Synergistic Anticandidal Effects of Six Essential Oils in Combination with Fluconazole or Amphotericin B against Four Clinically Isolated Candida Strains
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition of the EOs
2.2. Anticandidal Activity
2.3. Synergistic Effect of EOs with Conventional Antifungals
3. Materials and Methods
3.1. Plant Material and EOs Extraction
3.2. GC/MS Analysis
3.3. Candida Strains
3.4. Determination of the Minimum Inhibitory Concentration (MIC)
3.5. Synergistic Effect of EOs with Conventional Antifungals
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shapiro, R.S.; Robbins, N.; Cowen, L.E. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol. Mol. Biol. Rev. 2011, 75, 213–267. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J. Evolution of antifungal-drug resistance: Mechanisms and pathogen fitness. Nat. Rev. Microbiol. 2005, 3, 547–556. [Google Scholar] [CrossRef]
- Shao, P.L.; Huang, L.M.; Hsueh, P.R. Recent advances and challenges in the treatment of invasive fungal infections. Int. J. Antimicrob. Agents 2007, 30, 487–495. [Google Scholar] [CrossRef] [PubMed]
- De Repentigny, L.; Lewandowski, D.; Jolicoeur, P. Immunopathogenesis of oropharyngeal candidiasis in human immunodeficiency virus infection. Clin. Microbiol. Rev. 2004, 17, 729–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wisplinghoff, H.; Bischoff, T.; Tallent, S.; Seifert, H.; Wenzel, R.P.; Edmond, M.B. Nosocomial bloodstream infections in US hospitals: Analysis of 24,179 cases from a prospective nation wide surveillance study. Clin. Infect. Dis. 2004, 39, 309–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filler, S.G.; Sheppard, D.C. Fungal invasion of normally non-phagocytic host cells. PLoS Pathog. 2006, 2, e129. [Google Scholar] [CrossRef]
- Nguyen, M.H.; Peacock, J.E.; Morris, A.J.; Tanner, D.C.; Nguyen, M.L.; Snydman, D.R.; Wagener, M.M.; Rinaldi, M.G.; Yu, V.L. The changing face of candidemia: Emergence of non-Candida albicans species and antifungal resistance. Am. J. Med. 1996, 100, 617–623. [Google Scholar] [CrossRef]
- Bojic-Milicevic, G.; Mikov, M.; Golocorbin-Kohn, S. The importance of genus Candida in human samples. Zb. Matice Srp. Za Prir. Nauk. 2008, 79–95. [Google Scholar] [CrossRef]
- Prasad, R.; Shah, A.H.; Rawal, M.K. Antifungals: Mechanism of action and drug resistance. Adv. Exp. Med. Biol. 2016, 892, 327–349. [Google Scholar] [CrossRef]
- Lupetti, A.; Danesi, R.; Campa, M.; Del Tacca, M.; Kelly, S. Molecular basis of resistance to azole antifungals. Trends Mol. Med. 2002, 8, 76–81. [Google Scholar] [CrossRef]
- Spampinato, C.; Leonardi, D. Candida infections, causes, targets, and resistance mechanisms: Traditional and alternative antifungal agents. BioMed Res. Int. 2013, 2013, 204237. [Google Scholar] [CrossRef] [Green Version]
- Rex, J.H.; Rinaldi, M.G.; Pfaller, M.A. Resistance of Candida species to fluconazole. Antimicrob. Agents Chemother. 1995, 39, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herbrecht, R.; Natarajan-Amé, S.; Nivoix, Y.; Letscher-Bru, V. The lipid formulations of amphotericin B. Expert Opin. Pharmacother. 2003, 4, 1277–1287. [Google Scholar] [CrossRef]
