Molecular Epidemiology, Virulence Traits and Antimicrobial Resistance Signatures of Aeromonas spp. in the Critically Endangered Iberochondrostoma lusitanicum Follow Geographical and Seasonal Patterns
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Body Condition Score (BCS) and Skin Lesion Score (SLS)
3.2. Aeromonas Prevalence, Structure, Similarity Relationships and Diversity
3.3. Virulence Factors
3.4. Antimicrobial Resistance
4. Materials and Methods
4.1. Sampling Site Description and Fish Sampling
4.2. Body Condition Score (BCS)
4.3. Skin Lesion Score (SLS)
4.4. Aeromonas Isolation
4.5. Genomic Typing
4.6. Aeromonas Species Identification
4.7. Virulence Factors’ Evaluation
4.8. Antimicrobial Susceptibility Testing
4.9. Data and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sousa-Santos, C.; Jesus, T.F.; Fernandes, C.; Robalo, J.I.; Coelho, M.M. Fish diversification at the pace of geomorphological changes: Evolutionary history of western Iberian Leuciscinae (Teleostei: Leuciscidae) inferred from multilocus sequence data. Mol. Phylogenet. Evol. 2019, 133, 263–285. [Google Scholar] [CrossRef] [PubMed]
- Reid, A.J.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson, P.T.J.; Kidd, K.A.; MacCormack, T.J.; Olden, J.D.; Ormerod, S.J.; et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 2019, 94, 849–873. [Google Scholar] [CrossRef] [Green Version]
- Doadrio, I.; Perea, S.; Garzón-Heydt, P.; González, J.L. Ictiofauna Continental Española. Bases Para su Seguimiento; Dirección General Medio Natural y Política Forestal, Ministerio de Medio Ambiente y Medio Rural y Marino: Madrid, Spain, 2011. [Google Scholar]
- Sousa-Santos, C.; Gil, F.; Almada, V.C. Ex situ reproduction of Portuguese endangered cyprinids in the context of their conservation. Ichthyol Res. 2014, 61, 193–198. [Google Scholar] [CrossRef]
- Maceda-Veiga, A. Towards the conservation of freshwater fish: Iberian Rivers as an example of threats and management practices. Rev. Fish Biol. Fish. 2013, 23, 1–22. [Google Scholar] [CrossRef]
- Sousa-Santos, C.; Robalo, J.I.; Pereira, A.M.; Branco, P.; Santos, J.M.; Ferreira, M.T.; Sousa, M.; Doadrio, I. Broad-scale sampling of primary freshwater fish populations reveals the role of intrinsic traits, inter-basin connectivity, drainage area and latitude on shaping contemporary patterns of genetic diversity. PeerJ 2016, 4, e1694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarić, I.; Lennox, R.J.; Kalinkat, G.; Cvijanović, G.; Radinger, J. Susceptibility of European freshwater fish to climate change: Species profiling based on life-history and environmental characteristics. Glob. Chang. Biol. 2019, 25, 448–458. [Google Scholar] [CrossRef] [Green Version]
- Magoulick, D.D.; Kobza, R.M. The role of refugia for fishes during drought: A review and synthesis. Freshw. Biol. 2003, 48, 1186–1198. [Google Scholar] [CrossRef]
- Marcos-López, M.; Gale, P.; Oidtmann, B.C.; Peeler, E.J. Assessing the impact of climate change on disease emergence in freshwater fish in the United Kingdom. Transbound. Emerg. Dis. 2010, 57, 293–304. [Google Scholar] [CrossRef]
- Whitney, J.E.; Al-Chokhachy, R.; Bunnell, D.B.; Caldwell, C.A.; Cooke, S.J.; Eliason, E.J.; Rogers, M.; Lynch, A.J.; Paukert, C.P. Physiological basis of climate change impacts on North American inland fishes. Fisheries 2016, 41, 332–345. [Google Scholar] [CrossRef]
- Sánchez-Hernández, J. Lernaea cyprinacea (Crustacea: Copepoda) in the Iberian Peninsula: Climate implications on host–parasite interactions. Knowl. Manag. Aquat. Ecosyst. 2017, 418, 11. [Google Scholar] [CrossRef] [Green Version]
- Aller-Gancedo, J.M.; Fregeneda-Grandes, J.M.; González-Palacios, C.; García-Iglesias, M.J.; Pérez-Ordoyo, L.I. First record of an outbreak of saprolegniosis by Saprolegnia parasitica in Pseudochondrostoma duriense (Coelho, 1985) (Cyprinidae). Bull. Eur. Ass. Fish Pathol. 2016, 36, 95–100. [Google Scholar]
- Austin, B.; Austin, D.A. Introduction. In Bacterial Fish Pathogens; Austin, B., Austin, D.A., Eds.; Springer: New York City, NY, USA, 2016; pp. 1–19. [Google Scholar] [CrossRef]
- North, R.L.; Khan, N.H.; Ahsan, M.; Prestie, C.; Korber, D.R.; Lawrence, J.R.; Hudson, J.J. Relationship between water quality parameters and bacterial indicators in a large prairie reservoir: Lake Diefenbaker, Saskatchewan, Canada. Can. J. Microbiol. 2014, 60, 243–249. [Google Scholar] [CrossRef]
