WGS-Based Analysis of Carbapenem-Resistant Acinetobacter baumannii in Vietnam and Molecular Characterization of Antimicrobial Determinants and MLST in Southeast Asia
Abstract
:1. Introduction
2. Results and Discussion
2.1. Whole-Genome Sequencing Data, MLST and cgMLST Analysis
2.2. Antibiotic Susceptibility Testing (AST) and AMR Determinants of Vietnamese Strains
2.3. Predicted Phenotype and AMR Determinants of A. baumannii from Southeast Asia
2.3.1. Resistance to β-Lactams
2.3.2. Resistance to Aminoglycosides
2.3.3. Resistance to Phenicoles, Tetracyclines, Macrolides, Sulfonamides and Rifamycin
2.3.4. Antibiotic Efflux Pumps
2.4. Acquired Resistance in A. baumannii of Southeast Asian Origin
3. Materials and Methods
3.1. Identification of Bacterial Isolates and Antibiotics Susceptibility Testing (AST)
3.2. Whole-Genome Sequencing and Collection of Sequence Data from Southeast Asia
3.3. Bioinformatic Data Analysis
4. Conclusions and the Way Forward
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kurihara, M.N.L.; Sales, R.O.; Silva, K.E.D.; Maciel, W.G.; Simionatto, S. Multidrug-resistant Acinetobacter baumannii outbreaks: A global problem in healthcare settings. Rev. Soc. Bras. Med. Trop. 2020, 53, e20200248. [Google Scholar] [CrossRef]
- Tian, H.; Chen, L.; Wu, X.; Li, F.; Ma, Y.; Cai, Y.; Song, S. Infectious complications in severe acute pancreatitis: Pathogens, drug resistance, and status of nosocomial infection in a university-affiliated teaching hospital. Dig. Dis. Sci. 2019. [Google Scholar] [CrossRef] [PubMed]
- Metan, G.; Zarakolu, P.; Otlu, B.; Tekin, I.; Aytac, H.; Bolek, E.C.; Metin, B.C.; Arsava, E.M.; Unal, S. Emergence of colistin and carbapenem-resistant Acinetobacter calcoaceticus-Acinetobacter baumannii (CCR-Acb) complex in a neurological intensive care unit followed by successful control of the outbreak. J. Infect. Public Health 2019. [Google Scholar] [CrossRef]
- Pormohammad, A.; Mehdinejadiani, K.; Gholizadeh, P.; Mohtavinejad, N.; Dadashi, M.; Karimaei, S.; Safari, H.; Azimi, T. Global prevalence of colistin resistance in clinical isolates of Acinetobacter baumannii: A systematic review and meta-analysis. Microb. Pathog. 2019. [Google Scholar] [CrossRef] [PubMed]
- Theriault, N.; Tillotson, G.; Sandrock, C.E. Global travel and Gram-negative bacterial resistance; implications on clinical management. Expert Rev. Anti-Infect. Ther. 2020. [Google Scholar] [CrossRef]
- Nodari, C.S.; Cayô, R.; Streling, A.P.; Lei, F.; Wille, J.; Almeida, M.S.; de Paula, A.I.; Pignatari, A.C.C.; Seifert, H.; Higgins, P.G.; et al. Genomic analysis of carbapenem-resistant Acinetobacter baumannii isolates belonging to major endemic clones in South America. Front. Microbiol. 2020, 11, 584603. [Google Scholar] [CrossRef]
- Wareth, G.; Linde, J.; Hammer, P.; Nguyen, N.H.; Nguyen, T.N.M.; Splettstoesser, W.D.; Makarewicz, O.; Neubauer, H.; Sprague, L.D.; Pletz, M.W. Phenotypic and WGS-derived antimicrobial resistance profiles of clinical and non-clinical Acinetobacter baumannii isolates from Germany and Vietnam. Int. J. Antimicrob. Agents 2020, 56, 106127. [Google Scholar] [CrossRef] [PubMed]
- Niu, T.; Xiao, T.; Guo, L.; Yu, W.; Chen, Y.; Zheng, B.; Huang, C.; Yu, X.; Xiao, Y. Retrospective comparative analysis of risk factors and outcomes in patients with carbapenem-resistant Acinetobacter baumannii bloodstream infections: Cefoperazone-sulbactam associated with resistance and tigecycline increased the mortality. Infect. Drug Resist. 2018, 11, 2021–2030. [Google Scholar] [CrossRef] [Green Version]
- Stewardson, A.J.; Marimuthu, K.; Sengupta, S.; Allignol, A.; El-Bouseary, M.; Carvalho, M.J.; Hassan, B.; Delgado-Ramirez, M.A.; Arora, A.; Bagga, R.; et al. Effect of carbapenem resistance on outcomes of bloodstream infection caused by Enterobacteriaceae in low-income and middle-income countries (PANORAMA): A multinational prospective cohort study. Lancet. Infect. Dis. 2019, 19, 601–610. [Google Scholar] [CrossRef]
