Functionalized Nanoparticles Activated by Photodynamic Therapy as an Antimicrobial Strategy in Endodontics: A Scoping Review
Abstract
:1. Introduction
2. Results
2.1. Selection of Sources of Evidence
2.1.1. Characteristics of Sources of Evidence
2.1.2. Critical Appraisal within Sources of Evidence
2.2. Synthesis of Results
2.2.1. Antibacterial Efficacy
2.2.2. Penetration Capability
2.2.3. Substantivity of the Disinfecting Effect
2.2.4. Adverse Effects and Possible Toxicity in Adjacent Tissues
2.2.5. Antibacterial Efficacy of Functionalized NPs in the Absence of Light
2.2.6. Impact of Tissue Inhibitors on Antibacterial Efficacy
2.2.7. Ability of PS-Based NPs to Neutralize Pro-Inflammatory Agents
3. Discussion
3.1. Antibacterial Efficacy
3.2. Penetration Capability
3.3. Substantivity of the Disinfecting Effect
3.4. Adverse Effects and Possible Toxicity in Adjacent Tissues
3.5. Antibacterial Efficacy of Functionalized NPs in the Absence of Light
3.6. Impact of Tissue Inhibitors on Antibacterial Efficacy
3.7. Ability of PS-Based NPs to Neutralize Pro-Inflammatory Agents
3.8. Limitations
3.9. Implications for Practice and Research
4. Materials and Methods
4.1. Protocol and Registration
4.2. Eligibility Criteria
4.3. Sources of Information and Search Strategy
4.4. Selection of Sources of Evidence
4.5. Data Charting Process
4.6. Critical Appraisal
4.7. Synthesis of Results
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Siqueira Junior, J.F.; Rôças, I.D.N.; Marceliano-Alves, M.F.; Pérez, A.R.; Ricucci, D. Unprepared root canal surface areas: Causes, clinical implications, and therapeutic strategies. Braz. Oral. Res. 2018, 32, e65. [Google Scholar] [CrossRef] [Green Version]
- Bouillaguet, S.; Manoil, D.; Girard, M.; Louis, J.; Gaïa, N.; Leo, S.; Schrenzel, J.; Lazarevic, V. Root Microbiota in Primary and Secondary Apical Periodontitis. Front. Microbiol. 2018, 9, 2374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez, A.R.; Ricucci, D.; Vieira, G.C.; Provenzano, J.C.; Alves, F.R.; Marceliano-Alves, M.F.; Rôças, I.D.N.; Siqueira Junior, J.F. Cleaning, Shaping, and Disinfecting Abilities of 2 Instrument Systems as Evaluated by a Correlative Micro-computed Tomographic and Histobacteriologic Approach. J. Endod. 2020, 46, 846–857. [Google Scholar] [CrossRef] [PubMed]
- Laukkanen, E.; Vehkalahti, M.M.; Kotiranta, A.K. Impact of type of tooth on outcome of non-surgical root canal treatment. Clin. Oral. Investig. 2019, 23, 4011–4018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, J.N.R.; Marques, D.; Silva, E.J.N.L.; Caramês, J.; Versiani, M.A. Prevalence Studies on Root Canal Anatomy Using Cone-beam Computed Tomographic Imaging: A Systematic Review. J. Endod. 2019, 45, 372–386. [Google Scholar] [CrossRef]
- Betancourt, P.; Sierra, J.M.; Camps-Font, O.; Arnabat-Domínguez, J.; Viñas, M. Er,Cr:YSGG Laser-Activation Enhances Antimicrobial and Antibiofilm Action of Low Concentrations of Sodium Hypochlorite in Root Canals. Antibiotics 2019, 8, 232. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Huang, Y.Y.; Wang, Y.; Wang, X.; Hamblin, M.R. Antimicrobial Photodynamic Therapy to Control Clinically Relevant Biofilm Infections. Front. Microbiol. 2018, 9, 1299. [Google Scholar] [CrossRef] [Green Version]
