Antimicrobial Resistance in Nosocomial Isolates of Gram-Negative Bacteria: Public Health Implications in the Latvian Context
Abstract
:1. Introduction
2. Results
2.1. Annual Prevalence of Various Gram-Negative Bacteria
2.2. Weighted Cumulative Antibiotic Resistance Rates and Trends over the Study Period
2.3. Overall Weighted Multiple Antibiotic Resistance (MAR) Index
2.4. Extended-Spectrum Beta-Lactamases (ESBL)-Producing Enterobacterales
2.5. Consumption Patterns of Antimicrobials in the Hospital Sector (2017–2019)
3. Discussion
3.1. Significant Findings of the Present Study (Summarized Report)
3.2. ESKAPE Pathogens–AMR in Klebsiella spp.
3.3. ESKAPE Pathogens—AMR in Acinetobacter spp.
3.4. ESKAPE Pathogens–AMR in Pseudomonas spp.
3.5. ESKAPE Pathogens–AMR in Enterobacter spp.
3.6. AMR Rates in Other Enterobacterales Order Members (CESP and beyond)
3.7. AMR Rates in Other Studied Gram-Negative Genera
3.8. Infection Control and Controlling of AMR Rates
3.9. Limitations of the Present Study
4. Materials and Methods
4.1. Study Design and Location
4.2. Sample Collection and Laboratory Analysis
4.3. Multiple Antibiotic Resistance (MAR) Index
4.4. Data Collection and Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Q&A Detail. 27 July 2017. Available online: https://www.who.int/news-room/q-a-detail/antimicrobial-resistance (accessed on 15 April 2021).
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Friedrich, A.W. Control of hospital acquired infections and antimicrobial resistance in Europe: The way to go. Wien. Med. Wochenschr. 2019, 169, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Reed, D.; Kemmerly, S.A. Infection control and prevention: A review of hospital-acquired infections and the economic implications. Ochsner J. 2009, 9, 27–31. [Google Scholar]
- Golkar, Z.; Bagasra, O.; Pace, D.G. Bacteriophage therapy: A potential solution for the antibiotic resistance crisis. J. Infect. Dev. Ctries. 2014, 8, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Jang, T.N.; Kuo, B.I.; Shen, S.H.; Fung, C.P.; Lee, S.H.; Yang, T.L.; Huang, C.S. Nosocomial gram-negative bacteremia in critically ill patients: Epidemiologic characteristics and prognostic factors in 147 episodes. J. Formos. Med. Assoc. 1999, 98. [Google Scholar]
- Rossolini, G.M.; Arena, F.; Pecile, P.; Pollini, S. Update on the antibiotic resistance crisis. Curr. Opin. Pharmacol. 2014, 18, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Al-Tawfiq, J.A.; Rabaan, A.A.; Saunar, J.V.; Bazzi, A.M. Antimicrobial resistance of gram-negative bacteria: A six-year longitudinal study in a hospital in Saudi Arabia. J. Infect. Public Health 2020, 13, 737–745. [Google Scholar] [CrossRef]
- Rice, L.B. Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE. J. Infect. Dis. 2008, 197, 1079–1081. [Google Scholar] [CrossRef]
- Mulani, M.S.; Kamble, E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front. Microbiol. 2019, 10, 539. [Google Scholar] [CrossRef]
- Tipper, D.J. Mode of action of β-lactam antibiotics. Pharmacol. Ther. 1985, 27, 1–35. [Google Scholar] [CrossRef]
- Brogden, R.N.; Carmine, A.; Heel, R.C.; Morley, P.A.; Speight, T.M.; Avery, G.S. Amoxycillin/clavulanic acid: A review of its antibacterial activity, pharmacokinetics and therapeutic use. Drugs 1981, 22, 337–362. [Google Scholar] [CrossRef]
- Stein, G.E.; Gurwith, M.J. Amoxicillin-potassium clavulanate, a beta-lactamase-resistant antibiotic combination. Clin. Pharm. 1984, 3, 591–599. [Google Scholar]
- Sizar, O.; Rahman, S.; Sundareshan, V. Amikacin. [Updated 2021 Feb 19]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK430908/ (accessed on 10 April 2021).