- Suwantarat, N.; Carroll, K.C. Epidemiology and molecular characterization of multidrug-resistant Gram-negative bacteria in Southeast Asia. Antimicrob. Resist. Infect. Control 2016, 5, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiratisin, P.; Chongthaleong, A.; Tan, T.Y.; Lagamayo, E.; Roberts, S.; Garcia, J.; Davies, T. Comparative in vitro activity of carbapenems against major Gram-negative pathogens: Results of Asia-Pacific surveillance from the COMPACT II study. Int. J. Antimicrob. Agents 2012, 39, 311–316. [Google Scholar] [CrossRef]
- Phu, V.D.; Nadjm, B.; Duy, N.H.A.; Co, D.X.; Mai, N.T.H.; Trinh, D.T.; Campbell, J.; Khiem, D.P.; Quang, T.N.; Loan, H.T.; et al. Ventilator-associated respiratory infection in a resource-restricted setting: Impact and etiology. J. Intensive Care 2017, 5, 69. [Google Scholar] [CrossRef] [Green Version]
- Biedenbach, D.J.; Giao, P.T.; Hung Van, P.; Su Minh Tuyet, N.; Thi Thanh Nga, T.; Phuong, D.M.; Vu Trung, N.; Badal, R.E. Antimicrobial-resistant Pseudomonas aeruginosa and Acinetobacter baumannii From patients with hospital-acquired or ventilator-associated pneumonia in Vietnam. Clin. Ther. 2016, 38, 2098–2105. [Google Scholar] [CrossRef]
- Nhu, N.T.K.; Lan, N.P.H.; Campbell, J.I.; Parry, C.M.; Thompson, C.; Tuyen, H.T.; Hoang, N.V.M.; Tam, P.T.T.; Le, V.M.; Nga, T.V.T.; et al. Emergence of carbapenem-resistant Acinetobacter baumannii as the major cause of ventilator-associated pneumonia in intensive care unit patients at an infectious disease hospital in southern Vietnam. J. Med. Microbiol. 2014, 63, 1386–1394. [Google Scholar] [CrossRef] [PubMed]
- Trung, N.T.; Van Son, T.; Quyen, D.T.; Anh, D.T.; Sang, V.V.; Lam, N.X.; Manh, N.D.; Duong, V.P.; Cuong, B.T.; Tuyen, Q.D.; et al. Significance of nucleic acid testing in diagnosis and treatment of post-neurosurgical meningitis caused by multidrug-resistant Acinetobacter baumannii: A case report. J. Med. Case Rep. 2016, 10, 313. [Google Scholar] [CrossRef] [Green Version]
- Tada, T.; Miyoshi-Akiyama, T.; Kato, Y.; Ohmagari, N.; Takeshita, N.; Hung, N.V.; Phuong, D.M.; Thu, T.A.; Binh, N.G.; Anh, N.Q.; et al. Emergence of 16S rRNA methylase-producing Acinetobacter baumannii and Pseudomonas aeruginosa isolates in hospitals in Vietnam. BMC Infect. Dis. 2013, 13, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuan Anh, N.; Nga, T.V.T.; Tuan, H.M.; Tuan, N.S.; Y, D.M.; Vinh Chau, N.V.; Baker, S.; Duong, H.H.T. Molecular epidemiology and antimicrobial resistance phenotypes of Acinetobacter baumannii isolated from patients in three hospitals in southern Vietnam. J. Med. Microbiol. 2017, 66, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Tran, G.M.; Ho-Le, T.P.; Ha, D.T.; Tran-Nguyen, C.H.; Nguyen, T.S.M.; Pham, T.T.N.; Nguyen, T.A.; Nguyen, D.A.; Hoang, H.Q.; Tran, N.V.; et al. Patterns of antimicrobial resistance in intensive care unit patients: A study in Vietnam. BMC Infect. Dis. 2017, 17, 429. [Google Scholar] [CrossRef] [Green Version]
- Si-Tuan, N.; Ngoc, H.M.; Nhat, L.D.; Nguyen, C.; Pham, H.Q.; Huong, N.T. Genomic features, whole-genome phylogenetic and comparative genomic analysis of extreme-drug-resistant ventilator-associated pneumonia Acinetobacter baumannii strain in a Vietnam hospital. Infect. Genet. Evol. 2020, 80, 104178. [Google Scholar] [CrossRef]
- Leus, I.V.; Weeks, J.W.; Bonifay, V.; Smith, L.; Richardson, S.; Zgurskaya, H.I. Substrate specificities and efflux efficiencies of RND efflux pumps of Acinetobacter baumannii. J. Bacteriol. 2018, 200. [Google Scholar] [CrossRef] [Green Version]
- Rao, M.; Rashid, F.A.; Shukor, S.; Hashim, R.; Ahmad, N. Detection of antimicrobial resistance genes associated with carbapenem resistance from the whole-genome sequence of Acinetobacter baumannii isolates from Malaysia. Can. J. Infect. Dis. Med. Microbiol. 2020, 2020, 5021064. [Google Scholar] [CrossRef] [Green Version]