- Chiniforush, N.; Pourhajibagher, M.; Shahabi, S.; Bahador, A. Clinical Approach of High Technology Techniques for Control and Elimination of Endodontic Microbiota. J. Lasers Med. Sci. 2015, 6, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Oda, D.F.; Duarte, M.A.H.; Andrade, F.B.; Moriyama, L.T.; Bagnato, V.S.; de Moraes, I.G. Antimicrobial action of photodynamic therapy in root canals using LED curing light, curcumin and carbopol gel. Int. Endod. J. 2019, 52, 1010–1019. [Google Scholar] [CrossRef] [PubMed]
- Plotino, G.; Grande, N.M.; Mercade, M. Photodynamic therapy in endodontics. Int. Endod. J. 2019, 52, 760–774. [Google Scholar] [CrossRef] [Green Version]
- Kübler, A.C. Photodynamic therapy. Med. Laser Appl. 2005, 20, 37–45. [Google Scholar] [CrossRef]
- Nagata, J.Y.; Hioka, N.; Kimura, E.; Batistela, V.R.; Terada, R.S.S.; Graciano, A.X.; Baesso, M.L.; Hayacibara, M.F. Antibacterial photodynamic therapy for dental caries: Evaluation of the photosensitizers used and light source properties. Photodiagn. Photodyn. Ther. 2012, 9, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Jerjes, W.; Upile, T.; Betz, C.S.; El Maaytah, M.; Abbas, S.; Wright, A.; Hopper, C. The application of photodynamic therapy in the head and neck. Dent. Update 2007, 34, 478–480. [Google Scholar] [CrossRef]
- Wilson, B.C.; Patterson, M.S. The physics, biophysics and technology of photodynamic therapy. Phys. Med. Biol. 2008, 53, R61–R109. [Google Scholar] [CrossRef] [PubMed]
- Qi, M.; Chi, M.; Sun, X.; Xie, X.; Weir, M.D.; Oates, T.W.; Zhou, Y.; Wang, L.; Bai, Y.; Xu, H.H. Novel nanomaterial-based antibacterial photodynamic therapies to combat oral bacterial biofilms and infectious diseases. Int. J. Nanomed. 2019, 14, 6937–6956. [Google Scholar] [CrossRef] [Green Version]
- Yin, R.; Agrawal, T.; Khan, U.; Gupta, G.K.; Rai, V.; Huang, Y.Y.; Hamblin, M.R. Antimicrobial photodynamic inactivation in nanomedicine: Small light strides against bad bugs. Nanomedicine 2015, 10, 2379–2404. [Google Scholar] [CrossRef] [Green Version]
- Ghorbanzadeh, R.; Assadian, H.; Chiniforush, N.; Parker, S.; Pourakbari, B.; Ehsani, B.; Alikhani, M.I.; Bahador, A. Modulation of virulence in Enterococcus faecalis cells surviving antimicrobial photodynamic inactivation with reduced graphene oxide-curcumin: An ex vivo biofilm model. Photodiagn. Photodyn. Ther. 2020, 29, 101643. [Google Scholar] [CrossRef] [PubMed]
- Afkhami, F.; Akbari, S.; Chiniforush, N. Enterococcus faecalis elimination in root canals using silver nanoparticles, photodynamic therapy, diode laser, or laser-activated nanoparticles: An in vitro study. J. Endod. 2016, 43, 279–282. [Google Scholar] [CrossRef]
- Golmohamadpour, A.; Bahramian, B.; Khoobi, M.; Pourhajibagher, M.; Barikani, H.R.; Bahador, A. Antimicrobial photodynamic therapy assessment of three indocyanine green-loaded metal-organic frameworks against Enterococcus faecalis. Photodiagn. Photodyn. Ther. 2018, 23, 331–338. [Google Scholar] [CrossRef]
- Shrestha, A.; Kishen, A. Antibacterial efficacy of photosensitizer functionalized biopolymeric nanoparticles in the presence of tissue inhibitors in root canal. J. Endod. 2014, 40, 566–570. [Google Scholar] [CrossRef]
