Antibiotic Stewardship for Canine and Feline Acute Urinary Tract Infection: An Observational Study in a Small Animal Hospital in Northwest Italy
Abstract
:1. Introduction
2. Results
2.1. Patients
2.2. Susceptibility Tests
2.3. Antibiotic Treatment
2.4. Patient Outcomes
3. Discussion
- (i)
- The study was conceived considering a prospective design: A working flow was previously established with the entire medical staff in order to pursue antimicrobial stewardship. The aim was to have an objective approach that was able to limit bias and to show an example of antimicrobial stewardship that is also achievable and applicable with small groups of animals while considering a specific pathology, such as a UTI in this case. The authors agree that further enrollment of patients according to the present working flow to monitor the progression of AMR is necessary.
- (ii)
- (iii)
- (iv)
- Contrary to other studies [14,21], it was decided a priori not to begin an empiric treatment as routine practice but to prescribe the treatment only at the end of the working flow. This could allow for a reduction in the amount of bias linked to in-house testing, a high operator-dependent variability and, to limit risk, avoiding an attitude that is common in some cases [3]. Bacterial culture could be a good tool in decisional processes which obviously entail withholding antibiotic therapy: This condition could be acceptable if the results of culture testing are available within a short period, if no life-threatening conditions or severe clinical signs occur, and if detrimental effects on outcomes are not induced [6].
- (v)
- The workflow was decided by medical staff with the compliance of the entire clinical staff: This approach enhances the common ownership of the ASP. This aspect was underlined by Guardabassi and Prescott [2], who also explained the importance of having an “ASP team”. We tried to establish a similar protocol, defining internal responses to infectious disease, in connection with specialists in veterinary pharmacology and with a laboratory capable of carefully and quickly processing the samples. The ASP team should be able to write specific guidelines, according to national and international regulations, dividing drugs with specific pharmacokinetic and pharmacodynamic information that are related to the different pathologies. These guidelines should be revised and updated every year and tailored to specific contexts [2,14,22].
- (vi)
- In our study, we evaluated the clinical outcomes of all enrolled patients. This aspect, in our opinion, gives strength to our ASP, and it is in line with what is proposed by other authors [6,10] and differs from recent papers [5,11,21], which did not record any information about patient follow-up. We think that this is important as a means of completing the general picture and to correlate microbiological results with clinical data.
4. Materials and Methods
4.1. Study Design
4.2. Data Collection
4.3. Study Population
4.4. Urine Samples and Microbiological Assays
4.5. Antibiotic Treatment
4.6. Outcomes
4.7. Data Management and Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Word Health Organization (WHO) Advisory Group; Surveillance, I.; Resistance, A. WHO|WHO List of Critically Important Antimicrobials (CIA). Available online: http://www.who.int/foodborne_disease/resistance/cia/en/#.UiMEZ7zmSDA.mendeley (accessed on 9 March 2021).