- Beganovic, M.; Luther, M.K.; Rice, L.B.; Arias, C.A.; Rybak, M.J.; Laplante, K.L. A Review of Combination Antimicrobial Therapy for Enterococcus faecalis Bloodstream Infections and Infective Endocarditis. Clin. Infect. Dis. 2018, 67, 303–309. [Google Scholar] [CrossRef] [Green Version]
- LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2012. [PubMed]
- Campoli-Richards, D.M.; Monk, J.P.; Price, A.; Benfield, P.; Todd, P.A.; Ward, A. Ciprofloxacin. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs 1988, 35, 373–447. [Google Scholar] [CrossRef]
- Thai, T.; Salisbury, B.H.; Zito, P.M. Ciprofloxacin. [Updated 2020 Sep 29]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK535454/ (accessed on 10 April 2021).
- Kemnic, T.R.; Coleman, M. Trimethoprim Sulfamethoxazole. [Updated 2020 Dec 11]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK513232/ (accessed on 10 April 2021).
- Papp-Wallace, K.M.; Endimiani, A.; Taracila, M.A.; Bonomo, R.A. Carbapenems: Past, Present, and Future. Antimicrob. Agents Chemother. 2011, 55, 4943–4960. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, P.; Yarlagadda, V.; Ghosh, C.; Haldar, J. A review on cell wall synthesis inhibitors with an emphasis on glycopeptide antibiotics. MedChemComm 2017, 8, 516–533. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control (ECDC). European Antimicrobial Resistance Surveillance Network (EARS-Net). 2021. Available online: https://www.ecdc.europa.eu/en/about-us/partnerships-and-networks/disease-and-laboratory-networks/ears-net (accessed on 20 April 2021).
- Kärki, T.; Plachouras, D.; Cassini, A.; Suetens, C. Burden of healthcare-associated infections in European acute care hospitals. Wien. Med. Wochenschr. 2019, 169, 3–5. [Google Scholar] [CrossRef]
- Lushniak, B.D. Antibiotic Resistance: A Public Health Crisis. Public Health Rep. 2014, 129, 314–316. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention, Office of Infectious Disease Antibiotic resistance threats in the United States. 2013. Available online: http://www.cdc.gov/drugresistance/threat-report-2013 (accessed on 10 April 2021).
- Pitout, J.D.D.; Laupland, K.B. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: An emerging public-health concern. Lancet Infect Dis. 2008, 8, 159–166. [Google Scholar] [CrossRef]
- Carpenter, J.L. Klebsiella Pulmonary Infections: Occurrence at One Medical Center and Review. Clin. Infect. Dis. 1990, 12, 672–682. [Google Scholar] [CrossRef] [PubMed]
- Podschun, R.; Ullmann, U. Klebsiella spp. as Nosocomial Pathogens: Epidemiology, Taxonomy, Typing Methods, and Pathogenicity Factors. Clin. Microbiol. Rev. 1998, 11, 589–603. [Google Scholar] [CrossRef] [Green Version]