- Shrestha, A.; Friedman, S.; Torneck, C.D.; Kishen, A. Bioactivity of Photoactivated Functionalized Nanoparticles Assessed in Lipopolysaccharide-contaminated Root Canals In vivo. J. Endod. 2018, 44, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.P.; Chen, C.T.; Tsai, T. Chitosan nanoparticles for antimicrobial photodynamic inactivation: Characterization and in vitro investigation. Photochem. Photobiol. 2012, 88, 570–576. [Google Scholar] [CrossRef] [PubMed]
- Allaker, R.P.; Memarzadeh, K. Nanoparticles and the control of oral infections. Int. J. Antimicrob. Agents 2014, 43, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Chenthamara, D.; Subramaniam, S.; Ramakrishnan, S.G.; Krishnaswamy, S.; Essa, M.M.; Lin, F.H.; Qoronfleh, M.W. Therapeutic efficacy of nanoparticles and routes of administration. Biomater. Res. 2019, 23, 1–29. [Google Scholar] [CrossRef]
- Sans-Serramitjana, E.; Fusté, E.; Martínez-Garriga, B.; Merlos, A.; Pastor, M.; Pedraz, J.L.; Esquisabel, A.; Bachiller, D.; Vinuesa, T.; Viñas, M. Killing effect of nanoencapsulated colistin sulfate on Pseudomonas aeruginosa from cystic fibrosis patients. J. Cyst-Fibros. 2016, 15, 611–618. [Google Scholar] [CrossRef] [Green Version]
- Jaramillo, A.F.; Riquelme, S.A.; Sánchez-Sanhueza, G.; Medina, C.; Solís-Pomar, F.; Rojas, D.; Montalba, C.; Melendrez, M.F.; Pérez-Tijerina, E. Comparative Study of the Antimicrobial Effect of Nanocomposites and Composite Based on Poly (butylene adipate-co-terephthalate) Using Cu and Cu/Cu2O Nanoparticles and CuSO4. Nanoscale Res. Lett. 2019, 14, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grassi, F.R.; Pappalettere, C.; Di-Comite, M.; Corsalini, M.; Mori, G.; Ballini, A.; Crincoli, V.; Pettini, F.; Rapone, B.; Boccaccio, A. Effect of different irrigating solutions and endodontic sealers on bond strength of the dentin-post interface with and without defects. Int. J. Med. Sci. 2012, 9, 642–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, T.Y.U.; Gallego, J.; Assunção, W.G.; Briso, A.L.F.; Dos Santos, P.H. Influence of silver nanoparticle solution on the mechanical properties of resin cements and intrarradicular dentin. PLoS ONE 2019, 14, e0217750. [Google Scholar]
- Suzuki, T.Y.U.; Pereira, M.A.; Gomes-Filho, J.E.; Wang, L.; Assunção, W.G.; Santos, P.H.D. Do irrigation solutions influence the bond interface between glass fiber posts and dentin? Braz. Dent. J. 2019, 30, 106–116. [Google Scholar] [CrossRef] [Green Version]
- Perni, S.; Prokopovich, P.; Pratten, J.; Parkin, I.P.; Wilson, M. Nanoparticles: Their potential use in antibacterial photodynamic therapy. Photochem. Photobiol. Sci. 2011, 10, 712–720. [Google Scholar] [CrossRef] [PubMed]
- Fuückel, B.; Roberts, D.A.; Cheng, Y.Y.; Clady, R.G.; Piper, R.B.; Ekins-Daukes, N.J.; Crossley, M.J.; Schmidt, T.W. Singlet oxygen mediated photochemical upconversion of NIR light. J. Phys. Chem. Lett. 2011, 2, 966–971. [Google Scholar] [CrossRef]
- Pagonis, T.C.; Chen, J.; Fontana, C.R.; Devalapally, H.; Ruggiero, K.; Song, X.; Foschi, F.; Dunham, J.; Skobe, Z.; Yamazaki, H.; et al. Nanoparticle-based endodontic antimicrobial photodynamic therapy. J. Endod. 2010, 36, 322–328. [Google Scholar] [CrossRef] [Green Version]