- Ahmad, A.; Molepo, J.; Patel, M. Challenges in the development of antifungal agents against Candida: Scope of phytochemical research. Curr. Pharm. Des. 2016, 22, 4135–4150. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Khan, A.; Manzoor, N. Reversal of efflux mediated antifungal resistance underlies synergistic activity of two monoterpenes with fluconazole. Eur. J. Pharm. Sci. 2013, 48, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Soulaimani, B.; Nafis, A.; Kasrati, A.; Rochdi, A.; Mezrioui, N.E.; Abbad, A.; Hassani, L. Chemical composition, antimicrobial activity and synergistic potential of essential oil from endemic Lavandula maroccana (Mill.). S. Afr. J. Bot. 2019, 125, 202–206. [Google Scholar] [CrossRef]
- Azzimonti, B.; Cochis, A.; El Beyrouthy, M.; Iriti, M.; Uberti, F.; Sorrentino, R.; Landini, M.M.; Rimondini, L.; Varoni, E.M. Essential oil from berries of Lebanese Juniperus excelsa M. Bieb displays similar antibacterial activity to chlorhexidine but higher cytocompatibility with human oral primary cells. Molecules 2015, 20, 9344–9357. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.; Khan, A.; Khan, L.A.; Manzoor, N. In vitro synergy of eugenol and methyleugenol with fluconazole against clinical Candida isolates. J. Med. Microbiol. 2010, 59, 1178–1184. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.A.; Malik, A.; Ahmad, I. Anti-candidal activity of essential oils alone and in combination with amphotericin B or fluconazole against multi-drug resistant isolates of Candida albicans. Med. Mycol. 2012, 50, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.; Khan, A.; Akhtar, F.; Yousuf, S.; Xess, I.; Khan, L.A.; Manzoor, N. Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 41–50. [Google Scholar] [CrossRef]
- Khan, A.; Ahmad, A.; Akhtar, F.; Yousuf, S.; Xess, I.; Khan, L.A.; Manzoor, N. Ocimum sanctum essential oil and its active principles exert their antifungal activity by disrupting ergosterol biosynthesis and membrane integrity. Res. Microbiol. 2010, 161, 816–823. [Google Scholar] [CrossRef]
- Bellakhdar, J. La Pharmacopée Marocaine Traditionnelle, Médicine Arabe Ancienne et Savoirs Populaire; Ibis Press: Paris, France, 1997. [Google Scholar]
- El Abdouni Khayari, M.; Jamali, C.A.; Kasrati, A.; Hassani, L.; Leach, D.; Markouk, M.; Abbad, A. Antibacterial activity of essential oils of some moroccan aromatic herbs against selected food-related bacteria. J. Essent. Oil-Bear. Plants 2016, 19, 1075–1085. [Google Scholar] [CrossRef]
- Alaoui Jamali, C.; Kasrati, A.; Fadli, M.; Hassani, L.; Leach, D.; Abbad, A. Synergistic effects of three Moroccan thyme essential oils with antibiotic cefixime. Phytothérapie 2017. [Google Scholar] [CrossRef]
- Ouedrhiri, W.; Balouiri, M.; Bouhdid, S.; Moja, S.; Chahdi, F.O.; Taleb, M.; Greche, H. Mixture design of Origanum compactum, Origanum majorana and Thymus serpyllum essential oils: Optimization of their antibacterial effect. Ind. Crop. Prod. 2016, 89, 1–9. [Google Scholar] [CrossRef]
