 2 | 5 | 7 | 5 | 25 | 0.59 | ||
Pantoea agglomerans | 2 | 2 | 0.05 | |||||||||
P. hauseri | 1 | 1 | 0.02 | |||||||||
P. mirabilis | 14 | 13 | 25 | 38 | 28 | 48 | 59 | 67 | 51 | 41 | 384 | 9.11 |
P. vulgaris | 1 | 5 | 6 | 8 | 2 | 5 | 8 | 3 | 6 | 2 | 46 | 1.09 |
P. rettgerii | 2 | 2 | 4 | 0.09 | ||||||||
P. stuartii | 1 | 1 | 2 | 0.05 | ||||||||
Pseudomonas spp. | 563 | 13.36 | ||||||||||
P. aeruginosa | 34 | 50 | 48 | 52 | 59 | 59 | 73 | 52 | 62 | 68 | 557 | 13.22 |
P. mosselii | 1 | 1 | 0.02 | |||||||||
P. putida | 2 | 1 | 2 | 5 | 0.12 | |||||||
S. marcescens | 1 | 2 | 2 | 1 | 7 | 13 | 0.31 | |||||
Staphylococcus spp. | 95 | 2.25 | ||||||||||
S. aureus | 5 | 10 | 3 | 11 | 7 | 13 | 7 | 7 | 8 | 71 | 1.68 | |
S. haemolyticus | 1 | 1 | 1 | 3 | 0.07 | |||||||
S. hominis | 1 | 1 | 2 | 3 | 2 | 9 | 0.21 | |||||
S. intermedius | 1 | 1 | 0.02 | |||||||||
S. saprophyticus | 1 | 2 | 3 | 0.07 | ||||||||
S. maltophilia | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 0.19 | ||||
S. agalactiae | 3 | 3 | 2 | 1 | 2 | 11 | 0.26 | |||||
Overall | 238 | 266 | 350 | 385 | 392 | 507 | 567 | 526 | 554 | 492 | 4214 |
AMK | AMP | CLI | GEN | NIT | SXT | |
Staphylococcus spp. (n = 77) | 10.3% (n = 8) | 92.2% (n = 71) | 33.8% (n = 26) | 3.4% (n = 3) | 0% (n = 0) | 16.9% (n = 13) |
Enterococcus spp. (n = 998) | n.r. | 1.2% (n = 12) | n.r. | 29.7% (n = 296) | 1.3% (n = 13) | n.r. |
Escherichia coli (n = 2384) | 0.7% (n = 12) | 58.5% (n = 1396) | n.r. | 8.2% (n = 196) | 5.6% (n = 134) | 32.9% (n = 784) |
Klebsiella spp. (n = 806) | 6.3% (n = 51) | n.r. | n.r. | 21.9% (n = 177) | n.r. | 30.1% (n = 243) |
Citrobacter-Enterobacter-Serratia group (n = 94) | 5.3% (n = 5) | n.r. | n.r. | 14.9% (n = 14) | n.r. | 27.7% (n = 26) |
Proteus-Providencia-Morganella group (n = 226) | 3.1% (n = 7) | n.r. | n.r. | 21.7% (n = 49) | n.r. | 64.1% (n = 125) |
Pseudomonas spp. (n = 218) | 21.6% (n = 47) | n.r. | n.r. | 45.4% (n = 99) | n.r. | n.r. |
AMK | AMP | CLI | GEN | NIT | SXT | |
---|---|---|---|---|---|---|
Staphylococcus spp. (n = 95) | 16.8% (n = 16) | 97.9% (n = 93) | 68.4% (n = 65) | 10.5% (n = 10) | 6.3% (n = 6) | 20.0% (n = 19) |
Enterococcus spp. (n = 907) | n.r. | 2.6% (n = 24) | n.r. | 39.3% (n = 356) | 5.8% (n = 53) | n.r. |
Escherichia coli (n = 1081) | 4.7% (n = 51) | 54.6% (n = 590) | n.r. | 9.3% (n = 101) | 30.9% (n = 335) | 25.2% (n = 273) |
Klebsiella spp. (n = 685) | 12.8% (n = 88) | n.r. | n.r. | 31.8% (n = 218) | n.r. | 27.8% (n = 274) |
Citrobacter-Enterobacter-Serratia group (n = 114) | 6.1% (n = 7) | n.r. | n.r. | 17.5% (n = 20) | n.r. | 28.1% (n = 32) |
Proteus-Providencia-Morganella group (n = 462) | 5.6% (n = 26) | n.r. | n.r. | 14.1% (n = 65) | n.r. | 64.5% (n = 298) |
Pseudomonas spp. (n = 563) | 16.2% (n = 91) | n.r. | n.r. | 30.3% (n = 171) | n.r. | n.r. |
AZI | FOX | CEF | CTZ | FEP | CIP | LEV | FOS | FAA | IMP | MER | RIF | TOB | VAN | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Staphylococcus spp. (n = 77) | 35.0% (n = 27) | 15.6% (n = 12) | n.r. | n.r. | n.r. | 44.1% (n = 34) | 44.1% (n = 34) | n.t. | 0% (n = 0) | 15.6% (n = 12) | 15.6% (n = 12) | 0% (n = 0) | 10.3% (n = 8) | 0% (n = 0) |