- Ransjö, U.; Good, Z.; Jalakas, K.; Kühn, I.; Siggelkow, I.; Äberg, B.; Anjou, E. An outbreak ofKlebsiella oxytocasepticemias associated with the use of invasive blood pressure monitoring equipment. Acta Anaesthesiol. Scand. 1992, 36, 289–291. [Google Scholar] [CrossRef]
- Montgomerie, J.Z. Epidemiology of Klebsiella and Hospital-Associated Infections. Clin. Infect. Dis. 1979, 1, 736–753. [Google Scholar] [CrossRef]
- Moya, C.; Maicas, S. Antimicrobial Resistance in Klebsiella pneumoniae Strains: Mechanisms and Outbreaks. Proceedings 2020, 66, 11. [Google Scholar] [CrossRef]
- Neog, N.; Phukan, U.; Puzari, M.; Sharma, M.; Chetia, P. Klebsiella oxytoca and Emerging Nosocomial Infections. Curr. Microbiol. 2021, 78, 1115–1123. [Google Scholar] [CrossRef] [PubMed]
- Nordmann, P.; Dortet, L.; Poirel, L. Carbapenem resistance in Enterobacteriaceae: Here is the storm! Trends Mol. Med. 2012, 18, 263–272. [Google Scholar] [CrossRef]
- Lee, M.; Dhar, S.; De Benedetti, S.; Hesek, D.; Boggess, B.; Blázquez, B.; Mathee, K.; Mobashery, S. Muropeptides in Pseudo-monas aeruginosa and their role as elicitors of β-lactam-antibiotic resistance. Angew. Chem. Int. Ed. Engl. 2016, 55, 6882–6886. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Yang, W.; Zhao, X.; Wang, N.; Ren, H. Klebsiella pneumoniae presents antimicrobial drug resistance for β-lactam through the ESBL/PBP signaling pathway. Exp. Ther. Med. 2020, 19, 2449–2456. [Google Scholar] [CrossRef] [Green Version]
- Dutta, S.; Kawamura, Y.; Ezaki, T.; Nair, G.B.; Iida, K.-I.; Yoshida, S.-I. Alteration in the GyrA Subunit of DNA Gyrase and the ParC Subunit of Topoisomerase IV in Quinolone-Resistant Shigella dysenteriae Serotype 1 Clinical Isolates from Kolkata, India. Antimicrob. Agents Chemother. 2005, 49, 1660–1661. [Google Scholar] [CrossRef] [Green Version]
- Munoz-Price, L.S.; Weinstein, R.A. Acinetobacter Infection. N. Engl. J. Med. 2008, 358, 1271–1281. [Google Scholar] [CrossRef]
- Jung, J.; Park, W. Acinetobacter species as model microorganisms in environmental microbiology: Current state and perspectives. Appl. Microbiol. Biotechnol. 2015, 99, 2533–2548. [Google Scholar] [CrossRef]
- Almasaudi, S.B. Acinetobacter spp. as nosocomial pathogens: Epidemiology and resistance features. Saudi J. Biol. Sci. 2018, 25, 586–596. [Google Scholar] [CrossRef] [Green Version]
- Seifert, H.; Dijkshoorn, L.; Gerner-Smidt, P.; Pelzer, N.; Tjernberg, I.; Vaneechoutte, M. Distribution of Acinetobacter species on human skin: Comparison of phenotypic and genotypic identification methods. J. Clin. Microbiol. 1997, 35, 2819–2825. [Google Scholar] [CrossRef] [Green Version]
- Kanafani, A.Z.; Kanj, S.S. Ministry of Health, Kingdome of Saudi Arabia. 2014. Available online: http://www.uptodate.com/contents/Acinetobacter-infection-treatment-and-prevention (accessed on 15 April 2021).
