Prevalence and Characterization of Extended-Spectrum β-Lactamase-Producing Antibiotic-Resistant Escherichia coli and Klebsiella pneumoniae in Ready-to-Eat Street Foods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Isolation and Identification of Organisms
2.3. Antimicrobial Susceptibility Testing
2.4. Phenotypic Detection of ESBL
2.5. Detection for Metallo-β-Lactamases (MBL) and Minimum Inhibitory Concentration (MIC)
2.6. DNA Extraction
2.7. Detection of Genes Encoding β-Lactamases
2.8. Statistical Analysis
3. Results
3.1. Prevalence of Escherichia coli and Klebsiella pneumoniae
3.2. Antibiotic Resistance Profile
3.3. Multidrug Resistance in Escherichia coli and Klebsiella pneumoniae Isolates
3.4. Detection of MBL Producers and MIC Value by E-Test
3.5. Characterization of β-Lactamase Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bagumire, A.; Karumuna, R. Bacterial contamination of ready-to-eat meats vended in highway markets in Uganda. Afr. J. Food Sci. 2017, 11, 160–170. [Google Scholar]
- Oje, O.J.; Ajibade, V.A.; Fajilade, O.T.; Ajenifuja, O.A. Microbilogical analysis of ready to eat (RTE) foods vended in mobile outlet catering units from Nigeria. J. Adv. Food Sci. Technol. 2018, 5, 15–19. [Google Scholar]
- Das, M.; Rath, C.C.; Mohapatra, U.B. Bacteriology of a most popular street food (Panipuri) and inhibitory effect of essential oils on bacterial growth. J. Food Sci. Technol. 2012, 49, 564–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arcilla, M.S.; van Hattem, J.M.; Haverkate, M.R.; Bootsma, M.C.; van Genderen, P.J.; Goorhuis, A.; Grobusch, M.P.; Lashof, A.M.O.; Molhoek, N.; Schultsz, C.; et al. Import and spread of extended-spectrum β-lactamase-producing Enterobacteriaceae by international travellers (COMBAT study): A prospective, multicentre cohort study. Lancet Infect. Dis. 2017, 17, 78–85. [Google Scholar] [CrossRef]
- Panisello, P.J.; Rooney, R.; Quantick, P.C.; Stanwell-Smith, R. Application of foodborne disease outbreak data in the development and maintenance of HACCP systems. Int. J. Food Microbiol. 2000, 59, 221–234. [Google Scholar] [CrossRef]
- Makinde, O.M.; Adetunji, M.C.; Ezeokoli, O.T.; Odumosu, B.T.; Ngoma, L.; Mwanza, M.; Ezekiel, C.N. Bacterial contaminants and their antibiotic susceptibility patterns in ready-to-eat foods vended in Ogun state, Nigeria. Lett. Appl. Microbiol. 2021, 72, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Sofy, A.R.; Sharaf, A.E.M.M.; Al Karim, A.G.; Hmed, A.A.; Moharam, K.M. Prevalence of the harmful gram-negative bacteria in ready-to-eat foods in Egypt. Food Public Health 2017, 7, 59–68. [Google Scholar]
- Ryu, S.H.; Lee, J.H.; Park, S.H.; Song, M.O.; Park, S.H.; Jung, H.W.; Park, G.Y.; Choi, S.M.; Kim, M.S.; Chae, Y.Z.; et al. Antimicrobial resistance profiles among Escherichia coli strains isolated from commercial and cooked foods. Int. J. Food Microbiol. 2012, 159, 263–266. [Google Scholar] [CrossRef]
- Gururajan, G.; Srinivasan, I.; Kaliyaperumal, K.; Balagurunathan, R. SHV and CTX-M Extended Spectrum Beta Lactamases (ESBL) Producing Bacteria Isolated from Street Foods in and around Chennai, India. Res. J. Pharm. Technol. 2018, 11, 905–909. [Google Scholar] [CrossRef]
- Colosi, I.A.; Baciu, A.M.; Opriș, R.V.; Peca, L.; Gudat, T.; Simon, L.M.; Colosi, H.A.; Costache, C. Prevalence of ESBL, AmpC and Carbapenemase-Producing Enterobacterales Isolated from Raw Vegetables Retailed in Romania. Foods 2020, 9, 1726. [Google Scholar] [CrossRef]