- Austin, B.; Austin, D.A. Bacterial Fish Pathogens, Diseases of Farmed and Wild Fish, 4th ed.; Springer-Praxis: Godalming, UK, 2007. [Google Scholar]
- Janda, J.M.; Abbott, S.L. The genus Aeromonas: Taxonomy, pathogenicity, and infection. Clin. Microbiol. Rev. 2010, 23, 35–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baron, S.; Granier, S.A.; Larvor, E.; Jouy, E.; Cineux, M.; Wilhelm, A.; Gassilloud, B.; Le Bouquin, S.; Kempf, I.; Chauvin, C. Aeromonas diversity and antimicrobial susceptibility in freshwater—An attempt to set generic epidemiological cut-off values. Front. Microbiol. 2017, 8, 503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, W.; Willmon, E.; Burgos, F.A.; Ray, C.L.; Hanson, T.; Arias, C.R. Biofilm and sediment are major reservoirs of virulent Aeromonas hydrophila (vAh) in catfish production ponds. J. Aquat. Anim. Health 2019, 31, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yu, L.; Nan, Z.; Zhang, P.; Kan, B.; Yan, D.; Su, J. Taxonomy, virulence genes and antimicrobial resistance of Aeromonas isolated from extra-intestinal and intestinal infections. BMC Infect. Dis. 2019, 19, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Jing, L.; Teng, Y.; Wang, J. Characterization of antibiotics in a large-scale river system of China: Occurrence pattern, spatiotemporal distribution and environmental risks. Sci. Total Environ. 2018, 618, 409–418. [Google Scholar] [CrossRef]
- Grilo, M.L.; Sousa-Santos, C.; Robalo, J.; Oliveira, M. The potential of Aeromonas spp. from wildlife as antimicrobial resistance indicators in aquatic environments. Ecol. Indic. 2020, 115, 106396. [Google Scholar] [CrossRef]
- Hu, Y.; Gao, G.F.; Zhu, B. The antibiotic resistome: Gene flow in environments, animals and human beings. Front. Med. 2017, 11, 161–168. [Google Scholar] [CrossRef]
- Harnisz, M.; Korzeniewska, E. The prevalence of multidrug-resistant Aeromonas spp. in the municipal wastewater system and their dissemination in the environment. Sci. Total Environ. 2018, 626, 377–383. [Google Scholar] [CrossRef]
- Piotrowska, M.; Popowska, M. Insight into the mobilome of Aeromonas strains. Front. Microbiol. 2015, 6, 494. [Google Scholar] [CrossRef] [Green Version]
- Noga, E.J. Skin ulcers in fish: Pfiesteria and other etiologies. Toxicol. Pathol. 2000, 28, 807–823. [Google Scholar] [CrossRef] [Green Version]
- Law, M. Differential diagnosis of ulcerative lesions in fish. Environ. Health Perspect. 2001, 109, 681–686. [Google Scholar] [CrossRef] [Green Version]
- Plumb, J.A.; Grizzle, J.M.; Defigueiredo, J. Necrosis and bacterial infection in channel catfish (Ictalurus punctatus) following hypoxia. J. Wildl. Dis. 1976, 12, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Ventura, M.T.; Grizzle, J.M. Evaluation of portals of entry of Aeromonas hydrophila in channel catfish. Aquaculture 1987, 65, 205–214. [Google Scholar] [CrossRef]
- Udomkusonsri, P.; Noga, E.J. The acute ulceration response (AUR): A potentially widespread and serious cause of skin infection in fish. Aquaculture 2005, 246, 63–77. [Google Scholar] [CrossRef]
- Murawski, S.A.; Hogarth, W.T.; Peebles, E.B.; Barbeiri, L. Prevalence of external skin lesions and polycyclic aromatic hydrocarbon concentrations in Gulf of Mexico fishes, post-Deepwater Horizon. Trans. Am. Fish. Soc. 2014, 143, 1084–1097. [Google Scholar] [CrossRef] [Green Version]
- Granneman, J.E.; Jones, D.L.; Peebles, E.B. Associations between metal exposure and lesion formation in offshore Gulf of Mexico fishes collected after the Deepwater Horizon oil spill. Mar. Pollut. Bull. 2017, 15, 462–477. [Google Scholar] [CrossRef]
- Lamb, R.W.; Smith, F.; Aued, A.W.; Salinas-de-León, P.; Suarez, J.; Gomez-Chiarri, M.; Smolowitz, R.; Giray, C.; Witman, J.D. El Niño drives a widespread ulcerative skin disease outbreak in Galapagos marine fishes. Sci. Rep. 2018, 9, 16602. [Google Scholar] [CrossRef]
- Vajargah, M.F.; Yalsuyi, A.M.; Hedayati, A.; Faggio, C. Histopathological lesions and toxicity in common carp (Cyprinus carpio L. 1758) induced by copper nanoparticles. Microsc. Res. Tech. 2018, 81, 724–729. [Google Scholar] [CrossRef]
- Austin, B. The effects of pollution on fish health. J. Appl. Microbiol. 1998, 85, 234S–242S. [Google Scholar] [CrossRef] [PubMed]