- DaSilva, L.; Finer, Y.; Friedman, S.; Basrani, B.; Kishen, A. Biofilm formation within the interface of bovine root dentin treated with conjugated chitosan and sealer containing chitosan nanoparticles. J. Endod. 2013, 39, 249–253. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, A.; Kishen, A. Antibiofilm efficacy of photosensitizer-functionalized bioactive nanoparticles on multispecies biofilm. J. Endod. 2014, 40, 1604–1610. [Google Scholar] [CrossRef]
- Shrestha, A.; Hamblin, M.R.; Kishen, A. Photoactivated rose bengal functionalized chitosan nanoparticles produce antibacterial/biofilm activity and stabilize dentin-collagen. Nanomedicine 2014, 10, 491–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrestha, A.; Cordova, M.N.; Kishen, A. Photoactivated polycationic bioactive chitosan nanoparticles inactivate bacterial endotoxins. J. Endod. 2015, 41, 686–691. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, A.; Kishen, A. Polycationic chitosan-conjugated photosensitizer for antibacterial photodynamic therapy. Photochem. Photobiol. 2012, 88, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Misba, L.; Kulshrestha, S.; Khan, A.U. Antibiofilm action of a toluidine blue O-silver nanoparticle conjugate on Streptococcus mutans: A mechanism of type I photodynamic therapy. Biofouling 2016, 32, 313–328. [Google Scholar] [CrossRef]
- Akbari, T.; Pourhajibagher, M.; Hosseini, F.; Chiniforush, N.; Gholibegloo, E.; Khoobi, M.; Shahabi, S.; Bahador, A. The effect of indocyanine green loaded on a novel nano-graphene oxide for high performance of photodynamic therapy against Enterococcus faecalis. Photodiagn. Photodyn. Ther. 2017, 20, 148–153. [Google Scholar] [CrossRef]
- Guo, Y.; Rogelj, S.; Zhang, P. Rose Bengal-decorated silica nanoparticles as photosensitizers for inactivation of gram-positive bacteria. Nanotechnology 2010, 21, 065102. [Google Scholar] [CrossRef]
- Shrestha, A.; Hamblin, M.R.; Kishen, A. Characterization of a conjugate between Rose Bengal and chitosan for targeted antibiofilm and tissue stabilization effects as a potential treatment of infected dentin. Antimicrob. Agents Chemother. 2012, 56, 4876–4884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aydın, H.; Er, K.; Kuştarcı, A.; Akarsu, M.; Gençer, G.M.; Er, H.; Felek, R. Antibacterial activity of silver nanoparticles activated by photodynamic therapy in infected root canals. Dent. Med. Probl. 2020, 57, 393–400. [Google Scholar] [CrossRef]
- Shrestha, A.; Kishen, A. Antibacterial nanoparticles in endodontics: A review. J. Endod. 2016, 42, 1417–1426. [Google Scholar] [CrossRef]
- Tsai, T.; Chien, H.F.; Wang, T.H.; Huang, C.T.; Ker, Y.B.; Chen, C.T. Chitosan augments photodynamic inactivation of gram-positive and gram-negative bacteria. Antimicrob. Agents Chemother. 2011, 55, 1883–1890. [Google Scholar] [CrossRef] [Green Version]
- Kishen, A.; Upadya, M.; Tegos, G.P.; Hamblin, M.R. Efflux pump inhibitor potentiates antimicrobial photodynamic inactivation of Enterococcus faecalis biofilm. Photochem. Photobiol. 2010, 86, 1343–1349. [Google Scholar] [CrossRef] [Green Version]