- Thirapanmethee, K.; Srisiri, A.N.T.; Houngsaitong, J.; Montakantikul, P.; Khuntayaporn, P.; Chomnawang, M.T. Prevalence of OXA-Type β-Lactamase genes among carbapenem-resistant Acinetobacter baumannii clinical isolates in Thailand. Antibiotics 2020, 9, 864. [Google Scholar] [CrossRef] [PubMed]
- Velasco, J.M.; Valderama, M.T.; Margulieux, K.; Diones, P.C.; Peacock, T.; Navarro, F.C.; Liao, C.; Chua, D.; Macareo, L.; Crawford, J.; et al. Comparison of carbapenem-resistant microbial pathogens in combat and non-combat wounds of military and civilian patients seen at a tertiary military hospital, Philippines (2013–2017). Mil. Med. 2020, 185, e197–e202. [Google Scholar] [CrossRef]
- Karuniawati, A.; Saharman, Y.R.; Lestari, D.C. Detection of carbapenemase encoding genes in Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumanii isolated from patients at Intensive Care Unit Cipto Mangunkusumo Hospital in 2011. Acta Med. Indones. 2013, 45, 101–106. [Google Scholar]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. J. Comput. Mol. Cell Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Hamidian, M.; Nigro, S.J. Emergence, molecular mechanisms and global spread of carbapenem-resistant Acinetobacter baumannii. Microb. Genom. 2019, 5. [Google Scholar] [CrossRef]
- Tada, T.; Uchida, H.; Hishinuma, T.; Watanabe, S.; Tohya, M.; Kuwahara-Arai, K.; Mya, S.; Zan, K.N.; Kirikae, T.; Tin, H.H. Molecular epidemiology of multidrug-resistant Acinetobacter baumannii isolates from hospitals in Myanmar. J. Glob. Antimicrob. Resist. 2020, 22, 122–125. [Google Scholar] [CrossRef] [PubMed]
- Gaiarsa, S.; Batisti Biffignandi, G.; Esposito, E.P.; Castelli, M.; Jolley, K.A.; Brisse, S.; Sassera, D.; Zarrilli, R. Comparative analysis of the two Acinetobacter baumannii multilocus sequence typing (MLST) schemes. Front. Microbiol. 2019, 10, 930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, X.; Zhang, L.; He, J.; Leptihn, S.; Yu, Y. Population biology and epidemiological studies of Acinetobacter baumannii in the era of whole-genome sequencing: Is the oxford scheme still appropriate? Front. Microbiol. 2020, 11, 775. [Google Scholar] [CrossRef] [PubMed]
- Jean, S.S.; Coombs, G.; Ling, T.; Balaji, V.; Rodrigues, C.; Mikamo, H.; Kim, M.J.; Rajasekaram, D.G.; Mendoza, M.; Tan, T.Y.; et al. Epidemiology and antimicrobial susceptibility profiles of pathogens causing urinary tract infections in the Asia-Pacific region: Results from the Study for Monitoring Antimicrobial Resistance Trends (SMART), 2010–2013. Int. J. Antimicrob. Agents 2016, 47, 328–334. [Google Scholar] [CrossRef]
- Si-Tuan, N.; Ngoc, H.M.; Hang, P.T.T.; Nguyen, C.; Van, P.H.; Huong, N.T. New eight genes identified at the clinical multidrug-resistant Acinetobacter baumannii DMS06669 strain in a Vietnam hospital. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 74. [Google Scholar] [CrossRef] [Green Version]
- Le Minh, V.; Nhu, N.T.K.; Phat, V.V.; Thompson, C.; Lan, N.P.H.; Nga, T.V.T.; Tam, P.T.T.; Tuyen, H.T.; Nhu, T.D.H.; Van Hao, N.; et al. In vitro activity of colistin in antimicrobial combination against carbapenem-resistant Acinetobacter baumannii isolated from patients with ventilator-associated pneumonia in Vietnam. J. Med. Microbiol. 2015, 64, 1162–1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoang Quoc, C.; Nguyen Thi Phuong, T.; Nguyen Duc, H.; Tran Le, T.; Tran Thi Thu, H.; Nguyen Tuan, S.; Phan Trong, L. Carbapenemase genes and multidrug resistance of Acinetobacter baumannii: A cross-sectional study of patients with pneumonia in Southern Vietnam. Antibiotics 2019, 8, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leungtongkam, U.; Thummeepak, R.; Wongprachan, S.; Thongsuk, P.; Kitti, T.; Ketwong, K.; Runcharoen, C.; Chantratita, N.; Sitthisak, S. Dissemination of bla(OXA-23), bla(OXA-24), bla(OXA-58), and bla(NDM-1) Genes of Acinetobacter baumannii isolates from four tertiary hospitals in Thailand. Microb. Drug Resist. 2018, 24, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.L.; Lee, Y.T.; Kuo, S.C.; Hsueh, P.R.; Chang, F.Y.; Siu, L.K.; Ko, W.C.; Fung, C.P. Emergence and distribution of plasmids bearing the blaOXA-51-like gene with an upstream ISAba1 in carbapenem-resistant Acinetobacter baumannii isolates in Taiwan. Antimicrob. Agents Chemother. 2010, 54, 4575–4581. [Google Scholar] [CrossRef] [Green Version]