- Guardabassi, L.; Prescott, J.F. Antimicrobial Stewardship in Small Animal Veterinary Practice: From Theory to Practice. Vet. Clin. N. Am. Small Anim. Pract. 2015, 45, 361–376. [Google Scholar] [CrossRef]
- Sørensen, T.M.; Bjørnvad, C.R.; Cordoba, G.; Damborg, P.; Guardabassi, L.; Siersma, V.; Bjerrum, L.; Jessen, L.R. Effects of Diagnostic Work-Up on Medical Decision-Making for Canine Urinary Tract Infection: An Observational Study in Danish Small Animal Practices. J. Vet. Intern. Med. 2018, 32, 743–751. [Google Scholar] [CrossRef]
- De Briyne, N.; Atkinson, J.; Borriello, S.P.; Pokludová, L. Antibiotics used most commonly to treat animals in Europe. Vet. Rec. 2014, 175, 325. [Google Scholar] [CrossRef] [Green Version]
- Scarborough, R.; Bailey, K.; Galgut, B.; Williamson, A.; Hardefeldt, L.; Gilkerson, J.; Browning, G. Use of local antibiogram data and antimicrobial importance ratings to select optimal empirical therapies for urinary tract infections in dogs and cats. Antibiotics 2020, 9, 924. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, T. A clinical approach to multidrug-resistant urinary tract infection and subclinical bacteriuria in dogs and cats. N. Z. Vet. J. 2020, 68, 69–83. [Google Scholar] [CrossRef]
- Bengtsson, B.; Greko, C. Antibiotic resistance-consequences for animal health, welfare, and food production. Ups. J. Med. Sci. 2014, 119, 96–102. [Google Scholar] [CrossRef]
- Abraham, S.; Wong, H.S.; Turnidge, J.; Johnson, J.R.; Trott, D.J. Carbapenemase-producing bacteria in companion animals: A public health concern on the horizon. J. Antimicrob. Chemother. 2014, 69, 1155–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Parliament and the Council of the European Union. Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on Veterinary Medicinal Products and Repealing Directive 2001/82/EC. Off. J. Eur. Union 2019, L4, 43–167. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R0006&from=EN%0Ahttps://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R0006&qid=1552299700950&from=EN (accessed on 9 March 2021).
- Marques, C.; Gama, L.T.; Belas, A.; Bergström, K.; Beurlet, S.; Briend-Marchal, A.; Broens, E.M.; Costa, M.; Criel, D.; Damborg, P.; et al. European multicenter study on antimicrobial resistance in bacteria isolated from companion animal urinary tract infections. BMC Vet. Res. 2016, 12, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rampacci, E.; Bottinelli, M.; Stefanetti, V.; Hyatt, D.R.; Sgariglia, E.; Coletti, M.; Passamonti, F. Antimicrobial susceptibility survey on bacterial agents of canine and feline urinary tract infections: Weight of the empirical treatment. J. Glob. Antimicrob. Resist. 2018, 13, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Ball, K.R.; Rubin, J.E.; Chirino-Trejo, M.; Dowling, P.M. Antimicrobial resistance and prevalence of canine uropathogens at the Western College of Veterinary Medicine Veterinary Teaching Hospital, 2002–2007. Can. Vet. J. 2008, 49, 985–990. [Google Scholar]
- Bartges, J.W. Diagnosis of urinary tract infections. Vet. Clin. N. Am. Small Anim. Pract. J. 2004, 34, 923–933. [Google Scholar] [CrossRef]