- Marques, D.S.C.; Ferreira, D.A.; Paiva, P.M.G.; Napoleão, T.H.; Araújo, J.M.; Carvalho, E.V.; Coelho, L.C. Impact of stress on Aeromonas diversity in tambaqui (Colossoma macropomum) and lectin level change towards a bacterial challenge. Environ. Technol. 2016, 37, 3030–3035. [Google Scholar] [CrossRef] [PubMed]
- Cipriano, R.C.; Austin, B. Furunculosis and other Aeromonad diseases. In Fish Diseases and Disorders, 2nd ed.; Woo, P.T.K., Bruno, D.W., Eds.; CAB International: Cambridge, MA, USA, 2011; Volume 3, pp. 424–483. [Google Scholar]
- Suns, K.; Hitchin, G. Interrelationships between mercury levels in yearling yellow perch, fish condition and water quality. Water Air Soil Pollut. 1990, 50, 255–265. [Google Scholar] [CrossRef]
- Maceda-Veiga, A.; Green, A.J.; De Sostoa, A. Scaled body-mass index shows how habitat quality influences the condition of four fish taxa in north-eastern Spain and provides a novel indicator of ecosystem health. Freshw. Biol. 2014, 59, 1145–1160. [Google Scholar] [CrossRef]
- Cavraro, F.; Bettoso, N.; Zucchetta, M.; D’Aietti, A.; Faresi, L.; Franzoi, P. Body condition in fish as a tool to detect the effects of anthropogenic pressures in transitional waters. Aquat. Ecol. 2019, 53, 21–35. [Google Scholar] [CrossRef]
- Chiu, M.; Chou, T.; Kuo, M. Seasonal patterns of stream macroinvertebrate communities in response to anthropogenic stressors in monsoonal Taiwan. J. Asia Pac. Entomol. 2018, 21, 423–429. [Google Scholar] [CrossRef]
- Pinto, J. Zooplankton Dynamics and Water Quality of the Reservoirs from the Alqueva Irrigation System. Master’s Thesis, University of Porto, Porto, Portugal, 2018. [Google Scholar]
- Kalogianni, E.; Vourka, A.; Karaouzas, I.; Vardakas, L.; Laschou, S.; Skoulikidis, N.T. Combined effects of water stress and pollution on macroinvertebrate and fish assemblages in a Mediterranean intermittent river. Sci. Total Environ. 2017, 603–604, 639–650. [Google Scholar] [CrossRef]
- Arenas-Sánchez, A.; Dolédec, S.; Vighi, M.; Rico, A. Effects of anthropogenic pollution and hydrological variation on macroinvertebrates in Mediterranean rivers: A case-study in the upper Tagus river basin (Spain). Sci. Total Environ. 2021, 766, 144044. [Google Scholar] [CrossRef]
- Marques, R. Trophic Impacts of African Clawed Frog Xenopus laevis in Barcarena Stream (Oeiras, Portugal). Master’s Thesis, University of Lisbon, Lisbon, Portugal, 2016. (in Portuguese). [Google Scholar]
- Vedia, I.; Almeida, D.; Rodeles, A.A.; Leunda, P.M.; Baquero, E.; Galicia, D.; Oscoz, J.; Elustondo, D.; Santamaría, J.M.; Miranda, R. Behavioral interactions and trophic overlap between invasive signal crayfish Pacifastacus leniusculus (Decapoda, Astacidae) and native fishes in Iberian rivers. Water 2019, 11, 459. [Google Scholar] [CrossRef] [Green Version]
- Alexandre, C.M.; Sales, S.; Ferreira, M.T.; Almeida, P.R. Food resources and cyprinid diet in permanent and temporary Mediterranean rivers with natural and regulated flow. Ecol. Freshw. Fish. 2015, 24, 629–645. [Google Scholar] [CrossRef]
- Jiang, W.D.; Xu, J.; Zhou, X.Q.; Wu, P.; Liu, Y.; Jiang, J.; Kuang, S.Y.; Tang, L.; Tang, W.N.; Zhang, Y.A.; et al. Dietary protein levels regulated antibacterial activity, inflammatory response and structural integrity in the head kidney, spleen and skin of grass carp (Ctenopharyngodon idella) after challenged with Aeromonas hydrophila. Fish Shellfish Immunol. 2017, 68, 154–172. [Google Scholar] [CrossRef] [PubMed]
- Cornet, V.; Douxfils, J.; Mandiki, S.N.M.; Kestemont, P. Early-life infection with a bacterial pathogen increases expression levels of innate immunity related genes during adulthood in zebrafish. Dev. Comp. Immunol. 2020, 108, 103672. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, S.; Wang, G. Response of complement expression to challenge with lipopolysaccharide in embryos/larvae of zebrafish Danio rerio: Acquisition of immunocompetent complement. Fish Shellfish Immunol. 2008, 25, 264–270. [Google Scholar] [CrossRef]
- BDJUR. Regulation Number 26/2002, 05-04-2002 PART II [In Portuguese]. Available online: http://bdjur.almedina.net/item.php?field=item_id&value=92010 (accessed on 12 April 2021).
- Antunes, C.; Augusto, S.; Mexia, T.; Branquinho, C. Assessment and Monitoring of Water Quality and Ecological Status of the Main Streams in the Oeiras Municipality [In Portuguese]. Available online: https://www.cm-oeiras.pt/pt/viver/ambiente/biodiversidade/Documents/Relat%C3%B3rio%203.pdf (accessed on 12 April 2021).