- Khurshid, M.; Rasool, M.H.; Ashfaq, U.A.; Aslam, B.; Waseem, M.; Xu, Q.; Zhang, X.; Guo, Q.; Wang, M. Dissemination of bla(OXA-23)-harbouring carbapenem-resistant Acinetobacter baumannii clones in Pakistan. J. Glob. Antimicrob. Resist. 2020, 21, 357–362. [Google Scholar] [CrossRef]
- Lee, S.Y.; Oh, M.H.; Yun, S.H.; Choi, C.W.; Park, E.C.; Song, H.S.; Lee, H.; Yi, Y.S.; Shin, J.; Chung, C.; et al. Genomic characterization of extensively drug-resistant Acinetobacter baumannii strain, KAB03 belonging to ST451 from Korea. Infect. Genet. Evol. 2018, 65, 150–158. [Google Scholar] [CrossRef]
- Vranić-Ladavac, M.; Bedenić, B.; Minandri, F.; Ištok, M.; Bošnjak, Z.; Frančula-Zaninović, S.; Ladavac, R.; Visca, P. Carbapenem resistance and acquired class D beta-lactamases in Acinetobacter baumannii from Croatia 2009–2010. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2014, 33, 471–478. [Google Scholar] [CrossRef]
- Zhu, L.J.; Pan, Y.; Gao, C.Y.; Hou, P.F. Distribution of carbapenemases and efflux pump in carbapenem-resistance Acinetobacter Baumannii. Ann. Clin. Lab. Sci. 2020, 50, 241–246. [Google Scholar]
- Krizova, L.; Poirel, L.; Nordmann, P.; Nemec, A. TEM-1 β-lactamase as a source of resistance to sulbactam in clinical strains of Acinetobacter baumannii. J. Antimicrob. Chemother. 2013, 68, 2786–2791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.Y.; Park, Y.J.; Yu, J.K.; Kim, Y.S. Aminoglycoside susceptibility profiles of Enterobacter cloacae isolates harboring the aac(6’)-Ib gene. Korean J. Lab. Med. 2011, 31, 279–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fritsche, T.R.; Castanheira, M.; Miller, G.H.; Jones, R.N.; Armstrong, E.S. Detection of methyltransferases conferring high-level resistance to aminoglycosides in Enterobacteriaceae from Europe, North America, and Latin America. Antimicrob. Agents Chemother. 2008, 52, 1843–1845. [Google Scholar] [CrossRef] [Green Version]
- Mortazavi, S.M.; Farshadzadeh, Z.; Janabadi, S.; Musavi, M.; Shahi, F.; Moradi, M.; Khoshnood, S. Evaluating the frequency of carbapenem and aminoglycoside resistance genes among clinical isolates of Acinetobacter baumannii from Ahvaz, south-west Iran. New Microbes New Infect. 2020, 38, 100779. [Google Scholar] [CrossRef] [PubMed]
- Roca, I.; Marti, S.; Espinal, P.; Martínez, P.; Gibert, I.; Vila, J. CraA, a major facilitator superfamily efflux pump associated with chloramphenicol resistance in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2009, 53, 4013–4014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, M.C. Update on acquired tetracycline resistance genes. FEMS Microbiol. Lett. 2005, 245, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Sköld, O. Resistance to trimethoprim and sulfonamides. Vet. Res. 2001, 32, 261–273. [Google Scholar] [CrossRef] [Green Version]
- Gordon, N.C.; Wareham, D.W. Multidrug-resistant Acinetobacter baumannii: Mechanisms of virulence and resistance. Int. J. Antimicrob. Agents 2010, 35, 219–226. [Google Scholar] [CrossRef]
- Coyne, S.; Courvalin, P.; Perichon, B. Efflux-mediated antibiotic resistance in Acinetobacter spp. Antimicrob. Agents Chemother. 2011, 55, 947–953. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.T.; Chen, H.Y.; Yang, Y.S.; Chou, Y.C.; Chang, T.Y.; Hsu, W.J.; Lin, I.C.; Sun, J.R. AdeABC Efflux pump controlled by adeRS two-component system conferring resistance to tigecycline, omadacycline and eravacycline in clinical carbapenem-resistant Acinetobacter nosocomialis. Front. Microbiol. 2020, 11, 584789. [Google Scholar] [CrossRef]