- Hosein, A.; Munoz, K.; Sawh, K.; Adesiyun, A. Microbial Load and the Prevalence of Escherichia coli, Salmonella spp. and Listeria spp. in Ready-to-Eat Products in Trinidad. Open Food Sci. J. 2008, 2, 23–28. [Google Scholar] [CrossRef]
- Hartantyo, S.H.P.; Chau, M.L.; Koh, T.H.; Yap, M.; Yi, T.; Cao, D.Y.H.; Gutiérrez, R.A.; Ng, L.C. Foodborne Klebsiella pneumoniae: Virulence Potential, Antibiotic Resistance, and Risks to Food Safety. J. Food Prot. 2020, 83, 1096–1103. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, M.; Abass, G.; Vivekanandhan, R.; Singh, D.K.; Bhilegaonkar, K.; Kumar, M.S.; Grace, M.R.; Dubal, Z. Extended-spectrum beta-lactamase (ESBL) producing and multidrug-resistant Escherichia coli in street foods: A public health concern. J. Food Sci. Technol. 2021, 58, 1247–1261. [Google Scholar] [CrossRef] [PubMed]
- Iseppi, R.; De Niederhäusern, S.; Bondi, M.; Messi, P.; Sabia, C. Extended-Spectrum β-Lactamase, AmpC, and MBL-Producing Gram-Negative Bacteria on Fresh Vegetables and Ready-to-Eat Salads Sold in Local Markets. Microb. Drug Resist. 2018, 24, 1156–1164. [Google Scholar] [CrossRef]
- Forbes, B.; Sahm, D.; Weissfeld, A.B.; Bailey, W.B. Scott’s Diagnostic Microbiology, 11th ed.; Elsevier: St. Louis, MO, USA, 2007; pp. 423–433. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. In CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Tygacil Package Insert; Wyeth Pharmaceuticals: Philadelphia, PA, USA, 2016; Available online: www.tygacil.com (accessed on 26 September 2017).
- Krumperman, P.H. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl. Environ. Microbiol. 1983, 46, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Franklin, C.; Liolios, L.; Peleg, A.Y. Phenotypic detection of carbapenem-susceptible metallo-β-lactamase-producing gram-negative bacilli in the clinical laboratory. J. Clin. Microbiol. 2006, 44, 3139–3144. [Google Scholar] [CrossRef] [Green Version]
- Ausubel, F.; Brentr, K.R.; Moored, D.; Seidman, J.G.; Smith, J.A.; Struhl, K. Current Protocols in Molecular Biology, 4th. Unit. 2.4; Green Publications Associations: New York, NY, USA, 1995. [Google Scholar]
- Colomer-Lluch, M.; Jofre, J.; Muniesa, M. Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples. PLoS ONE 2011, 6, e17549. [Google Scholar] [CrossRef] [Green Version]
- Jemima, S.A.; Verghese, S. Multiplex PCR for blaCTX-M & blaSHV in the extended spectrum beta lactamase (ESBL) producing gram-negative isolates. Indian J. Med. Res. 2008, 128, 313. [Google Scholar]
- Teo, J.; Ngan, G.; Balm, M.; Jureen, R.; Krishnan, P.; Lin, R. Molecular characterization of NDM-1 producing Enterobacteriaceae isolates in Singapore hospitals. West. Pac. Surveill. Response J. 2012, 3, 19–24. [Google Scholar] [CrossRef]
- Zurfluh, K.; Nüesch-Inderbinen, M.; Morach, M.; Berner, A.Z.; Hächler, H.; Stephan, R. Extended-spectrum-β-lactamase-producing Enterobacteriaceae isolated from vegetables imported from the Dominican Republic, India, Thailand, and Vietnam. Appl. Environ. Microbiol. 2015, 81, 3115–3120. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.S.; Chon, J.W.; Kim, Y.J.; Kim, D.H.; Kim, M.S.; Seo, K.H. Prevalence and characterization of extended-spectrum-β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in ready-to-eat vegetables. Int. J. Food Microbiol. 2015, 207, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Doğan-Halkman, H.B.; Çakır, I.; Keven, F.; Worobo, R.; Halkman, A.K. Relationship among fecal coliforms and Escherichia coli in various foods. Eur. Food Res. Technol. 2003, 216, 331–334. [Google Scholar] [CrossRef]