- Lopes, J. Action plan for the fish communities on the streams of the Sintra-Cascais Natural Park. Master’s Thesis, University of Lisbon, Lisbon, Portugal, 2014. (In Portuguese). [Google Scholar]
- Oliveira, A.; Palma, C.; Valença, M. Heavy metal distribution in surface sediments from the continental shelf adjacent to Nazaré canyon. Deep Sea Res. Part II Top. Stud. Oceanogr. 2011, 58, 2420–2432. [Google Scholar] [CrossRef]
- Pathak, S.; Bhattacherjee, J.; Kalra, N.; Chandra, S. Seasonal distribution of Aeromonas hydrophila in river water and isolation from river fish. J. Appl. Microbiol. 1988, 65, 347–352. [Google Scholar] [CrossRef]
- Rhodes, M.H.; Kator, H. Seasonal occurrence of mesophilic Aeromonas spp. as a function of biotype and water quality in temperate freshwater lakes. Water Res. 1994, 28, 2241–2251. [Google Scholar] [CrossRef]
- Seidler, R.J.; Allen, D.A.; Lockman, H.; Colwell, R.R.; Joseph, S.W.; Daily, O.P. Isolation, enumeration, and characterization of Aeromonas from polluted waters encountered in diving operations. Appl. Environ. Microbiol. 1980, 39, 1010–1018. [Google Scholar] [CrossRef] [Green Version]
- Cavari, B.Z.; Allen, D.A.; Colwell, R.R. Effect of temperature on growth and activity of Aeromonas spp. and mixed bacterial populations in the Anacostia River. Appl. Environ. Microbiol. 1981, 41, 1052–1054. [Google Scholar] [CrossRef] [Green Version]
- Pettibone, G.W. Population dynamics of Aeromonas spp. in an urban river watershed. J. Appl. Microbiol. 1998, 85, 723–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maalej, S.; Mahjoubi, A.; Elazri, C.; Dukan, S. Simultaneous effects of environmental factors on motile Aeromonas dynamics in an urban effluent and in the natural seawater. Water Res. 2003, 37, 2865–2874. [Google Scholar] [CrossRef]
- Chaix, G.; Roger, F.; Berthe, T.; Lamy, B.; Jumas-Bilak, E.; Lafite, R.; Forget-Leray, J.; Petit, F. Distinct Aeromonas populations in water column and associated with copepods from estuarine environment (Seine, France). Front Microbiol. 2017, 11, 1259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radu, S.; Ahmad, N.; Ling, F.H.; Reezal, A. Prevalence and resistance to antibiotics for Aeromonas species from retail fish in Malaysia. Int. J. Food Microbiol. 2003, 25, 261–266. [Google Scholar] [CrossRef]
- Perretta, A.; Antúnez, K.; Zunino, P. Phenotypic, molecular and pathological characterization of motile aeromonads isolated from diseased fishes cultured in Uruguay. J. Fish Dis. 2018, 41, 1559–1569. [Google Scholar] [CrossRef] [PubMed]
- Popović, T.N.; Kazazić, S.P.; Barišić, J.; Strunjak-Perović, I.; Babić, S.; Bujak, M.; Kljusurić, J.G.; Čož-Rakovac, R. Aquatic bacterial contamination associated with sugarplant sewage outfalls as a microbial hazard for fish. Chemosphere 2019, 224, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Rather, M.A.; Willayat, M.M.; Wani, S.A.; Hussain, S.A.; Shah, S.A. Enterotoxin gene profile and molecular epidemiology of Aeromonas species from fish and diverse water sources. J. Appl. Microbiol. 2019, 127, 921–931. [Google Scholar] [CrossRef]
- Beaz-Hidalgo, R.; Alperi, A.; Buján, N.; Romalde, J.L.; Figueras, M.J. Comparison of phenotypical and genetic identification of Aeromonas strains isolated from diseased fish. Syst. Appl. Microbiol. 2010, 33, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Popovic, N.; Kazazic, S.P.; Strunjak-Perovic, I.; Barisic, J.; Klobucar, R.S.; Kepec, S.; Coz-Rakovac, R. Detection and diversity of aeromonads from treated wastewater and fish inhabiting effluent and downstream waters. Ecotoxicol. Environ. Saf. 2015, 120, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Ran, C.; Qin, C.; Xie, M.; Zhang, J.; Li, J.; Xie, Y.; Wang, Y.; Li, S.; Liu, L.; Fu, X.; et al. Aeromonas veronii and aerolysin are important for the pathogenesis of motile aeromonad septicemia in cyprinid fish. Environ. Microbiol. 2018, 20, 3442–3456. [Google Scholar] [CrossRef]
- Wu, C.J.; Ko, W.C.; Lee, N.Y.; Su, S.L.; Li, C.W.; Li, M.C.; Chen, Y.W.; Su, Y.C.; Shu, C.Y.; Lin, Y.T.; et al. Aeromonas isolates from fish and patients in Tainan City, Taiwan: Genotypic and phenotypic characteristics. Appl. Environ. Microbiol. 2019, 85, e01360-19. [Google Scholar] [CrossRef]
- Borella, L.; Salogni, C.; Vitale, N.; Scali, F.; Moretti, V.M.; Pasquali, P.; Alborali, G.L. Motile aeromonads from farmed and wild freshwater fish in northern Italy: An evaluation of antimicrobial activity and multidrug resistance during 2013 and 2016. Acta Vet. Scand. 2020, 23, 6. [Google Scholar] [CrossRef]
- Araujo, R.M.; Arribas, R.M.; Pares, R. Distribution of Aeromonas species in waters with different levels of pollution. J. Appl. Bacteriol. 1991, 71, 182–186. [Google Scholar] [CrossRef]