- Weese, J.S.; Blondeau, J.; Boothe, D.; Guardabassi, L.G.; Gumley, N.; Papich, M.; Jessen, L.R.; Lappin, M.; Rankin, S.; Westropp, J.L.; et al. International Society for Companion Animal Infectious Diseases (ISCAID) guidelines for the diagnosis and management of bacterial urinary tract infections in dogs and cats. Vet. J. 2019, 247, 8–25. [Google Scholar] [CrossRef]
- Hubbuch, A.; Schmitt, K.; Lehner, C.; Hartnack, S.; Schuller, S.; Schüpbach-Regula, G.; Mevissen, M.; Peter, R.; Müntener, C.; Naegeli, H.; et al. Antimicrobial prescriptions in cats in Switzerland before and after the introduction of an online antimicrobial stewardship tool. BMC Vet. Res. 2020, 16, 229. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorsch, R.; von Vopelius-Feldt, C.; Wolf, G.; Straubinger, R.K.; Hartmann, K. Feline urinary tract pathogens: Prevalence of bacterial species and antimicrobial resistance over a 10-year period. Vet. Rec. 2015, 176, 201. [Google Scholar] [CrossRef]
- Sørensen, T.M.; Jensen, A.B.; Damborg, P.; Bjørnvad, C.R.; Guardabassi, L.; Jessen, L.R. Evaluation of different sampling methods and criteria for diagnosing canine urinary tract infection by quantitative bacterial culture. Vet. J. 2016, 216, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Ogeer-Gyles, J.; Mathews, K.; Weese, J.S.; Prescott, J.F.; Boerlin, P. Evaluation of catheter-associated urinary tract infections and multi-drug-resistant Escherichia coli isolates from the urine of dogs with indwelling urinary catheters. JAVMA 2006, 229, 1584–1590. [Google Scholar] [CrossRef] [PubMed]
- Rowlands, M.; Blackwood, L.; Mas, A.; Cripps, P.; Crompton, C.; Burrow, R. The effect of boric acid on bacterial culture of canine and feline urine. J. Small Anim. Pract. 2011, 52, 510–514. [Google Scholar] [CrossRef] [PubMed]
- KuKanich, K.; Lubbers, B.; Salgado, B. Amoxicillin and amoxicillin-clavulanate resistance in urinary Escherichia coli antibiograms of cats and dogs from the Midwestern United States. J. Vet. Intern. Med. 2020, 34, 227–231. [Google Scholar] [CrossRef]
- Page, S.; Prescott, J.; Weese, S. Antimicrobial resistance: The 5Rs approach to antimicrobial stewardship. Vet. Rec. 2014, 175, 207–208. [Google Scholar] [CrossRef] [PubMed]
- Lehner, C.; Hubbuch, A.; Schmitt, K.; Schuepbach-Regula, G.; Willi, B.; Mevissen, M.; Peter, R.; Muentener, C.R.; Naegeli, H.; Schuller, S. Effect of antimicrobial stewardship on antimicrobial prescriptions for selected diseases of dogs in Switzerland. J. Vet. Intern. Med. 2020, 34, 2418–2431. [Google Scholar] [CrossRef]
- Hardefeldt, L.Y.; Browning, G.F.; Thursky, K.; Gilkerson, J.R.; Billman-Jacobe, H.; Stevenson, M.A.; Bailey, K.E. Antimicrobials used for surgical prophylaxis by companion animal veterinarians in Australia [published correction appears in Vet. Microbiol. 2017, 208, 74–76]. Vet. Microbiol. 2017, 203, 301–307. [Google Scholar] [CrossRef]
- Plumb, D.C. Plumb’s Veterinary Drug Handbook, 6th ed.; Blackwell Publishing: Ames, IA, USA, 2008. [Google Scholar]