- Beggs, C.; Kerr, K.; Snelling, A.; Sleigh, P. Acinetobacter spp. and the clinical environment. Indoor Built Environ. 2006, 15, 19–24. [Google Scholar] [CrossRef]
- Doughari, H.J.; Ndakidemi, P.A.; Human, I.S.; Benade, S. The Ecology, Biology and Pathogenesis of Acinetobacter spp.: An Overview. Microbes Environ. 2011, 26, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, L.A.; Ramage, E.; Weiss, E.J.; Radey, M.; Hayden, H.S.; Held, K.G.; Huse, H.K.; Zurawski, D.V.; Brittnacher, M.J.; Manoil, C. Resources for genetic and genomic analysis of emerging pathogen Acinetobacter baumannii. J. Bacteriol. 2015, 197, 2027–2035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juni, E.; Janik, A. Transformation of Acinetobacter calco-aceticus (Bacterium anitratum). J. Bacteriol. 1969, 98, 281–288. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Hu, L.; Liu, Y.; Ye, Y.; Li, J. Detection of the plasmid-mediated quinolone resistance determinants in clinical isolates of Acinetobacter baumannii in China. J. Chemother. 2016, 28, 443–445. [Google Scholar] [CrossRef]
- Utnes, A.L.G.; Sørum, V.; Hülter, N.F.; Primicerio, R.; Hegstad, J.; Kloos, J.; Nielsen, K.M.; Johnsen, P.J. Growth phase-specific evolutionary benefits of natural transformation in Acinetobacter baylyi. ISME J. 2015, 9, 2221–2231. [Google Scholar] [CrossRef] [Green Version]
- Fournier, P.E.; Richet, H.; Weinstein, R.A. The Epidemiology and Control of Acinetobacter baumannii in Health Care Facilities. Clin. Infect. Dis. 2006, 42, 692–699. [Google Scholar] [CrossRef] [Green Version]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Sen, B.; Joshi, S.G. Studies on Acinetobacter baumannii involving multiple mechanisms of carbapenem resistance. J. Appl. Microbiol. 2016, 120, 619–629. [Google Scholar] [CrossRef]
- Bassetti, M.; Vena, A.; Croxatto, A.; Righi, E.; Guery, B. How to manage Pseudomonas aeruginosa infections. Drugs Context 2018, 7, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Litwin, A.; Rojek, S.; Gozdzik, W.; Duszynska, W. Pseudomonas aeruginosa device associated–healthcare associated infections and its multidrug resistance at intensive care unit of University Hospital: Polish, 8.5-year, prospective, single-centre study. BMC Infect. Dis. 2021, 21, 1–8. [Google Scholar] [CrossRef]
- Kerr, K.; Snelling, A. Pseudomonas aeruginosa: A formidable and ever-present adversary. J. Hosp. Infect. 2009, 73, 338–344. [Google Scholar] [CrossRef]
- Hancock, R.; Speert, D.P. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and impact on treatment. Drug Resist. Updates 2000, 3, 247–255. [Google Scholar] [CrossRef] [Green Version]
- Breidenstein, E.B.; de la Fuente-Núñez, C.; Hancock, R.E. Pseudomonas aeruginosa: All roads lead to resistance. Trends Microbiol. 2011, 19, 419–426. [Google Scholar] [CrossRef]
- Drenkard, E. Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect. 2003, 5, 1213–1219. [Google Scholar] [CrossRef]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.-J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef]
- Ramirez, D.; Giron, M. Enterobacter Infections. [Updated 2020 Jun 30]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK559296/ (accessed on 15 April 2021).
- Salimiyan rizi, K.; Ghazvini, K.; Farsiani, H. Clinical and pathogenesis overview of Enterobacter infections. Rev. Clin. Med. 2020, 6, 146–154. [Google Scholar] [CrossRef]