- Kishen, A.; Haapasalo, M. Biofilm models and methods of biofilm assessment. Endod. Topics. 2010, 22, 58–78. [Google Scholar] [CrossRef]
- George, R.; Walsh, L.J. Performance assessment of novel side firing safe tips for endodontic applications. J. Biomed. Opt. 2011, 16, 048004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, E.D.S.; Mello, I.; Albergaria, S.J.; Habitante, S.M.; Lage-Marques, J.L.; Raldi, D.P. Effect of chemical substances in removing methylene blue after photodynamic therapy in root canal treatment. Photomed. Laser Surg. 2011, 29, 559–563. [Google Scholar] [CrossRef]
- Ramalho, K.M.; Cunha, S.R.; Mayer-Santos, E.; de Paula Eduardo, C.; de Freitas, P.M.; Aranha, A.C.C.; Moura-Netto, C. In vitro evaluation of methylene blue removal from root canal after Photodynamic Therapy. Photodiagn. Photodyn. Ther. 2017, 20, 248–252. [Google Scholar] [CrossRef]
- Figueiredo, R.A.; Anami, L.C.; Mello, I.; Carvalho, E.D.S.; Habitante, S.M.; Raldi, D.P. Tooth discoloration induced by endodontic phenothiazine dyes in photodynamic therapy. Photomed. Laser Surg. 2014, 32, 458–462. [Google Scholar] [CrossRef] [PubMed]
- Kashef, N.; Abadi, G.R.S.; Djavid, G.E. Photodynamic inactivation of primary human fibroblasts by methylene blue and toluidine blue O. Photodiag. Photodyn. Ther. 2012, 9, 355–358. [Google Scholar] [CrossRef]
- Alfirdous, R.A.; Garcia, I.M.; Balhaddad, A.A.; Collares, F.M.; Martinho, F.C.; Melo, M.A.S. Advancing Photodynamic Therapy for Endodontic Disinfection with Nanoparticles: Present Evidence and Upcoming Approaches. Appl. Sci. 2021, 11, 4759. [Google Scholar] [CrossRef]
- Shrestha, A.; Kishen, A. The effect of tissue inhibitors on the Antibacterial Activity of Chitosan Nanoparticles and Photodynamic Therapy. J. Endod. 2012, 38, 1275–1278. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, M.; MacRobert, A.; Meghji, S.; Henderson, B.; Wilson, M. Effect of dosimetric and physiological factors on the lethal photosensitization of Porphyromonas gingivalis in vitro. Photochem. Photobiol. 1997, 65, 1026–1031. [Google Scholar] [CrossRef] [PubMed]
- Gomes, B.P.; Martinho, F.C.; Vianna, M.E. Comparison of 2.5% sodium hypochlorite and 2% chlorhexidine gel on bacterial lipopolysaccharide reduction from primarily infected root canals. J. Endod. 2009, 35, 1350–1353. [Google Scholar] [CrossRef]
- Yoon, H.J.; Moon, M.E.; Park, H.S.; Im, S.Y.; Kim, Y.H. Chitosan oligosaccharide (COS) inhibits LPS-induced inflammatory effects in RAW 264.7 macrophage cells. Biochem. Biophys. Res. Commun. 2007, 358, 954–959. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.; Horsley, T.; Weeks, L.; et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, K.; Schwarz, M.; Burkholder, I.; Kopp-Schneider, A.; Edler, L.; Kinsner-Ovaskainen, A.; Hartung, T.; Hoffmann, S. “ToxRTool”, a new tool to assess the reliability of toxicological data. Toxicol. Lett. 2009, 189, 138–144. [Google Scholar] [CrossRef]
- Green, B.N.; Johnson, C.D.; Adams, A. Writing narrative literature reviews for peer-reviewed journals: Secrets of the trade. J. Chiropr. Med. 2006, 5, 101–117. [Google Scholar] [CrossRef] [Green Version]