Enterococcus spp. (n = 998) | n.r. | n.r. | n.r. | n.r. | n.r. | 34.1% (n = 340) | 34.1% (n = 340) | n.r. | n.r. | 1.2% (n = 12) | n.r. | n.r. | n.r. | 1.0% (n = 10) |
Escherichia coli (n = 2384) | n.r. | n.r. | 13.1% (n = 312) | 13.1% (n = 312) | 11.9% (n = 285) | 40.9% (n = 975) | 40.9% (n = 975) | 0.2% (n = 4) | n.r. | 0% (n = 0) | 0% (n = 0) | n.r. | 3.5% (n = 83) | n.r. |
Klebsiella spp. (n = 806) | n.r. | n.r. | 27.7% (n = 223) | 27.7% (n = 223) | 24.7% (n = 199) | 48.1% (n = 388) | 48.1% (n = 388) | 5.5% (n = 45) | n.r. | 0.1% (n = 1) | 0.1% (n = 1) | n.r. | 10.8% (n = 87) | n.r. |
Citrobacter-Enterobacter-Serratia group (n = 94) | n.r. | n.r. | 31.9% (n = 30) | 31.9% (n = 30) | 22.3% (n = 21) | 25.5% (n = 24) | 25.5% (n = 24) | 5.3% (n = 5) | n.r. | 3.2% (n = 3) | 1.1% (n = 1) | n.r. | 10.6% (n = 10) | n.r. |
Proteus-Providencia-Morganella group (n = 226) | n.r. | n.r. | 42.0% (n = 95) | 42.0% (n = 95) | 40.3% (n = 91) | 58.6% (n = 122) | 58.6% (n = 122) | 14.6% (n = 33) | n.r. | n.r. | 0% (n = 0) | n.r. | 5.3% (n = 12) | n.r. |
Pseudomonas spp. (n = 218) | n.r. | n.r. | n.r. | 12.8% (n = 28) | 11.9% (n = 26) | 55.5% (n = 121) | 56.4% (n = 123) | n.r. | n.r. | 26.6% (n = 25) | 23.4% (n = 22) | n.r. | 41.6% (n = 94) | n.r. |
AZI | FOX | CEF | CTZ | FEP | CIP | LEV | FOS | FAA | IMP | MER | RIF | TOB | VAN | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Staphylococcus spp. (n = 95) | 72.6% (n = 67) | 35.8% (n = 34) | n.r. | n.r. | n.r. | 77.9% (n = 78) | 77.9% (n = 78) | n.t. | 0% (n = 0) | 35.8% (n = 34) | 35.8% (n = 34) | 0% (n = 0) | 27.4% (n = 26) | 0% (n = 0) |
Enterococcus spp. (n = 907) | n.r. | n.r. | n.r. | n.r. | n.r. | 39.3% (n = 356) | 39.3% (n = 356) | n.r. | n.r. | 2.6% (n = 24) | n.r. | n.r. | n.r. | 4.6% (n = 42) |
Escherichia coli (n = 1081) | n.r. | n.r. | 14.4% (n = 156) | 14.4% (n = 156) | 11.8% (n = 128) | 30.5% (n = 330) | 30.5% (n = 330) | 4.7% (n = 51) | n.r. | 0.2% (n = 3) | 0.2% (n = 3) | n.r. | 26.1% (n = 282) | n.r. |
Klebsiella spp. (n = 685) | n.r. | n.r. | 43.1% (n = 295) | 43.1% (n = 295) | 32.2% (n = 221) | 46.7% (n = 320) | 45.7% (n = 313) | 17.4% (n = 119) | n.r. | 1.3% (n = 9) | 1.0% (n = 7) | n.r. | 27.4% (n = 188) | n.r. |
Citrobacter-Enterobacter-Serratia group (n = 114) | n.r. | n.r. | 34.2% (n = 39) | 34.2% (n = 39) | 25.4% (n = 29) | 17.5% (n = 20) | 17.5% (n = 20) | 11.4% (n = 13) | n.r. | 1.8% (n = 2) | 0.9% (n = 1) | n.r. | 13.2% (n = 15) | n.r. |
Proteus-Providencia-Morganella group (n = 462) | n.r. | n.r. | 68.4% (n = 316) | 68.4% (n = 316) | 68.4% (n = 316) | 50.8% (n = 235) | 50.8% (n = 235) | 9.5% (n = 44) | n.r. | n.r. | 0% (n = 0) | n.r. | 14.6% (n = 68) | n.r. |
Pseudomonas spp. (n = 563) | n.r. | n.r. | n.r. | 19.7% (n = 111) | 16.9% (n = 95) | 40.1% (n = 226) | 43.7% (n = 246) | n.r. | n.r. | 23.9% (n = 135) | 21.5% (n = 121) | n.r. | 27.5% (n = 155) | n.r. |