- Maaland, M.; Guardabassi, L. In Vitro antimicrobial activity of nitrofurantoin against Escherichia coli and Staphylococcus pseudintermedius isolated from dogs and cats. Vet. Microbiol. 2011, 151, 396–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cordoba, G.; Sørensen, T.M.; Holm, A.; Bjørnvad, C.R.; Bjerrum, L.; Jessen, L.R. Exploring the feasibility and synergistic value of the One Health approach in clinical research: Protocol for a prospective observational study of diagnostic pathways in human and canine patients with suspected urinary tract infection. Pilot Feasibility Stud. 2015, 1, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sargeant, J.M.; O’Connor, A.M.; Dohoo, I.R.; Erb, H.N.; Cevallos, M.; Egger, M.; Ersbøll, A.K.; Martin, S.W.; Nielsen, L.R.; Pearl, D.L.; et al. Methods and processes of developing the strengthening the reporting of observational studies in epidemiology—Veterinary (STROBE-Vet) statement. Prev. Vet. Med. 2016, 134, 188–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 5th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018; Supplement VET08. [Google Scholar]
- Clare, S.; Hartmann, F.A.; Jooss, M.; Bachar, E.; Wong, Y.Y.; Trepanier, L.A.; Viviano, K.R. Short- and long-term cure rates of short-duration trimethoprim-sulfamethoxazole treatment in female dogs with uncomplicated bacterial cystitis. J. Vet. Intern. Med. 2014, 28, 818–826. [Google Scholar] [CrossRef] [Green Version]
Drug | E. coli (8/14) | Proteus mirabilis (2/14) | Streptococcus canis (2/14) | ||||||
---|---|---|---|---|---|---|---|---|---|
S (%) | I (%) | R (%) | S (%) | I (%) | R (%) | S (%) | I (%) | R (%) | |
Ampicillin | 50 | - | 50 | - | - | - | - | - | - |
Amoxicillin | - | - | - | - | - | - | 100 | - | - |
Amoxicillin/ clavulanic acid | 62.5 | - | 37.5 | 100 | - | - | - | - | - |
Benzylpenicillin | - | - | - | - | - | - | 100 | - | - |
Cephalexin | - | - | 100 | - | 50 | 50 | 100 | - | - |
Cephalothin | 12.5 | 12.5 | 75 | 50 | 50 | - | 100 | - | - |
Cefpodoxime | 100 | - | - | 100 | - | - | 100 | - | - |
Cefovecin | 100 | - | - | 50 | 50 | - | 100 | - | - |
Ceftiofur | 100 | - | - | - | - | 100 | - | - | 100 |
Cefotaxime | - | - | - | - | - | - | 100 | - | - |
Ceftriaxone | - | - | - | - | - | - | 100 | - | - |
Imipenem | 100 | - | - | - | - | - | - | - | - |
Eritromycin | - | - | - | - | - | 100 | 100 | - | - |
Amikacin | 100 | - | - | 100 | - | - | - | - | - |
Gentamycin | 75 | - | 25 | 100 | - | - | - | - | - |
Neomicyn | 75 | - | 25 | 50 | 50 | - | 50 | 50 | - |
Enrofloxacin | 75 | - | 25 | 50 | - | 50 | 50 | 50 | - |
Marbofloxacin | 75 | - | 25 | 50 | - | 50 | 100 | - | - |
Pradofloxacin | 75 | - | 25 | - | - | 100 | 50 | - | 50 |
Doxyciclyne | 75 | - | 25 | - | - | 100 | 100 | - | - |
Tetracycline | 75 | - | 25 | - | - | 100 | - | - | 100 |
Nitrofurantoin | 50 | 50 | - | - | - | 100 | - | - | - |
Chloramphenicol | 25 | 50 | 25 | 100 | - | - | - | - | - |
Trimethoprim/ Sulfamethoxazole | 75 | - | 25 | 100 | - | - | 100 | - | - |
ESBL | neg | Not evaluated | Not evaluated |
Drug | E. coli (3/11) | Staphylococcus pseudintermedius (3/11) | Staphylococcus aureus (2/11) | ||||||
---|---|---|---|---|---|---|---|---|---|
S (%) | I (%) | R (%) | S (%) | I (%) | R (%) | S (%) | I (%) | R (%) | |
Ampicillin | 100 | - | - | - | - | 100 | - | - | 100 |
Amoxicillin/ clavulanic acid | 100 | - | - | - | - | 100 | - | - | 100 |
Oxacillin | - | - | 100 | - | - | 100 | - | - | 100 |
Benzylpenicillin | - | - | 100 | - | - | 100 | - | - | 100 |
Cephalexin | - | - | 100 | - | - | 100 | - | - | 100 |
Cephalothin | - | 66 | 34 | - | - | 100 | - | - | 100 |
Cefpodoxime | 100 | - | - | - | - | - | - | - | - |