- Fadli, M.; Pagès, J.; Mezrioui, N.; Abbad, A. Artemisia herba-alba Asso and Cymbopogon citratus (DC.) Stapf essential oils and their capability to restore antibiotics efficacy. Ind. Crop. Prod. 2016, 89, 399–404. [Google Scholar] [CrossRef]
- Benchikha, N.; Rebiai, A.; Brahima, O.; Neghmouch, N.S.; Ben Amor, M.L. Chemical composition, antimicrobial, antioxidant and anticancer activities of essential oil from Ammodaucus leucotrichus Cosson & Durieu (Apiaceae) growing in south Algeria. Bull. Chem. Soc. Ethiop. 2019, 33, 541–549. [Google Scholar] [CrossRef]
- Soulaimani, B.; El Hidar, N.; Ben El Fakir, S.; Mezrioui, N.; Hassani, L.; Abbad, A. Combined antibacterial activity of essential oils extracted from Lavandula maroccana (Murb.), Thymus pallidus Batt. and Rosmarinus officinalis L. against antibiotic-resistant Gram-negative bacteria. Eur. J. Integr. Med. 2021, 43, 101312. [Google Scholar] [CrossRef]
- Boubaker, H.; Karim, H.; El Hamdaoui, A.; Msanda, F.; Leach, D.; Bombarda, I.; Vanloot, P.; Abbad, A.; Boudyach, E.H.; Ait Ben Aoumar, A. Chemical characterization and antifungal activities of four Thymus species essential oils against postharvest fungal pathogens of citrus. Ind. Crop. Prod. 2016, 86, 95–101. [Google Scholar] [CrossRef]
- El Asbahani, A.; Jilale, A.; Voisin, S.N.; Aït Addi, E.H.; Casabianca, H.; El Mousadik, A.; Hartmann, D.J.; Renaud, F.N.R. Chemical composition and antimicrobial activity of nine essential oils obtained by steam distillation of plants from the Souss-Massa Region (Morocco). J. Essent. Oil Res. 2015, 27, 34–44. [Google Scholar] [CrossRef]
- Alaoui Jamali, C.; El Bouzidi, L.; Bekkouche, K.; Hassani, L.; Markouk, M.; Wohlmuthc, H.; Leach, D.; Abbad, A. Chemical composition and antioxidant and anticandidal activities of essential oils from different wild moroccan Thymus species. Chem. Biodivers. 2012, 9, 1188–1197. [Google Scholar] [CrossRef]
- Fadli, M.; Chevalier, J.; Saad, A.; Mezrioui, N.E.; Hassani, L.; Pages, J.M. Essential oils from Moroccan plants as potential chemosensitisers restoring antibiotic activity in resistant Gram-negative bacteria. Int. J. Antimicrob. Agents 2011, 38, 325–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghalbane, I.; Belaqziz, R.; Ait Said, L.; Oufdou, K.; Romane, A.; El Messoussi, S. Chemical composition, antibacterial and antioxidant activities of the essential oils from Thymus satureioides and Thymus pallidus. Nat. Prod. Commun. 2011, 6, 1507–1510. [Google Scholar] [CrossRef] [Green Version]
- Laghmouchi, Y.; Belmehdi, O.; Senhaji, N.S.; Abrini, J. Chemical composition and antibacterial activity of Origanum compactum Benth. essential oils from different areas at northern Morocco. S. Afr. J. Bot. 2018, 115, 120–125. [Google Scholar] [CrossRef]
- Bouyahya, A.; Dakka, N.; Talbaoui, A.; Et-Touys, A.; El-Boury, H.; Abrini, J.; Bakri, Y. Correlation between phenological changes, chemical composition and biological activities of the essential oil from Moroccan endemic Oregano (Origanum compactum Benth). Ind. Crop. Prod. 2017, 108, 729–737. [Google Scholar] [CrossRef]