CFT | COL | QPD | LIN | TIG | MDR | XDR | |
---|---|---|---|---|---|---|---|
Staphylococcus spp. (n = 77) | 0% (n = 0) | n.r. | 0% (n = 0) | 0% (n = 0) | 0% (n = 0) | 19.4% (n = 15) | 0% (n = 0) |
Enterococcus spp. (n = 998) | n.r. | n.r. | n.r. | 0% (n = 0) | 0% (n = 0) | 1.2% (n = 12) | 0% (n = 0) |
Escherichia coli (n = 2384) | n.r. | 0% (n = 0) | n.r. | n.r. | n.r. | 16.6% (n = 396) | 0% (n = 0) |
Klebsiella spp. (n = 806) | n.r. | 0% (n = 0) | n.r. | n.r. | n.r. | 35.9% (n = 289) | 0% (n = 0) |
Citrobacter-Enterobacter-Serratia group (n = 94) | n.r. | 0% (n = 0) | n.r. | n.r. | n.r. | 31.9% (n = 30) | 0% (n = 0) |
Proteus-Providencia-Morganella group (n = 226) | n.r. | n.r. | n.r. | n.r. | n.r. | 49.8% (n = 112) | 0% (n = 0) |
Pseudomonas spp. (n = 218) | n.r. | 0% (n = 0) | n.r. | n.r. | n.t. | 14.2% (n = 31) | 0% (n = 0) |
CFT | COL | QPD | LIN | TIG | MDR | XDR | |
---|---|---|---|---|---|---|---|
Staphylococcus spp. (n = 95) | 0% (n = 0) | n.r. | 0% (n = 0) | 0% (n = 0) | 0% (n = 0) | 40.0% (n = 38) | 0% (n = 0) |
Enterococcus spp. (n = 907) | n.r. | n.r. | n.r. | 0% (n = 0) | 0% (n = 0) | 5.4% (n = 49) | 0% (n = 0) |
Escherichia coli (n = 1081) | n.r. | 0% (n = 0) | n.r. | n.r. | n.r. | 16.7% (n = 180) | 0% (n = 0) |
Klebsiella spp. (n = 685) | n.r. | 0% (n=0) | n.r. | n.r. | n.r. | 53.7% (n=367) | 0% (n=0) |
Citrobacter-Enterobacter-Serratia group (n=114) | n.r. | 0% (n = 0) | n.r. | n.r. | n.r. | 31.6% (n = 36) | 0% (n = 0) |
Proteus-Providencia-Morganella group (n = 462) | n.r. | n.r. | n.r. | n.r. | n.r. | 69.7% (n = 322) | 0% (n = 0) |
Pseudomonas spp. (n = 563) | n.r. | 0% (n = 0) | n.r. | n.r. | n.t. | 27.2% (n = 153) | 0.4% (n = 2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajdács, M.; Ábrók, M.; Lázár, A.; Burián, K. Urinary Tract Infections in Elderly Patients: A 10-Year Study on Their Epidemiology and Antibiotic Resistance Based on the WHO Access, Watch, Reserve (AWaRe) Classification. Antibiotics 2021, 10, 1098. https://doi.org/10.3390/antibiotics10091098
Gajdács M, Ábrók M, Lázár A, Burián K. Urinary Tract Infections in Elderly Patients: A 10-Year Study on Their Epidemiology and Antibiotic Resistance Based on the WHO Access, Watch, Reserve (AWaRe) Classification. Antibiotics. 2021; 10(9):1098. https://doi.org/10.3390/antibiotics10091098
Chicago/Turabian StyleGajdács, Márió, Marianna Ábrók, Andrea Lázár, and Katalin Burián. 2021. "Urinary Tract Infections in Elderly Patients: A 10-Year Study on Their Epidemiology and Antibiotic Resistance Based on the WHO Access, Watch, Reserve (AWaRe) Classification" Antibiotics 10, no. 9: 1098. https://doi.org/10.3390/antibiotics10091098
APA StyleGajdács, M., Ábrók, M., Lázár, A., & Burián, K. (2021). Urinary Tract Infections in Elderly Patients: A 10-Year Study on Their Epidemiology and Antibiotic Resistance Based on the WHO Access, Watch, Reserve (AWaRe) Classification. Antibiotics, 10(9), 1098. https://doi.org/10.3390/antibiotics10091098