Cefovecin | 100 | - | - | - | - | 100 | - | - | 100 |
Ceftiofur | 100 | - | - | - | - | 100 | - | - | 100 |
Imipenem | 100 | - | - | - | - | - | - | - | - |
Eritromycin | - | - | - | - | - | 100 | 100 | - | - |
Clindamycin | - | - | - | - | - | 100 | 50 | - | 50 |
Amikacin | 100 | - | - | - | - | - | - | - | - |
Gentamycin | 100 | - | - | - | 34 | 66 | 100 | - | - |
Kanamicin | - | - | - | - | - | 100 | 100 | - | - |
Neomicyn | 100 | - | - | - | 34 | 66 | 100 | - | - |
Enrofloxacin | 100 | - | - | - | - | 100 | 50 | - | 50 |
Marbofloxacin | 100 | - | - | - | - | 100 | 50 | - | 50 |
Pradofloxacin | 100 | - | - | - | - | 100 | 50 | - | 50 |
Inducible clyndamicin resistance | - | - | - | neg | neg | ||||
Doxyciclyne | 100 | - | - | - | - | 100 | 50 | - | 50 |
Tetracycline | 100 | - | - | - | - | 100 | 50 | - | 50 |
Nitrofurantoin | 100 | - | - | 100 | - | - | 100 | - | - |
Chloramphenicol | 100 | - | - | 66 | - | 34 | 100 | - | - |
Trimethoprim/ Sulfamethoxazole | 100 | - | - | - | - | 100 | 100 | - | - |
ESBL | neg | Not evaluated | Not evaluated | ||||||
Cefoxitin screen | Not evaluated | pos | pos |
Therapy | Frequency (n = 14) | Bacteria | Outcomes | |
---|---|---|---|---|
Clinical Cure | Microbiological Cure | |||
Fluoroquinolones | 6/14 | Staphylococcus pseudointermedius, Streptococcus canis, E. coli | Yes (6/6) | Yes 5/6 No 1/6 (recruitment Streptococcus canis) |
Beta lactams | 6/14 | Enterococcus faecalis, E. coli | Yes (6/6) | Yes (6/6) |
Doxycycline | 1/14 | Klebsiella Pneumoniae | Yes | Yes (1/1) |
Gentamicin | 1/14 | Proteus mirabilis | Yes | Yes (1/1) |
Therapy | Frequency (n = 11) | Bacteria | Outcomes | |
---|---|---|---|---|
Clinical Cure | Microbiological Cure | |||
Beta lactams | 6/11 | Corynebacterium aurimucosum, E. coli, Staphylococcus aureus | Yes (6/6) | Yes (6/6) |
Fluoroquinolones | 3/11 | Staphylococcus pseudointermedius, Enterococcus faecalis | Yes (3/3) | Yes (3/3) |
Nitrofuratoin | 1/11 | Staphylococcus pseudointermedius, | Yes (1/1) | Yes (1/1) |
Clindamicycin | 1/11 | Staphylococcus aureus | Yes (1/1) | Yes (1/1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vercelli, C.; Della Ricca, M.; Re, M.; Gambino, G.; Re, G. Antibiotic Stewardship for Canine and Feline Acute Urinary Tract Infection: An Observational Study in a Small Animal Hospital in Northwest Italy. Antibiotics 2021, 10, 562. https://doi.org/10.3390/antibiotics10050562
Vercelli C, Della Ricca M, Re M, Gambino G, Re G. Antibiotic Stewardship for Canine and Feline Acute Urinary Tract Infection: An Observational Study in a Small Animal Hospital in Northwest Italy. Antibiotics. 2021; 10(5):562. https://doi.org/10.3390/antibiotics10050562
Chicago/Turabian StyleVercelli, Cristina, Massimiliano Della Ricca, Mariachiara Re, Graziana Gambino, and Giovanni Re. 2021. "Antibiotic Stewardship for Canine and Feline Acute Urinary Tract Infection: An Observational Study in a Small Animal Hospital in Northwest Italy" Antibiotics 10, no. 5: 562. https://doi.org/10.3390/antibiotics10050562
APA StyleVercelli, C., Della Ricca, M., Re, M., Gambino, G., & Re, G. (2021). Antibiotic Stewardship for Canine and Feline Acute Urinary Tract Infection: An Observational Study in a Small Animal Hospital in Northwest Italy. Antibiotics, 10(5), 562. https://doi.org/10.3390/antibiotics10050562