- El Bouzidi, L.; Jamali, C.A.; Bekkouche, K.; Hassani, L.; Wohlmuth, H.; Leach, D.; Abbad, A. Chemical composition, antioxidant and antimicrobial activities of essential oils obtained from wild and cultivated Moroccan Thymus species. Ind. Crop. Prod. 2013, 43, 450–456. [Google Scholar] [CrossRef]
- Chraibi, M.; Farah, A.; Lebrazi, S.; El Amine, O.; Iraqui Houssaini, M.; Fikri-Benbrahim, K. Antimycobacterial natural products from Moroccan medicinal plants: Chemical composition, bacteriostatic and bactericidal profile of Thymus satureioides and Mentha pulegium essential oils. Asian Pac. J. Trop. Biomed. 2016, 6, 836–840. [Google Scholar] [CrossRef] [Green Version]
- Sadaoui, N.; Bec, N.; Barragan-Montero, V.; Kadri, N.; Cuisinier, F.; Larroque, C.; Arab, K.; Khettal, B. The essential oil of Algerian Ammodaucus leucotrichus Coss. & Dur. and its effect on the cholinesterase and monoamine oxidase activities. Fitoterapia 2018, 130, 1–5. [Google Scholar] [CrossRef]
- Khaldi, A.; Meddah, B.; Moussaoui, A.; Sonnet, P. Anti-mycotoxin effect and antifungal properties of essential oil from Ammodaucus leucotrichus Coss. & Dur. on Aspergillus flavus and Aspergillus ochraceus. J. Essent. Oil-Bear. Plants 2017, 20, 36–44. [Google Scholar] [CrossRef]
- Manssouri, M.; Znini, M.; El Harrak, A.; Majidi, L. Antifungal activity of essential oil from the fruits of Ammodaucus leucotrichus Coss. & Dur., in liquid and vapour phase against postharvest phytopathogenic fungi in apples. J. Appl. Pharm. Sci. 2016, 6, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Abu-darwish, M.S.; Cabral, C.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T. Artemisia herba-alba essential oil from Buseirah (South Jordan): Chemical characterization and assessment of safe antifungal and anti-in fl ammatory doses. J. Ethnopharmacol. 2015, 174, 153–160. [Google Scholar] [CrossRef]
- Bertella, A.; Benlahcen, K.; Abouamama, S.; Pinto, D.C.G.A.; Maamar, K.; Kihal, M.; Silva, A.M.S. Artemisia herba-alba Asso. essential oil antibacterial activity and acute toxicity. Ind. Crop. Prod. 2018, 116, 137–143. [Google Scholar] [CrossRef]
- Amor, G.; Caputo, L.; La Storia, A.; De Feo, V.; Mauriello, G.; Fechtali, T. Artemisia herba-alba and Origanum majorana Essential Oils from Morocco. Molecules 2019, 24, 4021. [Google Scholar] [CrossRef] [Green Version]
- Mohammedi, H.; Idjeri-Mecherara, S.; Menaceur, F.; Azine, K.; Hassani, A. Chemical compositions of extracted volatile oils of Ammodaucus leucotrichus L. fruit from different geographical regions of Algeria with evaluation of its toxicity, anti-inflammatory and antimicrobial activities. J. Essent. Oil-Bear. Plants 2018, 21, 1568–1584. [Google Scholar] [CrossRef]
- Louail, Z.; Kameli, A.; Benabdelkader, T.; Bouti, K.; Hamza, K.; Krimat, S. Antimicrobial and antioxidant activity of essential oil of Ammodaucus leucotrichus Coss. & Dur. seeds. J. Mater. Environ. Sci. 2016, 7, 2689–2695. [Google Scholar]