- Abbott, I.; Cerqueira, G.M.; Bhuiyan, S.; Peleg, A.Y. Carbapenem resistance in Acinetobacter baumannii: Laboratory challenges, mechanistic insights and therapeutic strategies. Expert Rev. Anti-Infect. Ther. 2013, 11, 395–409. [Google Scholar] [CrossRef]
- Ranjbar, R.; Zayeri, S.; Afshar, D. High frequency of adeA, adeB and adeC genes among Acinetobacter baumannii isolates. Iran. J. Public Health 2020, 49, 1539–1545. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, R.; Bhattacharyya, T.; Bhando, T.; Pathania, R. Fosfomycin resistance in Acinetobacter baumannii is mediated by efflux through a major facilitator superfamily (MFS) transporter-AbaF. J. Antimicrob. Chemother. 2017, 72, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Carattoli, A.; Zankari, E.; García-Fernández, A.; Voldby Larsen, M.; Lund, O.; Villa, L.; Møller Aarestrup, F.; Hasman, H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [Green Version]
- Schwengers, O.; Barth, P.; Falgenhauer, L.; Hain, T.; Chakraborty, T.; Goesmann, A. Platon: Identification and characterization of bacterial plasmid contigs in short-read draft assemblies exploiting protein sequence-based replicon distribution scores. Microb. Genom. 2020, 6. [Google Scholar] [CrossRef]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef] [PubMed]
- Salgado-Camargo, A.D.; Castro-Jaimes, S.; Gutierrez-Rios, R.M.; Lozano, L.F.; Altamirano-Pacheco, L.; Silva-Sanchez, J.; Pérez-Oseguera, Á.; Volkow, P.; Castillo-Ramírez, S.; Cevallos, M.A. Structure and evolution of Acinetobacter baumannii plasmids. Front. Microbiol. 2020, 11, 1283. [Google Scholar] [CrossRef]
- Krizova, L.; Dijkshoorn, L.; Nemec, A. Diversity and evolution of AbaR genomic resistance islands in Acinetobacter baumannii strains of European clone I. Antimicrob. Agents Chemother. 2011, 55, 3201–3206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, M.F.; Lan, C.Y. Antimicrobial resistance in Acinetobacter baumannii: From bench to bedside. World J. Clin. Cases 2014, 2, 787–814. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.F.; Chang, K.C.; Yang, C.Y.; Yang, C.M.; Xiao, C.C.; Kuo, H.Y.; Liou, M.L. Role of integrons in antimicrobial susceptibility patterns of Acinetobacter baumannii. Jpn. J. Infect. Dis. 2010, 63, 440–443. [Google Scholar] [PubMed]
- Huang, L.Y.; Chen, T.L.; Lu, P.L.; Tsai, C.A.; Cho, W.L.; Chang, F.Y.; Fung, C.P.; Siu, L.K. Dissemination of multidrug-resistant, class 1 integron-carrying Acinetobacter baumannii isolates in Taiwan. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2008, 14, 1010–1019. [Google Scholar] [CrossRef] [Green Version]
- Rabea, R.A.; Zaki, M.E.S.; Fahmy, E.M.; Fathelbab, A. Molecular study of nodulation division genes and integron genes in Acinetobacter baumannii. Clin. Lab. 2020, 66. [Google Scholar] [CrossRef]
- Turton, J.F.; Woodford, N.; Glover, J.; Yarde, S.; Kaufmann, M.E.; Pitt, T.L. Identification of Acinetobacter baumannii by detection of the blaOXA-51-like carbapenemase gene intrinsic to this species. J. Clin. Microbiol. 2006, 44, 2974–2976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linde, J.; Homeier-Bachmann, T.; Dangel, A.; Riehm, J.M.; Sundell, D.; Öhrman, C.; Forsman, M.; Tomaso, H. Genotyping of Francisella tularensis subsp. holarctica from hares in Germany. Microorganisms 2020, 8, 1932. [Google Scholar] [CrossRef]
- García-Soto, S.; Abdel-Glil, M.Y.; Tomaso, H.; Linde, J.; Methner, U. Emergence of multidrug-resistant Salmonella enterica Subspecies enterica serovar infantis of multilocus sequence type 2283 in German broiler farms. Front. Microbiol. 2020, 11, 1741. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. v. 0.11.5. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 1 August 2020).