- Pati, N.B.; Doijad, S.P.; Schultze, T.; Mannala, G.K.; Yao, Y.; Jaiswal, S.; Ryan, D.; Suar, M.; Gwozdzinski, K.; Bunk, B.; et al. Enterobacter bugandensis: A novel enterobacterial species associated with severe clinical infection. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, G.S.; Solidônio, E.G.; Costa, M.C.V.V.; Melo, R.; de Souza, I.F.A.C.; Silva, G.; Sena, K.X.F.R. Study of the Enterobacteriaceae group CESP (Citrobacter, Enterobacter, Serratia, Providencia, Morganella and Hafnia): A review. Battle Against Microb. Pathog. Basic Sci. Technol. Adv. Educ. Programs 2015, 2, 794–805. [Google Scholar]
- Stock, I.; Grüger, T.; Wiedemann, B. Natural antibiotic susceptibility of strains of the Enterobacter cloacae complex. Int. J. Antimicrob. Agents 2001, 18, 537–545. [Google Scholar] [CrossRef]
- Vasques, M.R.G.; Bello, A.R.; da Cruz Lamas, C.; Correa, J.; Pereira, J.A.A. β-lactamase producing Enterobacteria isolated from surveillance swabs of patients in a cardiac intensive care unit in Rio de Janeiro, Brazil. Braz. J. Infect. Dis. 2011, 15, 28–33, ISSN 1678-4391. [Google Scholar] [CrossRef]
- Murray, P.R.; Holmes, B.; Aucken, H.M. Citrobacter, Enterobacter, Klebsiella, Plesiomonas, Serratia, and Other Members of the Enterobacteriaceae. In Topley & Wilson’s Microbiology and Microbial Infections; Mahy, B.W., Meulen, V.t., Borriello, S.P., Murray, P.R., Funke, G., Kaufmann, S.H., Steward, M.W., Merz, W.G., Hay, R.J., Cox, F., et al., Eds.; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Peerapur, B.V.; Metri, B.C.; Jyothi, P. Antibiotic resistance in Citrobacter spp. isolated from urinary tract infection. Urol. Ann. 2013, 5, 312–313. [Google Scholar] [CrossRef]
- Ranjan, K.P.; Ranjan, N. Citrobacter: An emerging health care associated urinary pathogen. Urol. Ann. 2013, 5, 313–314. [Google Scholar]
- Mahlen, S.D. Serratia Infections: From Military Experiments to Current Practice. Clin. Microbiol. Rev. 2011, 24, 755–791. [Google Scholar] [CrossRef] [Green Version]
- Farmer, J.J., III. Enterobacteriaceae: Introduction and Identification. In Manual of Clinical Microbiology; Murray, P.R., Baron, E.J., Pfaller, M.A., Tenover, F.C., Yolken, R.H., Eds.; American Society for Microbiology Press: Washington, DC, USA, 1995; pp. 438–449. [Google Scholar]
- Yu, V.L. Serratia infection in the surgical patient. Infect. Surg. 1984, 3, 127–134. [Google Scholar]
- Farmer, J.J.; Davis, B.R.; Hickman-Brenner, F.W.; McWhorter, A.; Huntley-Carter, G.P.; Asbury, M.A.; Riddle, C.; Wathen-Grady, H.G.; Elias, C.; Fanning, G.R. Biochemical identification of new species and biogroups of Enterobacteriaceae isolated from clinical specimens. J. Clin. Microbiol. 1985, 21, 46–76. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhu, J.; Hu, Q.; Rao, X. Morganella morganii, a non-negligent opportunistic pathogen. Int. J. Infect. Dis. 2016, 50, 10–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDermott, C.; Mylotte, J.M. Morganella morganii: Epidemiology of Bacteremic Disease. Infect. Control. 1984, 5, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-M.; Wu, K.-G.; Wang, C.-M. Bacterial infection in association with snakebite: A 10-year experience in a northern Taiwan medical center. J. Microbiol. Immunol. Infect. 2011, 44, 456–460. [Google Scholar] [CrossRef] [Green Version]
- Stock, I.; Wiedemann, B. Identification and Natural Antibiotic Susceptibility of Morganella morganii. Diagn. Microbiol. Infect. Dis. 1998, 30, 153–165. [Google Scholar] [CrossRef]
- Camins, B.C.; Marschall, J.; De Vader, S.R.; Maker, D.E.; Hoffman, M.W.; Fraser, V.J. The clinical impact of fluoroquinolone resistance in patients with E coli bacteremia. J. Hosp. Med. 2011, 6, 344–349. [Google Scholar] [CrossRef] [Green Version]
- Jamil, R.T.; Foris, L.A.; Snowden, J. Proteus Mirabilis Infections. [Updated 2020 Nov 30]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK442017/ (accessed on 20 April 2021).