- El-Haci, I.; Bekhechi, C.; Atik-Bekkara, F.; Mazari, W.; Gherib, M.; Bighelli, A.; Csanova, J.; Tomi, F. Antimicrobial activity of Ammodaucus leucotrichus fruit oil from algerian sahara. Nat. Prod. Commun. 2014, 9, 711–712. [Google Scholar] [CrossRef] [Green Version]
- Mcgeady, P.; Wansley, D.L.; Logan, D.A. Filamentous structures in Candida significant inhibition of growth. J. Nat. Prod. 2002, 65, 11–13. [Google Scholar]
- Tian, J.; Wang, Y.; Zeng, H.; Li, Z.; Zhang, P.; Tessema, A.; Peng, X. Efficacy and possible mechanisms of perillaldehyde in control of Aspergillus niger causing grape decay. Int. J. Food Microbiol. 2015, 202, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Zeng, X.; Lü, A.; Zhu, A.; Peng, X.; Wang, Y. Perillaldehyde, a potential preservative agent in foods: Assessment of antifungal activity against microbial spoilage of cherry tomatoes. LWT—Food Sci. Technol. 2015, 60, 63–70. [Google Scholar] [CrossRef]
- Asdadi, A.; Alilou, H.; Akssira, M.; Mina, L.; Hassani, I.; Chebli, B. Chemical composition and anticandidal effect of three Thymus species essential oils from southwest of Morocco against the emerging nosocomial fluconazole-resistant strains. Biol. Agric. Healthc. 2014, 4, 16–27. [Google Scholar]
- Burt, S.A.; Vlielander, R.; Haagsman, H.P.; Veldhuizen, E.J.A. Increase in activity of essential oil components carvacrol and thymol against Escherichia coli O157:H7 by addition of food stabilizers. J. Food Prot. 2005, 68, 919–926. [Google Scholar] [CrossRef] [PubMed]
- Lambert, R.J.; Skandamis, P.; Coote, P.; Nychas, G.-J. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 2001, 91, 453–462. [Google Scholar] [CrossRef] [Green Version]
- Saad, N.Y.; Muller, D.; Lobstein, A. Major bioactivities and mechanism of action of essential oils and their components. Flavour Fragr. J. 2013, 28, 269–279. [Google Scholar] [CrossRef]
- Rajput, S.B.; Mohan Karuppayil, S. Small molecules inhibit growth, viability and ergosterol biosynthesis in Candida albicans. Springerplus 2013, 2, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palaniappan, K.; Holley, R.A. International Journal of Food Microbiology Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. Int. J. Food Microbiol. 2010, 140, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Di Pasqua, R.; Betts, G.; Hoskins, N.; Edwards, M.; Ercolini, D.; Mauriello, G. Membrane toxicity of antimicrobial compounds from essential oils. J. Agric. Food Chem. 2007, 55, 4863–4870. [Google Scholar] [CrossRef]
- Ultee, A.; Bennik, M.H.J.; Moezelaar, R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 2002, 68, 1561–1568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, R.P. Identification of Essential Oil Coponents by Gaz Chromatography; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; Volume 456. [Google Scholar]
- Saad, A.; Fadli, M.; Bouaziz, M.; Benharref, A.; Mezrioui, N.E.; Hassani, L. Anticandidal activity of the essential oils of Thymus maroccanus and Thymus broussonetii and their synergism with amphotericin B and fluconazol. Phytomedicine 2010, 17, 1057–1060. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. Approved Standard M27-A3, 3rd ed.; CLSI: Wayne, PA, USA, 2008. [Google Scholar]