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome. Biol. 2019, 20, 257. [Google Scholar] [CrossRef] [Green Version]
- Diancourt, L.; Passet, V.; Nemec, A.; Dijkshoorn, L.; Brisse, S. The population structure of Acinetobacter baumannii: Expanding multiresistant clones from an ancestral susceptible genetic pool. PLoS ONE 2010, 5, e10034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feldgarden, M.; Brover, V.; Haft, D.H.; Prasad, A.B.; Slotta, D.J.; Tolstoy, I.; Tyson, G.H.; Zhao, S.; Hsu, C.H.; McDermott, P.F.; et al. Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef] [Green Version]
- Jia, B.; Raphenya, A.R.; Alcock, B.; Waglechner, N.; Guo, P.; Tsang, K.K.; Lago, B.A.; Dave, B.M.; Pereira, S.; Sharma, A.N.; et al. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017, 45, D566–D573. [Google Scholar] [CrossRef]
- Higgins, P.G.; Prior, K.; Harmsen, D.; Seifert, H. Development and evaluation of a core genome multilocus typing scheme for whole-genome sequence-based typing of Acinetobacter baumannii. PLoS ONE 2017, 12, e0179228. [Google Scholar] [CrossRef] [Green Version]
- Network, S.A.I.D.C.R. Causes and outcomes of sepsis in Southeast Asia: A multinational, multicentre cross-sectional study. Lancet. Glob. Health 2017, 5, e157–e167. [Google Scholar] [CrossRef] [Green Version]
- Nga do, T.T.; Chuc, N.T.; Hoa, N.P.; Hoa, N.Q.; Nguyen, N.T.; Loan, H.T.; Toan, T.K.; Phuc, H.D.; Horby, P.; Van Yen, N.; et al. Antibiotic sales in rural and urban pharmacies in northern Vietnam: An observational study. BMC Pharmacol. Toxicol. 2014, 15, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinh, N.V.; Wertheim, H.F.L.; Thwaites, G.E.; Khue, L.N.; Thai, C.H.; Khoa, N.T.; Thi Bich Ha, N.; Trung, N.V.; Crook, D.; van Doorn, H.R. Developing an antimicrobial resistance reference laboratory and surveillance programme in Vietnam. Lancet Glob. Health 2017, 5, e1186–e1187. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; van Doorn, H.R.; Wertheim, H.F.L.; Khue, L.N.; Ha, N.T.B.; Dat, V.Q.; Hanh, C.T.; Nga, D.T.T.; Trang, N.N.M.; Nadjm, B.; et al. Combating antimicrobial resistance: Quality standards for prescribing for respiratory infections in Vietnam. Lancet Glob. Health 2016, 4, e789. [Google Scholar] [CrossRef] [Green Version]
MLST | Frequency | Country |
---|---|---|
ST/2 | 62 | Vietnam (6), Myanmar (19), Thailand (33), Singapore (3), Malaysia (1) |
ST/164 | 9 | Vietnam (1), Myanmar (5), Thailand (3) |
ST/16 | 6 | Myanmar (2), Thailand (4) |
ST/23 | 4 | Myanmar (3), Thailand (1) |
ST/25 | 4 | Myanmar (3), Thailand (1) |
ST/1 | 3 | Myanmar (3) |
ST/215 | 3 | Thailand (3) |
ST/571 | 3 | Vietnam (2), Thailand (1) |
ST/374 | 2 | Malaysia (2) |
ST/575 | 2 | Myanmar (2) |
ST/46 | 1 | Malaysia, soil (1) |
ST/52 | 1 | Thailand (1) |
ST/109 | 1 | Myanmar (1) |
ST/129 | 1 | Taiwan (1) * |
ST/220 | 1 | Malaysia (1) |
ST/360 | 1 | Malaysia (1) |
ST/739 | 1 | Malaysia (1) |
ST/1411 | 1 | Vietnam (1), new ST |
ST/1412 | 1 | Vietnam (1), new ST |
ND | 1 | Thailand (1) |
20 | 108 | Total |
ID | CIP | LEV | AMK | COL | CMP | FOS | TGC | T/S | PIP | PIT | CTX | CAZ | CAA | CTA | CEP | IMP | MER | ERT |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