- Brower, C.; Mandal, S.; Hayer, S.; Sran, M.; Zehra, A.; Patel, S.J.; Kaur, R.; Chatterjee, L.; Mishra, S.; Das, B.; et al. The Prevalence of Extended-Spectrum Beta-Lactamase-Producing Multidrug-Resistant Escherichia Coli in Poultry Chickens and Variation According to Farming Practices in Punjab, India. Environ. Health Perspect. 2017, 125, 077015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arau Jo, S.; Henriques, I.S.; Leandro, S.M.; Alves, A.; Pereira, A.; Correia, A. Gulls identified as major source of fecal pollution in coastal waters: A microbial source tracking study. Sci. Total Environ. 2014, 470–471, 84–91. [Google Scholar] [CrossRef]
- Knapp, C.W.; Mccluskey, S.; Singh, B.; Campbell, C.; Hudson, G.; Graham, D.W. Antibiotic Resistance Gene Abundances Correlate with Metal and Geochemical Conditions in Archived Scottish Soils. PLoS ONE 2011, 6, e27300. [Google Scholar] [CrossRef]
- Jaskaran, S.; Shukla, S.K. A new threat of bacterial resistance towards lifesaving carbapenem antibiotics. Res. J. Chem. Sci. 2015, 5, 85–88. [Google Scholar]
- Zurita, J.; Yánez, F.; Sevillano, G.; Ortega-Paredes, D.; Paz y Miño, A. Ready-to-eat street food: A potential source for dissemination of multidrug-resistant Escherichia coli epidemic clones in Quito, Ecuador. Lett. Appl. Microbiol. 2020, 70, 203–209. [Google Scholar] [CrossRef]
- Paterson, D.L. Recommendation for treatment of severe infections caused by Enterobacteriaceae producing extended-spectrum β-lactamases (ESBLs). Clin. Microbiol. Infect. 2020, 6, 460–463. [Google Scholar] [CrossRef] [Green Version]
- Talbot, G.H.; Bradley, J.; Edwards, J.E., Jr.; Gilbert, D.; Scheld, M.; Bartlett, J.G. Bad bugs need drugs: An update on the development pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America. Clin. Infect. Dis. 2006, 42, 657–668. [Google Scholar] [CrossRef] [Green Version]
Primers | Oligonucleotide Sequences (5′-3′) | Thermal Cycling Conditions | Product Size (bp) | Reference |
---|---|---|---|---|
blaCTX-M | F: ACGTTAAACACCGCCATTCC R: TCGGTGACGATTTTAGCCGC | 95 °C 5 min (1 cycle) 94 °C 15 s, 60 °C 1 min, 72 °C 1.3 min (30 cycles), 72 °C 4 min (1 cycle) | 356 | [21] |
blaSHV | F: ATTTGTCGCTTCTTTACTCGC R: TTTATGGCGTTACCTTTGACC | 94 °C 5 min, 94 °C 30 s (30 cycles), 52 °C 30 s, 72° 50 s, 72 °C 10 min | 1018 | [22] |
blaTEM | F: CTCACCCAGAAACGCTGGTG R: ATCCGCCTCCATCCAGTCTA | 95 °C 5 min (1 cycle), 94 °C 15 s, 63 °C 1 min, 72 °C 1.3 min (30 cycles), 72 °C 4 min (1 cycle) | 569 | [21] |
blaNDM | F: CAACTGGATCAAGCAGGAGA R: TCGATCCCAACGGTGATATT | 94 °C 10 min, 94 °C 1 min, 56 °C 30 s (35 cycles), 72 °C 30 s, 72 °C 10 min | 291 | [23] |
Category | Type of Food Items (n = 100) | E. coli Isolates (%) (n = 27) | K. pneumoniae Isolates (%) (n = 32) |
---|---|---|---|
1 | Chutney/sauces/dressings/wet and dry pickles (n = 14) | 5 (18.51) | 7 (21.87) |
2 | Fried items like samosa, cutlets, different types of veg fritters (n = 12) | 2 (7.40) | 2 (6.25) |
3 | Instant cup noodles and pasta, muffins (n =10) | 3 (11.11) | 1 (3.12) |
4 | Paani puri and Chaats (n= 15) | 5 (18.51) | 9 (28.12) |
5 | Salads and sprouts (n = 14) | 4 (14.81) | 6 (18.75) |