- European Commitee for Antimicrobial Susceptibility Testing (EUCAST). Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. Clin. Microbiol. Infect. 2000, 6, 503–508. [Google Scholar] [CrossRef] [Green Version]
Plant Species | Local Names | Harvesting Place | Harvesting Time | Voucher Specimens | Latitude/Longitude | Oil Yields a (%) |
---|---|---|---|---|---|---|
T. leptobotrys | Za-itra | Tafraoute | May 2019 | TL-03 | 29°42′ N/08°74′ W | 1.85 ± 0.07 |
T. saturioiedes | Za-itra | Idni | May 2019 | TS-06 | 30°54′ N/08°17′ W | 0.66 ± 0.08 |
T. pallidus | Za-itra | Ait Lkak | June 2019 | TP-13 | 31°17′ N/07°50′ W | 2.15 ± 0.02 |
O. compactum | Zaatar | Toufliht | June 2018 | OC-12 | 31°28′ N/07°32′ W | 0.63 ± 0.05 |
A. leucotrichus | Kemoune essoufi | Tata | June 2018 | AL-17 | 29°44′ N/07°54′ W | 1.25 ± 0.07 |
A. herba alba | Sheeh | Ijoukak | September 2019 | AHA-18 | 30°59′ N/8°09′ W | 0.81 ± 0.01 |
RT a | RI b | Compounds c | Tl | Tp | Ts | Oc | Al | Aha |
---|---|---|---|---|---|---|---|---|
2.70 | 928 | α-Thujene | 0.29 | 1.40 | 0.31 | 0.41 | - d | - |
2.78 | 931 | α-Pinene | 0.26 | 1.30 | 2.82 | 0.52 | 4.20 | - |
2.92 | 950 | Camphene | - | 2.20 | 4.11 | 0.14 | 0.15 | 1.63 |
3.02 | 975 | 1-Octen-3-ol | 0.10 | 0.30 | - | 0.22 | - | - |
3.10 | 983 | 3-Octanone | 0.11 | - | - | - | - | - |
3.12 | 989 | Sabinene | - | - | - | - | 0.16 | - |
3.17 | 992 | Myrcene | 0.71 | 0.90 | 1.89 | 1.21 | - | - |
3.41 | 1005 | α-Phellandrene | - | - | - | 0.13 | - | |
3.52 | 1019 | α-Terpinene | - | 2.70 | 0.75 | 1.26 | - | - |
3.62 | 1027 | p-Cymene | 1.91 | 18.90 | 9.50 | 13.72 | - | 0.64 |
3.67 | 1030 | d-Limonene | - | 0.70 | - | - | 23.81 | - |
3.73 | 1031 | 1.8-Cineole | - | - | - | - | - | 0.85 |
3.81 | 1047 | Ocimene | - | - | - | 0.30 | - | |
4.03 | 1057 | γ-Terpinene | 1.44 | 29.60 | 6.70 | 8.97 | 0.91 | - |
4.17 | 1067 | trans-Sabinene hydrate | 0.40 | - | - | 0.51 | - | - |
4.53 | 1098 | Linalool | 0.52 | 4.70 | 7.79 | 2.37 | 0.41 | - |
4.78 | 1108 | cis-Thujone | 2.56 | - | - | - | - | 42.40 |
4.95 | 1118 | trans-Thujone | 1.98 | - | - | - | - | 28.77 |
5.09 | 1127 | Chrysanthenone | - | - | - | - | - | 0.91 |
5.50 | 1146 | Camphor | 0.62 | - | - | - | 0.42 | 16.65 |
5.87 | 1169 | Borneol | 0.64 | 5.40 | 13.66 | 0.40 | 0.25 | 1.72 |
6.06 | 1180 | l-terpinen-4-ol | 0.55 | - | 0.98 | 0.46 | - | 0.65 |
6.14 | 1188 | α-Terpineol | - | - | 3.95 | 1.02 | - | |
6.29 | 1197 | Caranone | - | - | 0.33 | - | - | - |
6.42 | 1200 | Dihydro-carvone | 0.18 | - | 0.20 | - | - | - |
6.74 | 1213 | Verbenone | - | - | - | - | - | 0.69 |
7.14 | 1230 | Thymol methyl ether | - | - | - | 0.12 | - | - |
7.36 | 1241 | Cumin-aldehyde | - | - | - | - | 3.83 | - |
7.37 | 1244 | Carvacrol methyl ether | - | - | - | 11.69 | - | - |
7.54 | 1257 | Linalyl acetate | - | - | - | - | 0.84 | - |
7.78 | 1260 | Chrysanthenyl acetate | 0.12 | - | - | - | - | 1.00 |
8.22 | 1275 | l-Perillaldehyde | - | - | - | - | 46.63 | - |