- Chowdhury, M.A.; Yamanaka, H.; Miyoshi, S.; Shinoda, S. Ecology of mesophilic Aeromonas spp. in aquatic environments of a temperate region and relationship with some biotic and abiotic environmental parameters. Zentralbl. Hyg. Umweltmed. 1990, 190, 344–356. [Google Scholar]
- Khor, W.C.; Puah, S.M.; Tan, J.A.M.A.; Puthucheary, S.; Chua, K.H. Phenotypic and genetic diversity of Aeromonas species isolated from fresh water lakes in Malaysia. PLoS ONE 2015, 10, e0145933. [Google Scholar] [CrossRef] [Green Version]
- Solaiman, S.; Micallef, S.A. Aeromonas spp. diversity in U.S. mid-Atlantic surface and reclaimed water, seasonal dynamics, virulence gene patterns and attachment to lettuce. Sci. Total Environ. 2021, 779, 146472. [Google Scholar] [CrossRef]
- Hazen, T.C. Ecology of Aeromonas hydrophila in a South Carolina cooling reservoir. Microb. Ecol. 1979, 5, 179–195. [Google Scholar] [CrossRef] [PubMed]
- Pianetti, A.; Bruscolini, F.; Rocchi, M.B.; Sabatini, L.; Citterio, B. Influence of different concentrations of nitrogen and phosphorous on Aeromonas spp. growth. Ig. Sanita. Pubbl. 2006, 62, 609–622. [Google Scholar] [PubMed]
- Colin, Y.; Berthe, T.; Molbert, N.; Guigon, E.; Vivant, A.L.; Alliot, F.; Collin, S.; Goutte, A.; Petit, F. Urbanization constrains skin bacterial phylogenetic diversity in wild fish populations and correlates with the proliferation of aeromonads. Microb. Ecol. 2021. Epub ahead of print. [Google Scholar]
- Guijarro, J.A.; Cascales, D.; García-Torrico, A.I.; García-Domínguez, M.; Méndez, J. Temperature-dependent expression of virulence genes in fish-pathogenic bacteria. Front Microbiol. 2015, 6, 700. [Google Scholar] [CrossRef]
- Rasmussen-Ivey, C.R.; Figueras, M.J.; McGarey, D.; Liles, M.R. Virulence factors of Aeromonas hydrophila: In the wake of reclassification. Front Microbiol. 2016, 7, 1337. [Google Scholar] [CrossRef]
- Pattanayak, S.; Priyadarsini, S.; Paul, A.; Kumar, P.R.; Sahoo, P.K. Diversity of virulence-associated genes in pathogenic Aeromonas hydrophila isolates and their in vivo modulation at varied water temperatures. Microb. Pathog. 2020, 147, 104424. [Google Scholar] [CrossRef] [PubMed]
- Karunakaran, T.; Devi, B.G. Proteolytic activity of Aeromonas caviae. J. Basic Microbiol. 1995, 35, 241–247. [Google Scholar] [CrossRef]
- Nagar, V.; Bandekar, J.R.; Shashidhar, R. Expression of virulence and stress response genes in Aeromonas hydrophila under various stress conditions. J. Basic Microbiol. 2016, 56, 1132–1137. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Xu, D.; Shoemaker, C.A.; Beck, B.H. The severity of motile Aeromonas septicemia caused by virulent Aeromonas hydrophila in channel catfish is influenced by nutrients and microbes in water. Aquaculture 2020, 519, 734898. [Google Scholar] [CrossRef]
- Casabianca, A.; Orlandi, C.; Barbieri, F.; Sabatini, L.; Di Cesare, A.; Sisti, D.; Pasquaroli, S.; Magnani, M.; Citterio, B. Effect of starvation on survival and virulence expression of Aeromonas hydrophila from different sources. Arch. Microbiol. 2015, 197, 431–438. [Google Scholar] [CrossRef]
- Gao, J.; Xi, B.; Chen, K.; Song, R.; Qin, T.; Xie, J.; Pan, L. The stress hormone norepinephrine increases the growth and virulence of Aeromonas hydrophila. Microbiol. Open 2019, 8, e00664. [Google Scholar] [CrossRef]
- Ghatak, S.; Blom, J.; Das, S.; Sanjukta, R.; Puro, K.; Mawlong, M.; Shakuntala, I.; Sen, A.; Goesmann, A.; Kumar, A.; et al. Pan-genome analysis of Aeromonas hydrophila, Aeromonas veronii and Aeromonas caviae indicates phylogenomic diversity and greater pathogenic potential for Aeromonas hydrophila. Antonie Leeuwenhoek 2016, 109, 945–956. [Google Scholar] [CrossRef]
- Zhong, C.; Han, M.; Yang, P.; Chen, C.; Yu, H.; Wang, L.; Ning, K. Comprehensive analysis reveals the evolution and pathogenicity of Aeromonas, viewed from both single isolated species and microbial communities. mSystems 2019, 22, e00252-19. [Google Scholar] [CrossRef] [Green Version]
- Talagrand-Reboul, E.; Colston, S.M.; Graf, J.; Lamy, B.; Jumas-Bilak, E. Comparative and evolutionary genomics of isolates provide insight into the pathoadaptation of Aeromonas. Genome Biol. Evol. 2020, 12, 535–552. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Bravo, A.; Figueras, M.J. An update on the Genus Aeromonas: Taxonomy, epidemiology, and pathogenicity. Microorganisms 2020, 8, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, M.J.; Martínez-Murcia, A.; Esteves, A.C.; Correia, A.; Saavedra, M.J. Phylogenetic diversity, antibiotic resistance and virulence traits of Aeromonas spp. from untreated waters for human consumption. Int. J. Food Microbiol. 2012, 159, 230–239. [Google Scholar] [CrossRef]