- Odoki, M.; Aliero, A.A.; Tibyangye, J.; Maniga, J.N.; Wampande, E.; Kato, C.D.; Agwu, E.; Bazira, J. Prevalence of Bacterial Urinary Tract Infections and Associated Factors among Patients Attending Hospitals in Bushenyi District, Uganda. Int. J. Microbiol. 2019, 2019, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Meini, S.; Tascini, C.; Cei, M.; Sozio, E.; Rossolini, G.M. AmpC β-lactamase-producing Enterobacterales: What a clinician should know. Infection 2019, 47, 363–375. [Google Scholar] [CrossRef] [PubMed]
- Igbinosa, I.H.; Igumbor, E.; Aghdasi, F.; Tom, M.; Okoh, A.I. EmergingAeromonasSpecies Infections and Their Significance in Public Health. Sci. World J. 2012, 2012, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Batra, P.; Mathur, P.; Misra, M.C. Aeromonas spp.: An Emerging Nosocomial Pathogen. J. Lab. Physicians 2016, 8, 001–004. [Google Scholar] [CrossRef]
- Janda, J.M.; Abbott, S.L. The Genus Aeromonas: Taxonomy, Pathogenicity, and Infection. Clin. Microbiol. Rev. 2010, 23, 35–73. [Google Scholar] [CrossRef] [Green Version]
- Estivariz, C.F.; Bhatti, L.I.; Pati, R.; Jensen, B.; Arduino, M.; Jernigan, D.; Lipuma, J.J.; Srinivasan, A. An Outbreak of Burkholderia cepacia Associated with Contamination of Albuterol and Nasal Spray. Chest 2006, 130, 1346–1353. [Google Scholar] [CrossRef]
- Matrician, L.; Ange, G.; Burns, S.; Fanning, W.L.; Kioski, C.; Cage, G.D.; Komatsu, K.K. Outbreak of NosocomialBurkholderia cepaciaInfection and Colonization Associated with Intrinsically Contaminated Mouthwash. Infect. Control. Hosp. Epidemiol. 2000, 21, 739–741. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, S.; Arora, N.; Sahai, K. Report on the newly emerging nosocomial Burkholderia cepacia in a tertiary hospital. Med. J. Armed Forces India 2016, 72, S50–S53. [Google Scholar] [CrossRef] [Green Version]
- Warnke, P.; Köller, T.; Kreikemeyer, B.; Barrantes, I.; Mach, H.; Podbielski, A. Molecular epidemiology study of a nosocomial Moraxella catarrhalis outbreak in a neurological rehabilitation unit. J. Hosp. Infect. 2019, 103, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Ejlertsen, T.; Thisted, E.; Ebbesen, F.; Olesen, B.; Renneberg, J. Branhamella catarrhalis in children and adults. A study of prevalence, time of colonisation, and association with upper and lower respiratory tract infections. J. Infect. 1994, 29, 23–31. [Google Scholar] [CrossRef]
- Alqahtani, J.M. Emergence of Stenotrophomonas maltophilia nosocomial isolates in a Saudi children’s hospital. Saudi Med. J. 2017, 38, 521–527. [Google Scholar] [CrossRef]
- Gerding, D.N. The Search for Good Antimicrobial Stewardship. Jt. Comm. J. Qual. Improv. 2001, 27, 403–404. [Google Scholar] [CrossRef]
- Doron, S.; Davidson, L.E. Antimicrobial Stewardship. Mayo Clin. Proc. 2011, 86, 1113–1123. [Google Scholar] [CrossRef] [Green Version]
- Solomon, D.H.; Van Houten, L.; Glynn, R.J.; Baden, L.; Curtis, K.; Schrager, H.; Avorn, J. Academic detailing to improve use of broad-spectrum antibiotics at an academic medical center. Arch. Intern. Med. 2001, 161, 1897–1902. [Google Scholar] [CrossRef] [Green Version]
- Fraser, G.L. Antibiotic optimization. An evaluation of patient safety and economic outcomes. Arch. Intern. Med. 1997, 157, 1689–1694. [Google Scholar] [CrossRef]
- World Health Organization. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. 2017. Available online: https://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/ (accessed on 27 May 2021).
- Pauls Stradiņš Clinical University Hospital. About the Hospital. 2021. Available online: https://www.stradini.lv/lv/content/par-slimnicu (accessed on 20 April 2021).
- European Centre for Disease Prevention and Control. EU case definitions. 2021. Available online: https://www.ecdc.europa.eu/en/surveillance-and-disease-data/eu-case-definitions (accessed on 21 April 2021).
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 11.0. 2021. Available online: http://www.eucast.org (accessed on 21 April 2021).