18Y0059 | >2 | >2 | >32 | ≤1 | >16 | >64 | =1 | >4/76 | >16 | >64/4 | >2 | >128 | >16/4 | >8/4 | =128 | >8 | =64 | >0.5 |
18Y0060 | >2 | >2 | >32 | ≤1 | >16 | >64 | =1 | >4/76 | >16 | >64/4 | >2 | >128 | >16/4 | >8/4 | =128 | >8 | =64 | >0.5 |
18Y0061 | >2 | >2 | >32 | ≤1 | >16 | >64 | =1 | 4/76 | >16 | >64/4 | >2 | >128 | >16/4 | >8/4 | =64 | >8 | =64 | >0.5 |
18Y0064 | >2 | >2 | >32 | ≤1 | >16 | >64 | =1 | >4/76 | >16 | >64/4 | >2 | >128 | >16/4 | >8/4 | =64 | >8 | =128 | >0.5 |
18Y0065 | >2 | >2 | >32 | ≤1 | >16 | >64 | =1 | =2/38 | >16 | >64/4 | >2 | >128 | >16/4 | >8/4 | =128 | >8 | =64 | >0.5 |
18Y0066 | >2 | >2 | >32 | ≤1 | >16 | >64 | 0.5 | >4/76 | >16 | >64/4 | >2 | =64 | =16/4 | >8/4 | =64 | >8 | =128 | >0.5 |
18Y0067 | >2 | >2 | >32 | ≤1 | >16 | >64 | =1 | >4/76 | >16 | >64/4 | >2 | =64 | =16/4 | >8/4 | =64 | >8 | =64 | >0.5 |
18Y0068 | ≤0.25 | ≥0.5 | ≤4 | ≤1 | >16 | >64 | ≤0.25 | =4/76 | ≤8 | ≤4/4 | =2 | ≤1 | ≤1/4 | ≤1/4 | ≤1 | ≤1 | ≤0.125 | =0.25 |
18Y0072 | >2 | >2 | ≤4 | ≤1 | >16 | >64 | ≤0.25 | ≤1/19 | >16 | >64/4 | >2 | >128 | =16/4 | >8/4 | =128 | >8 | =32 | >0.5 |
18Y0074 | >2 | >2 | >32 | ≤1 | >16 | >64 | 0.5 | >4/76 | >16 | >64/4 | >2 | >128 | =16/4 | >8/4 | =32 | >8 | =64 | >0.5 |
18Y0075 | >2 | >2 | >32 | ≤1 | >16 | >64 | =1 | =4/76 | >16 | >64/4 | >2 | >128 | >16/4 | >8/4 | =128 | >8 | =64 | >0.5 |
Antibiotic Class | AMR Resistance Genes | Mechanism | Predicted Phenotype | Origin of Strains | |
---|---|---|---|---|---|
Gene Family | Frequency (%) | ||||
Aminoglycosides | ant(3“)-IIa | 107 (99%) | NUT: Nucleotidyltransferase | Streptomycin, spectinomycin | Viet, Myan, Thai, Sing, Mala, Tiaw |
aph(3“)-Ib | 83 (77%) | PHT: Phosphotransferase | Streptomycin | Viet, Myan, Thai, Sing, Mala, Tiaw | |
aph(6)-Id | 83 (77%) | PHT: Phosphotransferase | Streptomycin | Viet, Myan, Thai, Sing, Mala, Tiaw | |
armA_1 | 73 (63.5%) | MET: Methyltransferase | Gentamicin | Viet, Myan, Thai, Sing, Mala, Tiaw | |
aph(3’)-Ia | 53 (49%) | PHT: Phosphotransferase | Kanamycin | Viet, Myan, Thai, Sing, Mala, Tiaw | |
aadA1 | 22 (20%) | NUT: Nucleotidyltransferase | Streptomycin | Viet, Myan, Thai, Sing, Tiaw | |
aph(3’)-Via | 15 (14%) | PHT: Phosphotransferase | Amikacin, kanamycin | Viet, Myan, Thai, | |
ant(2“)-Ia | 14 (13%) | NUT: Nucleotidyltransferase | Gentamicin, kanamycin | Viet, Myan, Thai | |
aac(6’)-Ib | 12 (11%) | ACT: Acetyltransferase | Gentamicin | Viet, Myan, Thai, Tiaw | |
aac(3)-IId | 11 (10%) | ACT: Acetyltransferase | Gentamicin | Myan, Thai | |
β-lactams | blaOXA-51-like | 103 (95.5%) | Ambler class D β-lactamases | β-lactam (carbapenem) | Viet, Myan, Thai, Sing, Mala, Tiaw |
blaOXA-66 | 68 (61%) | blaOXA-51 variant | β-lactam (carbapenem) | Viet, Myan, Thai, Sing, Mala, Tiaw | |
blaOXA-91 | 10 (9%) | blaOXA-51 variant | β-lactam (carbapenem) | Viet, Myan, Thai | |
blaOXA-23 | 90 (83%) | Ambler class D β-lactamases | β-lactam (carbapenem) | Viet, Myan, Thai, Sing, Mala, Tiaw | |
blaOXA-58 | 13 (12%) | Ambler class D β-lactamases | β-lactam (carbapenem) | Viet, Myan, Thai, Mala | |
blaTEM-1 | 55 (51%) | Ambler class A β-lactamases | β-lactam | Viet, Myan, Thai, Sing, Mala | |