- Chenia, H.Y.; Duma, S. Characterization of virulence, cell surface characteristics and biofilm-forming ability of Aeromonas spp. isolates from fish and sea water. J. Fish Dis. 2017, 40, 339–350. [Google Scholar] [CrossRef]
- Miyagi, K.; Hirai, I.; Sano, K. Distribution of Aeromonas species in environmental water used in daily life in Okinawa Prefecture, Japan. Environ. Health Prev. Med. 2016, 21, 287–294. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Aswani, R.; Jasim, B.; Sebastian, K.S.; Radhakrishnan, E.K.; Mathew, J. Distribution of multi-virulence factors among Aeromonas spp. isolated from diseased Xiphophorus hellerii. Aquacult. Int. 2020, 28, 235–248. [Google Scholar] [CrossRef]
- Sechi, L.A.; Deriu, A.; Falchi, M.P.; Fadda, G.; Zanetti, S. Distribution of virulence genes in Aeromonas spp. isolated from Sardinian waters and from patients with diarrhoea. J. Appl. Microbiol. 2002, 92, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Wickramanayake, M.V.K.S.; Dahanayake, P.S.; Hossain, S.; Heo, G.J. Antimicrobial resistance of pathogenic Aeromonas spp. isolated from marketed Pacific abalone (Haliotis discus hannai) in Korea. J. Appl. Microbiol. 2020, 128, 606–617. [Google Scholar] [CrossRef]
- Hossain, S.; Wickramanayake, M.V.K.S.; Dahanayake, P.S.; Heo, G.J. Species identification, virulence markers and antimicrobial resistance profiles of Aeromonas sp. isolated from marketed hard-shelled mussel (Mytilus coruscus) in Korea. Lett. Appl. Microbiol. 2020, 70, 221–229. [Google Scholar] [CrossRef]
- Yano, Y.; Hamano, K.; Tsutsui, I.; Aue-Umneoy, D.; Ban, M.; Satomi, M. Occurrence, molecular characterization, and antimicrobial susceptibility of Aeromonas spp. in marine species of shrimps cultured at inland low salinity ponds. Food Microbiol. 2015, 47, 21–27. [Google Scholar] [CrossRef]
- Igbinosa, I.H.; Beshiru, A.; Odjadjare, E.E.; Ateba, C.N.; Igbinosa, E.O. Pathogenic potentials of Aeromonas species isolated from aquaculture and abattoir environments. Microb. Pathog. 2017, 107, 185–192. [Google Scholar] [CrossRef]
- Dias, C.; Borges, A.; Saavedra, M.J.; Simões, M. Biofilm formation and multidrug-resistant Aeromonas spp. from wild animals. J. Glob. Antimicrob. Resist. 2018, 12, 227–234. [Google Scholar] [CrossRef]
- Muduli, C.; Tripathi, G.; Paniprasad, K.; Kumar, K.; Singh, R.K.; Rathore, G. Virulence potential of Aeromonas hydrophila isolated from apparently healthy freshwater food fish. Biologia 2021, 76, 1005–1015. [Google Scholar] [CrossRef]
- Scarano, C.; Piras, F.; Virdis, S.; Ziino, G.; Nuvoloni, R.; Dalmasso, A.; De Santis, E.P.L.; Spanu, C. Antibiotic resistance of Aeromonas ssp. strains isolated from Sparus aurata reared in Italian mariculture farms. Int. J. Food Microbiol. 2018, 284, 91–97. [Google Scholar] [CrossRef]
- Dahanayake, P.S.; Hossain, S.; Wickramanayake, M.V.K.S.; Heo, G.J. Antibiotic and heavy metal resistance genes in Aeromonas spp. isolated from marketed Manila Clam (Ruditapes philippinarum) in Korea. J. Appl. Microbiol. 2019, 127, 941–952. [Google Scholar] [CrossRef]
- Bello-López, J.M.; Cabrero-Martínez, O.A.; Ibáñez-Cervantes, G.; Hernández-Cortez, C.; Pelcastre-Rodríguez, L.I.; Gonzalez-Avila, L.U.; Castro-Escarpulli, G. Horizontal gene transfer and its association with antibiotic resistance in the genus Aeromonas spp. Microorganisms 2019, 7, 363. [Google Scholar] [CrossRef] [Green Version]
- Tacão, M.; Correia, A.; Henriques, I.S. Low prevalence of carbapenem-resistant bacteria in river water: Resistance is mostly related to intrinsic mechanisms. Microb. Drug Resist. 2015, 21, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.R.; Lee, D.H.; Park, S.Y.; Lee, S.; Kim, H.Y.; Lee, M.S.; Lee, J.R.; Han, J.E.; Kim, H.K.; Kim, J.H. Wild nutria (Myocastor coypus) is a potential reservoir of carbapenem-resistant and zoonotic Aeromonas spp. in Korea. Microorganisms 2019, 30, 224. [Google Scholar] [CrossRef] [Green Version]
- Varela, A.R.; Nunes, O.C.; Manaia, C.M. Quinolone resistant Aeromonas spp. as carriers and potential tracers of acquired antibiotic resistance in hospital and municipal wastewater. Sci. Total Environ. 2016, 42, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Gomes, S.; Fernandes, C.; Monteiro, S.; Cabecinha, E.; Teixeira, A.; Varandas, S.; Saavedra, M.J. The role of aquatic ecosystems (River Tua, Portugal) as reservoirs of multidrug-resistant Aeromonas spp. Water 2021, 13, 698. [Google Scholar] [CrossRef]
- Guo, X.P.; Liu, X.; Niu, Z.S.; Lu, D.P.; Zhao, S.; Sun, X.L.; Wu, J.Y.; Chen, Y.R.; Tou, F.Y.; Hou, L.; et al. Seasonal and spatial distribution of antibiotic resistance genes in the sediments along the Yangtze Estuary, China. Environ. Pollut. 2018, 242, 576–584. [Google Scholar] [CrossRef]