Reference | Study Type | Microorganisms | NPs | PS | Bacterial Organization | Bacterial Incubation Time |
---|---|---|---|---|---|---|
Guo et al. 2010 [40] | In vitro | S. aureus and S. epidermidis | SiO2–NH2–RB | RB | Planktonic | 20 h |
Pagonis et al. 2010 [32] | In vitro, ex vivo | E. faecalis | PLGA | MB | Biofilm | 3 days |
Chen et al. 2012 [22] | In vitro | S. mutans, Pseudomonas aeruginosa and Candida albicans. | CSNPs | ER | Biofilm/ planktonic | 24 h–48 h/ overnight |
Shrestha et al. 2012 [37] | In vitro | E. faecalis and P. aeruginosa | CSRB-NPs | RB, MB | Biofilm/planktonic | 7 days/not mentioned |
Shrestha et al. 2012 [41] | In vitro | E. faecalis | CSRB-NPs | RB | Biofilm/planktonic | 7 days |
DaSilva et al. 2013 [33] | Ex vivo | E. faecalis. | CSNPs | RB | Biofilm | 7 days |
Shrestha et al. 2014 [20] | In vitro | E. faecalis, and LPS from Escherichia coli | CSRB-NPs | RB, MB | Planktonic | Overnight |
Shrestha et al. 2014 [34] | In vitro | Streptococcus oralis, Prevotella intermedia, and Actinomyces naeslundii | CSRB-NPs | RB | Biofilm | 21 days |
Shrestha et al. 2014 [35] | In vitro | E. faecalis | CSRB-NPs | RB | Biofilm | 21 days |
Shrestha et al. 2015 [36] | In vitro | LPSs from P. aeruginosa | CSRB-NPs | MB | Not applicable | Not applicable |
Afkhami et al. 2016 [18] | Ex vivo | E. faecalis | AgNPs | ICG | Biofilm | 4 weeks |
Misba et al. 2016 [38] | In vitro | S. mutans | AgNPs | TBO | Biofilm/ planktonic | Not mentioned |
Akbari et al. 2017 [39] | In vitro | E. faecalis | NGO | ICG | Biofilm/ planktonic | 24 h/4–5 h |
Golmohamadpour et al. 2018 [19] | Ex vivo | E. faecalis | MOFs (Fe-101, Al-101 and Fe-88) | ICG | Biofilm/planktonic | 2 weeks/24 h |
Shrestha et al. 2018 [21] | In vivo | LPSs from P. aeruginosa | CSRB-NPs | RB | Not applicable | Not applicable |
Aydin et al. 2020 [42] | Ex vivo | E. faecalis | AgNPs | TBO | Biofilm | 21 days |
Ghorbanzadeh et al. 2020 [17] | Ex vivo | E. faecalis | NGO | Cur | Biofilm | 4 weeks |
Reference | NPs/PS | RT; RD | Efficacy |
---|---|---|---|
Guo et al. 2010 [40] | SiO2–NH2/RB | 40 min; ∼33 J/cm−2 | VCC: Log 8 CFU/mL reduction |
Pagonis et al. 2010 [32] | PLGA/MB | 5 min; 30 J/cm2 | BS (%): 3.3 (Planktonic); 15.2 (Biofilm) |
Chen et al. 2012 [22] | CSNPs/ER | Not mentioned; 50 J/cm2 | VCC: S. mutans: Log 7 CFU/mL reduction; P. aeruginosa: Log 3.5 CFU/mL reduction; Candida albicans: total eradication |
Shrestha et al. 2012 [37] | CSNPs/RB | Not mentioned; 20–60 J/cm2 | BS (%): E. faecalis: 2.6 ± 2 * P. aeruginosa: 0.8 ± 1.8 * |
Shrestha et al. 2012 [41] | CSNPs/RB | X min; 5–60 J/cm2 | BS (%): no bacterial survival (planktonic)/range from 1.7 to 2.9 (biofilm) |
Shrestha et al. 2014 [20] | CSNPs/RB | 1.6–3.3 min; 5–10 J/cm2 | No bacterial survival |
Shrestha et al. 2014 [35] | CSNPs/RB | 15 min; 2–60 J/cm2 | BS (%): 4.4 ± 2.8 * (0.1 mg/mL); 2.7 ± 2.4 * (0.3 mg/mL) |
Afkhami et al. 2016 [18] | AgNPs/ICG | 30 s; 200 mW | RCC (%): 99.12 |
Misba et al. 2016 [38] | AgNPs/TBO | 70 s; 9.1 Jcm−2 | RBF (%): 69 ± 22.2 * |
Akbari et al. 2017 [39] | NGO/ICG | 60 s; 31.2 J/cm2 | RCC (%): 90.6 RBF (%): 99.4 |
Golmohamadpour et al. 2018 [19] | Fe88/ICG, Al101/ICG, Fe101/ICG | Not mentioned; 31.2 J/cm2 | BS (%): 45.1, 60.7, 62.7 RBF (%): 37.5, 53.6, 47 |