8.39 | 1286 | 1.4-p-Menthadien-7-al | - | - | - | - | 1.73 | - |
8.40 | 1288 | Thymol | 0.85 | 26.8 | - | 1.20 | - | - |
8.41 | 1289 | Bornyl acetate | - | - | 1.32 | - | - | - |
8.54 | 1290 | 2-Caren-10-al | - | - | - | - | 1.53 | - |
8.68 | 1301 | Perrilla alcohol | - | - | - | - | 0.28 | - |
8.69 | 1303 | Carvacrol | 78.75 | 1.40 | 25.45 | 35.69 | - | 0.30 |
9.05 | 1329 | 2-Methoxy-4-vinylphenol | 0.32 | - | - | - | - | - |
10.50 | 1366 | Carvacrol acetate | 0.21 | - | - | - | - | |
10.67 | 1370 | Ylangene | - | - | - | 0.13 | - | - |
10.78 | 1375 | α-Copaene | - | - | - | 0.55 | - | - |
11.05 | 1389 | (−)-β-Bourbonene | - | - | - | 0.26 | - | - |
11.18 | 1397 | Methyl perillate | - | - | - | - | 1.51 | - |
11.68 | 1413 | α-Gurjenene | - | - | 0.10 | - | - | - |
11.98 | 1415 | Caryophyllene | 1.60 | 2.90 | 12.10 | 4.09 | 0.30 | - |
12.21 | 1425 | β-Gurjunene | - | - | 0.24 | - | - | |
12.35 | 1445 | Aromandendrene | 0.62 | - | 0.11 | 1.60 | - | - |
12.50 | 1452 | Humulene | - | - | 0.64 | 0.42 | - | - |
13.07 | 1462 | epi-β-Caryophyllene | 0.15 | - | - | 0.12 | - | - |
13.09 | 1464 | γ-Decalactone | - | - | - | - | 0.19 | - |
13.45 | 1484 | γ-Murolene | - | - | - | 1.02 | - | - |
13.62 | 1489 | Germacrene D | 0.26 | - | - | 0.42 | 0.27 | - |
14.00 | 1500 | Viridi-florene | 0.56 | - | - | 1.63 | - | - |
14.16 | 1504 | β-Himachalene | - | - | - | 0.57 | - | |
14.25 | 1511 | β-Bisabolene | - | - | - | 1.53 | - | - |
14.48 | 1518 | Cubebol | 0.11 | - | - | - | - | - |
14.49 | 1519 | γ-Cadinene | - | - | 0.51 | 0.82 | - | - |
14.71 | 1526 | Cadina-1(10).4-diene | 0.21 | - | - | 2.16 | - | - |
15.11 | 1531 | α-Cadinene | - | - | - | 0.17 | - | - |
15.74 | 1550 | Bornyl angelate | - | - | - | - | 6.24 | - |
16.23 | 1580 | (+)-Spatulenol | 0.33 | - | - | 0.86 | - | - |
16.34 | 1589 | cis-Davanone | 0.73 | - | - | - | - | 2.34 |
16.39 | 1591 | Viridiflorol | 0.39 | - | - | - | - | - |
16.63 | 1598 | Caryophyllene oxide | - | - | 1.13 | 1.03 | - | - |
17.89 | 1649 | τ-Cadinol | - | - | - | - | 0.64 | - |
18.97 | 1685 | α-Bisabolol | - | - | - | - | 0.33 | - |
19.26 | 1700 | Shyobunol | - | - | - | - | 0.83 | |
Oxygen-containing monoterpenes | 87.05 | 38.30 | 52.03 | 41.65 | 55.27 | 92.64 | ||
Monoterpene hydrocarbons | 4.61 | 57.70 | 26.07 | 26.66 | 29.23 | 2.27 | ||
Oxygen-containing sesquiterpenes | 1.56 | 0.00 | 1.13 | 1.89 | 8.04 | 2.34 | ||
Sesquiterpene hydrocarbons | 3.40 | 2.90 | 13.46 | 15.16 | 1.14 | 0.00 | ||
Other | 0.86 | 0.30 | 1.58 | 12.03 | 2.35 | 1.00 | ||
Total | 97.48 | 99.20 | 94.34 | 97.39 | 96.03 | 98.25 |
Microorganisms | Tl a | Ts | Tp | Oc | Al | Aha | Fluconazole | Amphoterecin B |
---|---|---|---|---|---|---|---|---|
C. albicans | 0.596 | 0.598 | 2.598 | 0.278 | 0.324 | 2.475 | 1 | 0.0001 |
C. glabrata | 0.297 | 0.373 | 0.644 | 0.278 | 0.162 | 4.950 | 1 | 0.0001 |
C. krusei | 0.297 | 1.196 | 1.299 | 0.278 | 0.162 | 4.950 | 1 | 0.0001 |
C. parapsilosis | 0.297 | 1.196 | 0.644 | 0.278 | 0.162 | 4.950 | 1 | 0.0004 |