- Liang, X.; Guan, F.; Chen, B.; Luo, P.; Guo, C.; Wu, G.; Ye, Y.; Zhou, Q.; Fang, H. Spatial and seasonal variations of antibiotic resistance genes and antibiotics in the surface waters of Poyang Lake in China. Ecotoxicol. Environ. Saf. 2020, 196, 110543. [Google Scholar] [CrossRef] [PubMed]
- Knapp, C.W.; Lima, L.; Olivares-Rieumont, S.; Bowen, E.; Werner, D.; Graham, D.W. Seasonal variations in antibiotic resistance gene transport in the Almendares river, Havana, Cuba. Front Microbiol. 2012, 3, 396. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Chen, L.; Zhang, Y.; Tao, Y.; Xie, H.; Li, S.; Sun, W.; Pan, J.; He, Z.; Mai, C.; et al. Occurrence and distribution of antibiotic resistance genes in the sediments of drinking water sources, urban rivers, and coastal areas in Zhuhai, China. Environ. Sci. Pollut. Res. Int. 2018, 25, 26209–26217. [Google Scholar] [CrossRef]
- Harnisz, M.; Kiedrzyńska, E.; Kiedrzyński, M.; Korzeniewska, E.; Czatzkowska, M.; Koniuszewska, I.; Jóźwik, A.; Szklarek, S.; Niestępski, S.; Zalewski, M. The impact of WWTP size and sampling season on the prevalence of antibiotic resistance genes in wastewater and the river system. Sci. Total Environ. 2020, 741, 140466. [Google Scholar] [CrossRef] [PubMed]
- Di Cesare, A.; Eckert, E.M.; Rogora, M.; Corno, G. Rainfall increases the abundance of antibiotic resistance genes within a riverine microbial community. Environ. Pollut. 2017, 226, 473–478. [Google Scholar] [CrossRef]
- Huang, L.; Xu, Y.; Xu, J.; Ling, J.; Zheng, L.; Zhou, X.; Xie, G. Dissemination of antibiotic resistance genes (ARGs) by rainfall on a cyclic economic breeding livestock farm. Int. Biodeter. Biodegr. 2019, 138, 114–121. [Google Scholar] [CrossRef]
- Stange, C.; Tiehm, A. Occurrence of antibiotic resistance genes and microbial source tracking markers in the water of a karst spring in Germany. Sci. Total Environ. 2020, 742, 140529. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; Guo, Y.; Isabwe, A.; Chen, H.; Wang, Y.; Zhang, Y.; Zhu, Z.; Yang, J. Urbanization drives riverine bacterial antibiotic resistome more than taxonomic community at watershed scale. Environ. Int. 2020, 137, 105524. [Google Scholar] [CrossRef] [PubMed]
- Pruden, A.; Arabi, M.; Storteboom, H.N. Correlation between upstream human activities and riverine antibiotic resistance genes. Environ. Sci. Technol. 2012, 46, 11541–11549. [Google Scholar] [CrossRef]
- INE. Censos 2011 [In Portuguese]. Available online: http://censos.ine.pt/xportal/xmain?xpgid=censos2011_apresentacao&xpid=CENSOS (accessed on 25 September 2017).
- Crivelli, A.J. Iberochondrostoma lusitanicus. Available online: https://dx.doi.org/10.2305/IUCN.UK.2006.RLTS.T60791A12398911.en. (accessed on 16 January 2021).
- CEN (Comité Européen de Normalisation). Water Quality: Sampling of Fish with Electricity; European Committee for Standardization: Brussels, Belgium, 2003. [Google Scholar]
- Clark, T.S.; Pandolfo, L.M.; Marshall, C.M.; Mitra, A.K.; Schech, J.M. Body condition scoring for adult zebrafish (Danio rerio). J. Am. Assoc. Lab. Anim. Sci. 2018, 57, 698–702. [Google Scholar] [CrossRef] [PubMed]
- Talon, D.; Mulin, B.; Thouverez, M. Clonal identification of Aeromonas hydrophila strains using randomly amplified polymorphic DNA analysis. Eur. J. Epidemiol. 1998, 14, 305–310. [Google Scholar] [CrossRef]
- Szczuka, E.; Kaznowski, A. Typing of clinical and environmental Aeromonas sp. strains by random amplified polymorphic DNA PCR, repetitive extragenic palindromic PCR, and enterobacterial repetitive intergenic consensus sequence PCR. J. Clin. Microbiol. 2004, 42, 220–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barroco, C. Antibiotic Resistance and Virulence Factors Screeening in Aeromonas spp. Master Thesis, University of Lisbon, Lisbon, Portugal, 2013. [Google Scholar]
- Persson, S.; Al-Shuweli, S.; Yapici, S.; Jensen, J.N.; Olsen, K.E. Identification of clinical Aeromonas species by rpoB and gyrB sequencing and development of a multiplex PCR method for detection of Aeromonas hydrophila, A. caviae, A. veronii, and A. media. J. Clin. Microbiol. 2015, 53, 653–656. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.A.; González, C.J.; Otero, A.; García-López, M.L. Hemolytic activity and siderophore production in different Aeromonas species isolated from fish. Appl. Environ. Microbiol. 1999, 65, 5612–5614. [Google Scholar] [CrossRef] [Green Version]
- Blaise, C.R.; Armstrong, J.B. Lipolytic bacteria in the Ottawa river. Appl. Microbiol. 1973, 26, 733–740. [Google Scholar] [CrossRef]
- Han, H.J.; Taki, T.; Kondo, H.; Hirono, I.; Aoki, T. Pathogenic potential of a collagenase gene from Aeromonas veronii. Can. J. Microbiol. 2008, 54, 1–10. [Google Scholar] [CrossRef]