Aydin et al. 2020 [42] | AgNPs/TBO | 30–60 s; not mentioned | RCC (%): range from 98.8 to 100 |
Reference | Bacteria | LS | Photosensitization Time | PS-NPs | Inhibitor | LS Energy (J/cm2) | Efficacy after aPDT (% BS) | Efficacy 24 h after aPDT (% BS) |
---|---|---|---|---|---|---|---|---|
Shrestha et al. [20] | Planktonic E. faecalis | Broad-spectrum lamp 540 or 660 nm | 15 min | CSRB-NPs | Pulp | 5 | 95 | 26 |
10 | 87 | 0 | ||||||
BSA | 5 | 87 | 16 | |||||
10 | 84 | 0 | ||||||
MB | Pulp | 5 | 78 | 66 | ||||
10 | 79 | 62 | ||||||
BSA | 5 | 84 | 55 | |||||
10 | 77 | 40 | ||||||
RB | Pulp | 5 | 95 | 75 | ||||
10 | 93 | 47 | ||||||
BSA | 5 | 85 | 97 | |||||
10 | 89 | 96 | ||||||
Shrestha et al. [35] | Planktonic E. faecalis | Broad-spectrum lamp 540 ± 15 nm | 15 min | CSRB-NPs | BSA | 5 | 75 | 14 |
10 | 76 | 0 | ||||||
RB | BSA | 5 | 91 | 75 | ||||
10 | 90 | 80 |
Author | Cell Line | NPs or PS | Time | Cell Viability |
---|---|---|---|---|
Shrestha et al. [35] | Mouse fibroblast | CSRB-NPs | 15 min | 72.86% cell survival |
RB | 15 min | 51.23% cell survival | ||
Shrestha et al. [36] | Macrophage | CSRB-NPs | 12 h | did not exhibit any toxicity |
MB | 12 h | reduction of cell survival not statistically significant | ||
Misba et al. [38] | Human embryonic kidney (HEK-293) | TBO | Not mentioned | >80% cell viability. |
AgNPs | Not mentioned | did not exhibit any toxicity | ||
TBO–AgNP | Not mentioned | >75% cell viability |
Reference | Bacteria | NPs or PS | Time | Results |
---|---|---|---|---|
Chen et al. [22] | Planktonic S. mutans | ER⁄CS | 12 h | not significant |
CS | 12 h | 0.5-log ↓ | ||
Planktonic C. albicans | ER⁄CS | 24 h | not significant | |
CS | 24 h | 1.5-log ↓ | ||
Shrestha et al. [35] | Planktonic E. faecalis | CSRB-NPs 0.1 mg/ml | 15 min | 4.5-log ↓ |
CSRB-NPs 0.3 mg/ml | 15 min | 6.5-log ↓ | ||
RB | 15 min | not significant | ||
Golmohamadpour et al. [19] | E. faecalis | Al-101/ICG | 5 min | 28.26% ↓ |
Fe-88/ICG | 5 min | 28.55% ↓ | ||
Fe-101/ICG | 5 min | 41.52% ↓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Betancourt, P.; Brocal, N.; Sans-Serramitjana, E.; Zaror, C. Functionalized Nanoparticles Activated by Photodynamic Therapy as an Antimicrobial Strategy in Endodontics: A Scoping Review. Antibiotics 2021, 10, 1064. https://doi.org/10.3390/antibiotics10091064
Betancourt P, Brocal N, Sans-Serramitjana E, Zaror C. Functionalized Nanoparticles Activated by Photodynamic Therapy as an Antimicrobial Strategy in Endodontics: A Scoping Review. Antibiotics. 2021; 10(9):1064. https://doi.org/10.3390/antibiotics10091064
Chicago/Turabian StyleBetancourt, Pablo, Nadia Brocal, Eulàlia Sans-Serramitjana, and Carlos Zaror. 2021. "Functionalized Nanoparticles Activated by Photodynamic Therapy as an Antimicrobial Strategy in Endodontics: A Scoping Review" Antibiotics 10, no. 9: 1064. https://doi.org/10.3390/antibiotics10091064
APA StyleBetancourt, P., Brocal, N., Sans-Serramitjana, E., & Zaror, C. (2021). Functionalized Nanoparticles Activated by Photodynamic Therapy as an Antimicrobial Strategy in Endodontics: A Scoping Review. Antibiotics, 10(9), 1064. https://doi.org/10.3390/antibiotics10091064