EOs | C. albicans | C. glabrata | C. krusei | C. parapsilosis | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MICF/MICC | Gain | FICI | MICF/MICC | Gain | FICI | MICF/MICC | Gain | FICI | MICF/MICC | Gain | FICI | |
Tl | 1/0.002 | 512 | 0.25 a | 1/0.002 | 512 | 0.25 a | 1/0.002 | 512 | 0.25 a | 1/0.002 | 512 | 0.25 a |
Ts | 1/0.004 | 256 | 0.25 a | 1/0.004 | 256 | 0.25 a | 1/0.004 | 256 | 0.25 a | 1/0.016 | 64 | 0.27 a |
Tp | 1/0.004 | 256 | 0.25 a | 1/0.004 | 256 | 0.25 a | 1/0.004 | 256 | 0.25 a | 1/0.016 | 64 | 0.27 a |
Oc | 1/0.008 | 128 | 0,26 a | 1/0.008 | 128 | 0.26 a | 1/0.016 | 64 | 0.27 a | 1/0.062 | 16 | 0.31 a |
Al | 1/0.008 | 128 | 0.26 a | 1/0.008 | 128 | 0.26 a | 1/0.031 | 32 | 0.28 a | 1/0.062 | 16 | 0.31 a |
Aha | 1/0.016 | 64 | 0.27 a | 1/0.016 | 64 | 0.27 a | 1/0.016 | 64 | 0.27 a | 1/0.031 | 32 | 0.28 a |
EOs | C. albicans | C. glabrata | C. krusei | C. parapsilosis | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MICA/MICC | Gain | FICI | MICA/MICC | Gain | FICI | MICA/MICC | Gain | FICI | MICA/MICC | Gain | FICI | |
Tl | 0.0001/0.00005 | 2 | 0.75 b | 0.0001/0.00005 | 2 | 0.75 b | 0.0001/0.00003 | 4 | 0.50 a | 0.0004/0.0002 | 2 | 0.75 b |
Ts | 0.0001/0.0001 | 1 | 1.25 c | 0.0001/0.0001 | 1 | 1.25 c | 0.0001/0.0001 | 1 | 1.25 c | 0.0004/0.0004 | 1 | 1.25 c |
Tp | 0.0001/0.0001 | 1 | 1.25 c | 0.0001/0.0001 | 1 | 1.25 c | 0.0001/0.0001 | 1 | 1.25 c | 0.0004/0.0004 | 1 | 1.25 c |
Oc | 0.0001/0.00005 | 2 | 0.75 b | 0.0001/0.00005 | 2 | 0.75 b | 0.0001/0.00003 | 4 | 0.50 a | 0.0004/0.0002 | 2 | 0.75 b |
Al | 0.0001/0.0001 | 1 | 1.25 c | 0.0001/0.0001 | 1 | 1.25 c | 0.0001/0.0001 | 1 | 1.25 c | 0.0004/0.0004 | 1 | 1.25 c |
Aha | 0.0001/0.00005 | 2 | 0.75 b | 0.0001/0.00005 | 2 | 0.75 b | 0.0001/0.00003 | 4 | 0.50 a | 0.0004/0.0002 | 2 | 0.75 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soulaimani, B.; Varoni, E.; Iriti, M.; Mezrioui, N.-E.; Hassani, L.; Abbad, A. Synergistic Anticandidal Effects of Six Essential Oils in Combination with Fluconazole or Amphotericin B against Four Clinically Isolated Candida Strains. Antibiotics 2021, 10, 1049. https://doi.org/10.3390/antibiotics10091049
Soulaimani B, Varoni E, Iriti M, Mezrioui N-E, Hassani L, Abbad A. Synergistic Anticandidal Effects of Six Essential Oils in Combination with Fluconazole or Amphotericin B against Four Clinically Isolated Candida Strains. Antibiotics. 2021; 10(9):1049. https://doi.org/10.3390/antibiotics10091049
Chicago/Turabian StyleSoulaimani, Bouchra, Elena Varoni, Marcello Iriti, Nour-Eddine Mezrioui, Lahcen Hassani, and Abdelaziz Abbad. 2021. "Synergistic Anticandidal Effects of Six Essential Oils in Combination with Fluconazole or Amphotericin B against Four Clinically Isolated Candida Strains" Antibiotics 10, no. 9: 1049. https://doi.org/10.3390/antibiotics10091049
APA StyleSoulaimani, B., Varoni, E., Iriti, M., Mezrioui, N. -E., Hassani, L., & Abbad, A. (2021). Synergistic Anticandidal Effects of Six Essential Oils in Combination with Fluconazole or Amphotericin B against Four Clinically Isolated Candida Strains. Antibiotics, 10(9), 1049. https://doi.org/10.3390/antibiotics10091049