- Mellergaard, S. Purification and characterization of a new proteolytic enzyme produced by Aeromonas salmonicida. J. Appl. Microbiol. 1983, 54, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Hickey, M.E.; Besong, S.A.; Kalavacharla, V.; Lee, J. Identification of extracellular DNase-producing bacterial populations on catfish fillets during refrigerated storage. Food Sci. Biotechnol. 2013, 22, 87–92. [Google Scholar] [CrossRef]
- Freeman, D.J.; Falkiner, F.R.; Keane, C.T. New method for detecting slime production by coagulase negative staphylococci. J. Clin. Pathol. 1989, 42, 872–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.K.; Ekka, R.; Mishra, M.; Mohapatraet, H. Association study of multiple antibiotic resistance and virulence: A strategy to assess the extent of risk posed by bacterial population in aquatic environment. Environ. Monit. Assess. 2017, 18, 320. [Google Scholar] [CrossRef] [PubMed]
- Mendes, J.J.; Marques-Costa, A.; Vilela, C.; Neves, J.; Candeias, N.; Cavaco-Silva, P.; Melo-Cristino, J. Clinical and bacteriological survey of diabetic foot infections in Lisbon. Diabetes Res. Clin. Pract. 2012, 95, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Semedo-Lemsaddek, T.; Tavares, M.; São Braz, B.; Tavares, L.; Oliveira, M. Enterococcal infective endocarditis following periodontal disease in dogs. PLoS ONE 2016, 11, e0146860. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef] [PubMed]
- National Committee for Clinical Laboratory Standards. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 2nd ed.; Approved Standard; Document M31-A2; NCCLS: Wayne, NJ, USA, 2002. [Google Scholar]
- Clinical and Laboratory Standards Institute. Clinical and Laboratory Standards Institute (CLSI) Performance Standards for Antimicrobial Susceptibility Testing: 23rd Informational Supplement (M100-S23); CLSI: Wayne, NJ, USA, 2013. [Google Scholar]
- Clinical and Laboratory Standards Institute. Clinical and Laboratory Standards Institute (CLSI) Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria, 3rd ed.; Document M45; CLSI: Wayne, NJ, USA, 2015. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krumperman, P.H. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl. Environ. Microbiol. 1983, 46, 165–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, E. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available online: https://www.R-project.org/ (accessed on 31 May 2021).
Dry Season | Wet Season | |||||||
---|---|---|---|---|---|---|---|---|
Lizandro | Samarra | Laje | Jamor | Lizandro | Samarra | Laje | Jamor | |
pH | 7.95 | 8.07 | 8.11 | 8.07 | 8.08 | 8.25 | 9.62 | 9.09 |
Temperature (°C) | 19.4 | 19.9 | 19.9 | 19.2 | 10.9 | 12.9 | 14.2 | 14.9 |
Dissolved Oxygen (ppm) | 9.58 | 13.41 | 11.74 | 10.39 | 12.9 | 13.69 | 13.63 | 13.59 |
Total Dissolved Solids (ppm) | 0.41 | 0.57 | 0.53 | 0.33 | 0.44 | 0.49 | 0.43 | 0.3 |
Electrical Conductivity (mS) | 0.8 | 1.15 | 1.05 | 0.66 | 0.87 | 0.97 | 0.43 | 0.3 |
Nitrites (mg/L) | 0 | 0 | 0.15 | 0.15 | 0.15 | 0.5 | 0.15 | 0 |
Nitrates (mg/L) | 0 | 0 | 0 | 0 | 0.5 | 2 | 0.5 | 0 |
River connectivity | C | I | I | C | C | C | C | C |
Density level | R | R | U | U | R | R | U | U |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grilo, M.L.; Isidoro, S.; Chambel, L.; Marques, C.S.; Marques, T.A.; Sousa-Santos, C.; Robalo, J.I.; Oliveira, M. Molecular Epidemiology, Virulence Traits and Antimicrobial Resistance Signatures of Aeromonas spp. in the Critically Endangered Iberochondrostoma lusitanicum Follow Geographical and Seasonal Patterns. Antibiotics 2021, 10, 759. https://doi.org/10.3390/antibiotics10070759
Grilo ML, Isidoro S, Chambel L, Marques CS, Marques TA, Sousa-Santos C, Robalo JI, Oliveira M. Molecular Epidemiology, Virulence Traits and Antimicrobial Resistance Signatures of Aeromonas spp. in the Critically Endangered Iberochondrostoma lusitanicum Follow Geographical and Seasonal Patterns. Antibiotics. 2021; 10(7):759. https://doi.org/10.3390/antibiotics10070759
Chicago/Turabian StyleGrilo, Miguel L., Sara Isidoro, Lélia Chambel, Carolina S. Marques, Tiago A. Marques, Carla Sousa-Santos, Joana I. Robalo, and Manuela Oliveira. 2021. "Molecular Epidemiology, Virulence Traits and Antimicrobial Resistance Signatures of Aeromonas spp. in the Critically Endangered Iberochondrostoma lusitanicum Follow Geographical and Seasonal Patterns" Antibiotics 10, no. 7: 759. https://doi.org/10.3390/antibiotics10070759
APA StyleGrilo, M. L., Isidoro, S., Chambel, L., Marques, C. S., Marques, T. A., Sousa-Santos, C., Robalo, J. I., & Oliveira, M. (2021). Molecular Epidemiology, Virulence Traits and Antimicrobial Resistance Signatures of Aeromonas spp. in the Critically Endangered Iberochondrostoma lusitanicum Follow Geographical and Seasonal Patterns. Antibiotics, 10(7), 759. https://doi.org/10.3390/antibiotics10070759