blaADC-25 | 108 (100%) | Ambler class C β-lactamases | β-lactam (cephalosporin) | Viet, Myan, Thai, Sing, Mala, Tiaw | |
blaADC-73 | 50 (46%) | Ambler class C β-lactamases | β-lactam (cephalosporin) | Viet, Myan, Thai | |
blaNDM-1 | 9 (8.5%) | Ambler class B β-lactamases | β-lactam (carbapenem) | Viet, Myan, Thai | |
Phenicoles | catB8 | 14 (13%) | Enzymes inactivation | Chloramphenicol | Viet, Myan, Thai, Tiaw |
Macrolide | mph.E. | 83 (77%) | Enzymes inactivation | Macrolide | Viet, Myan, Thai, Sing, Mala, Tiaw |
msr.E. | 85 (79%) | Antibiotic efflux | Macrolide | Viet, Myan, Thai, Sing, Mala, Tiaw | |
Sulfonamides | sul1 | 31 (29%) | Antibiotic target replacement | Sulfonamide | Viet, Myan, Thai, Sing, Mala, Tiaw |
sul2 | 71 (66%) | Antibiotic target replacement | Sulfonamide | Viet, Myan, Thai, Sing, Mala, Tiaw | |
Tetracyclines | tet.39. | 15 (14%) | Antibiotic efflux | Tetracycline | Viet, Myan, Thai |
tet.B. | 79 (73%) | Antibiotic efflux | Tetracycline | Viet, Myan, Thai, Sing, Mala, Tiaw | |
Rifamycin | arr-2 | 14 (13%) | Rifamycin | Myan, Thai, |
No. | Country | Geographical Location | No. of Strains | No. of Strains Analyzed | Source of Sequence |
---|---|---|---|---|---|
1 | Thailand | Southeast Asia | 49 | 49 | NCBI |
2 | Myanmar | Southeast Asia | 38 | 37 | NCBI |
3 | Malaysia | Southeast Asia | 11 | 7 | NCBI |
4 | Vietnam | Southeast Asia | 11 | 11 | IBIZ/FLI |
5 | Singapore | Southeast Asia | 4 | 3 | NCBI |
6 | Indonesia | Southeast Asia | 0 | 0 | - |
7 | Philippines | Southeast Asia | 0 | 0 | - |
8 | Cambodia | Southeast Asia | 0 | 0 | - |
9 | Laos | Southeast Asia | 0 | 0 | - |
10 | Brunei | Southeast Asia | 0 | 0 | - |
11 | Timor-Leste | Southeast Asia | 0 | 0 | - |
12 | Taiwan | East Asia/Trade country | 1 | 1 | NCBI |
Total | 114 | 108 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wareth, G.; Linde, J.; Nguyen, N.H.; Nguyen, T.N.M.; Sprague, L.D.; Pletz, M.W.; Neubauer, H. WGS-Based Analysis of Carbapenem-Resistant Acinetobacter baumannii in Vietnam and Molecular Characterization of Antimicrobial Determinants and MLST in Southeast Asia. Antibiotics 2021, 10, 563. https://doi.org/10.3390/antibiotics10050563
Wareth G, Linde J, Nguyen NH, Nguyen TNM, Sprague LD, Pletz MW, Neubauer H. WGS-Based Analysis of Carbapenem-Resistant Acinetobacter baumannii in Vietnam and Molecular Characterization of Antimicrobial Determinants and MLST in Southeast Asia. Antibiotics. 2021; 10(5):563. https://doi.org/10.3390/antibiotics10050563
Chicago/Turabian StyleWareth, Gamal, Jörg Linde, Ngoc H. Nguyen, Tuan N. M. Nguyen, Lisa D. Sprague, Mathias W. Pletz, and Heinrich Neubauer. 2021. "WGS-Based Analysis of Carbapenem-Resistant Acinetobacter baumannii in Vietnam and Molecular Characterization of Antimicrobial Determinants and MLST in Southeast Asia" Antibiotics 10, no. 5: 563. https://doi.org/10.3390/antibiotics10050563
APA StyleWareth, G., Linde, J., Nguyen, N. H., Nguyen, T. N. M., Sprague, L. D., Pletz, M. W., & Neubauer, H. (2021). WGS-Based Analysis of Carbapenem-Resistant Acinetobacter baumannii in Vietnam and Molecular Characterization of Antimicrobial Determinants and MLST in Southeast Asia. Antibiotics, 10(5), 563. https://doi.org/10.3390/antibiotics10050563