- Akande, E.B.; Abodunrin, T.F.; Oladejo, B.O.; Oladunmoye, M.K. Antibiogram and plasmid profiling of resistance bacteria isolated from the blood of Hepatitis C Virus positive individuals. J. Microbiol. Exp. 2019, 7, 156–165. [Google Scholar]
- Nandi, S.; Mandal, S. Bacteriological Profiling of Commercially Available Eye Cosmetics and their Antibiotic Susceptibility Pattern. Transl. Biomed. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
Prevalence (%) | Overall Prevalence (%) | ||||
---|---|---|---|---|---|
2017 | 2018 | 2019 | 2020 | ||
Achromobacter spp. | 0.11 | 0.14 | 0.10 | 0.17 | 00.13 |
Acinetobacter spp. | 11.65 | 9.82 | 9.72 | 9.12 | 10.05 |
Aeromonas spp. | 0.11 | 0.11 | 0.20 | 0.20 | 00.16 |
Bacteroides spp. | 0.30 | 1.39 | 2.37 | 3.59 | 01.95 |
Burkholderia spp. | 1.85 | 0.00 | 0.60 | 0.07 | 00.61 |
Campylobacter spp. | 0.00 | 0.07 | 0.10 | 0.10 | 00.07 |
Chryseobacterium spp. | 0.07 | 0.00 | 0.07 | 0.03 | 00.04 |
Citrobacter spp. | 3.07 | 3.49 | 3.98 | 2.70 | 03.31 |
Enterobacter spp. | 7.28 | 6.90 | 7.58 | 8.44 | 07.56 |
Escherichia spp. | 36.78 | 35.78 | 34.75 | 31.74 | 34.71 |
Klebsiella spp. | 16.78 | 19.84 | 18.61 | 21.49 | 19.22 |
Moraxella spp. | 0.18 | 0.68 | 0.53 | 0.48 | 00.47 |
Morganella spp. | 1.37 | 1.67 | 1.60 | 1.64 | 01.57 |
Neisseria spp. | 0.00 | 0.14 | 0.17 | 0.14 | 00.11 |
Prevotella spp. | 0.00 | 0.96 | 1.94 | 2.66 | 01.43 |
Proteus spp. | 6.80 | 7.43 | 5.91 | 5.98 | 06.51 |
Pseudomonas spp. | 6.99 | 7.82 | 7.28 | 7.04 | 07.28 |
Serratia spp. | 1.48 | 1.85 | 1.50 | 1.64 | 01.62 |
Stenotrophomonas spp. | 5.18 | 1.92 | 2.97 | 2.77 | 03.18 |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jain, N.; Jansone, I.; Obidenova, T.; Simanis, R.; Meisters, J.; Straupmane, D.; Reinis, A. Antimicrobial Resistance in Nosocomial Isolates of Gram-Negative Bacteria: Public Health Implications in the Latvian Context. Antibiotics 2021, 10, 791. https://doi.org/10.3390/antibiotics10070791
Jain N, Jansone I, Obidenova T, Simanis R, Meisters J, Straupmane D, Reinis A. Antimicrobial Resistance in Nosocomial Isolates of Gram-Negative Bacteria: Public Health Implications in the Latvian Context. Antibiotics. 2021; 10(7):791. https://doi.org/10.3390/antibiotics10070791
Chicago/Turabian StyleJain, Nityanand, Inese Jansone, Tatjana Obidenova, Raimonds Simanis, Jānis Meisters, Dagnija Straupmane, and Aigars Reinis. 2021. "Antimicrobial Resistance in Nosocomial Isolates of Gram-Negative Bacteria: Public Health Implications in the Latvian Context" Antibiotics 10, no. 7: 791. https://doi.org/10.3390/antibiotics10070791
APA StyleJain, N., Jansone, I., Obidenova, T., Simanis, R., Meisters, J., Straupmane, D., & Reinis, A. (2021). Antimicrobial Resistance in Nosocomial Isolates of Gram-Negative Bacteria: Public Health Implications in the Latvian Context. Antibiotics, 10(7), 791. https://doi.org/10.3390/antibiotics10070791