6 | Egg items (Eggs puffs, egg fritters, egg sandwiches) (n = 12) | 3 (11.11) | 2 (6.25) |
7 | Chicken sausages and Salami (n = 11) | 3 (11.11) | 4 (12.5) |
8 | Juices, Cheese and confectionaries (n = 12) | 2 (7.40) | 1 (3.12) |
Antibiotics | Escherichia coli (n = 27) | Klebsiella pneumoniae (n = 32) | Fisher’s Exact Test | p-Value | ||
---|---|---|---|---|---|---|
n | % | n | % | |||
Ceftazidime | 7 | 25.9 | 16 | 50.0 | 0.068 | 0.059 |
Ceftazidime clavulanic acid | 20 | 74.1 | 30 | 93.8 | 0.035 | 0.066 |
Amikacin | 4 | 14.8 | 7 | 21.9 | 0.526 | 0.488 |
Ampicillin | 22 | 81.5 | 32 | 100 | 0.016 | 0.016 * |
Ampicillin clavulanic acid | 10 | 37.0 | 2 | 6.3 | 0.007 | 0.003 * |
Cefotaxime | 11 | 40.7 | 20 | 62.5 | 0.121 | 0.095 |
Ceftriaxone | 8 | 29.6 | 12 | 37.5 | 0.589 | 0.525 |
Cefuroxime | 11 | 40.7 | 21 | 65.6 | 0.070 | 0.06 |
Cefepime | 18 | 66.7 | 25 | 78.1 | 0.386 | 0.324 |
Ciprofloxacin | 7 | 25.9 | 3 | 9.4 | 0.070 | 0.162 |
Chloramphenicol | 7 | 25.9 | 8 | 25.0 | 1.000 | 0.935 |
Ertapenem | 20 | 74.1 | 8 | 25.0 | 0.001 | <0.001 * |
Imipenem | 26 | 96.3 | 7 | 21.9 | 0.001 | <0.001 * |
Meropenem | 8 | 29.6 | 2 | 6.3 | 0.018 | 0.033 * |
Cotrimoxazole | 11 | 40.7 | 11 | 34.4 | 0.788 | 0.614 |
Gentamicin | 3 | 11.1 | 3 | 9.4 | 1.000 | 0.826 |
Cefoperazone sulbactum | 18 | 66.7 | 11 | 34.4 | 0.019 | 0.013 * |
Nitrofurantoin | 13 | 48.1 | 28 | 87.5 | 0.002 | 0.001 * |
Erythromycin | 21 | 77.8 | 31 | 96.9 | 0.028 | 0.04 * |
Nalidixic acid | 15 | 55.6 | 7 | 21.9 | 0.014 | 0.008 * |
Tigecycline | 2 | 7.4 | 4 | 12.5 | 0.280 | 0.678 |
Tetracycline | 6 | 22.2 | 6 | 18.8 | 0.757 | 0.741 |
Piperacillin tazobactum | 15 | 55.6 | 16 | 50.0 | 0.795 | 0.67 |
No. of Antibiotics | MAR Index | No. of Isolates (%) |
---|---|---|
1 | 0.04 | 0 |
2 | 0.08 | 0 |
3 | 0.13 | 4 (6.78) |
4 | 0.17 | 1 (1.69) |
5 | 0.22 | 6 (10.17) |
6 | 0.26 | 7 (11.86) |
7 | 0.30 | 9 (15.25) |
8 | 0.35 | 1 (1.69) |
9 | 0.39 | 6 (10.17) |
10 | 0.43 | 1 (1.69) |
11 | 0.48 | 3 (5.08) |
12 | 0.52 | 1 (1.69) |
13 | 0.56 | 3 (5.08) |
14 | 0.61 | 9 (15.25) |
15 | 0.65 | 6 (10.17) |
16 | 0.69 | 2 (3.39) |
17 | 0.74 | 1 (1.69) |
18 | 0.78 | 2 (3.39) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giri, S.; Kudva, V.; Shetty, K.; Shetty, V. Prevalence and Characterization of Extended-Spectrum β-Lactamase-Producing Antibiotic-Resistant Escherichia coli and Klebsiella pneumoniae in Ready-to-Eat Street Foods. Antibiotics 2021, 10, 850. https://doi.org/10.3390/antibiotics10070850
Giri S, Kudva V, Shetty K, Shetty V. Prevalence and Characterization of Extended-Spectrum β-Lactamase-Producing Antibiotic-Resistant Escherichia coli and Klebsiella pneumoniae in Ready-to-Eat Street Foods. Antibiotics. 2021; 10(7):850. https://doi.org/10.3390/antibiotics10070850
Chicago/Turabian StyleGiri, Shobha, Vaishnavi Kudva, Kalidas Shetty, and Veena Shetty. 2021. "Prevalence and Characterization of Extended-Spectrum β-Lactamase-Producing Antibiotic-Resistant Escherichia coli and Klebsiella pneumoniae in Ready-to-Eat Street Foods" Antibiotics 10, no. 7: 850. https://doi.org/10.3390/antibiotics10070850
APA StyleGiri, S., Kudva, V., Shetty, K., & Shetty, V. (2021). Prevalence and Characterization of Extended-Spectrum β-Lactamase-Producing Antibiotic-Resistant Escherichia coli and Klebsiella pneumoniae in Ready-to-Eat Street Foods. Antibiotics, 10(7), 850. https://doi.org/10.3390/antibiotics10070850