Short-Course Versus Long-Course Colistin for Treatment of Carbapenem-Resistant A.baumannii in Cancer Patient
Abstract
:1. Introduction
2. Results
Univariate and Multiple Logistic Regression Analyses of the Outcomes
3. Discussion
4. Materials and Methods
4.1. Outcome Assessment
4.2. Antimicrobial Susceptibility Testing
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perez, F.; Adachi, J.; Bonomo, R.A. Antibiotic-resistant gram-negative bacterial infections in patients with cancer. Clin. Infect. Dis. 2014, 59, S335–S339. [Google Scholar] [CrossRef] [PubMed]
- Turkoglu, M.; Mirza, E.; Tunçcan, Ö.G.; Erdem, G.U.; Dizbay, M.; Yağcı, M.; Aygencel, G.; Türköz Sucak, G. Acinetobacter baumannii infection in patients with hematologic malignancies in intensive care unit:risk factors and impact on mortality. J. Crit. Care 2011, 26, 460–467. [Google Scholar] [CrossRef]
- Chiang, M.C.; Kuo, S.C.; Chen, S.J.; Yang, S.P.; Lee, Y.T.; Chen, T.L.; Fung, C.P. Clinical characteristics and outcomes of bacteremia due to different genomic species of Acinetobacter baumannii complex in patients with solid tumors. Infection 2012, 40, 19–26. [Google Scholar] [CrossRef] [PubMed]
- El Far, M.Y.; El-Mahallawy, H.A.; Attia, A.S. Tracing the dissemination of the international clones of multidrug-resistant Acinetobacter baumannii among cancer patients in Egypt using the PCR-based open reading frame typing (POT) method. J. Glob. Antimicrob. Resist. 2019, 19, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Fukuta, Y.; Muder, R.R.; Agha, M.E.; Clarke, L.G.; Wagener, M.M.; Hensler, A.M.; Doi, Y. Risk factors for acquisition of multidrug-resistant Acinetobacter baumannii among cancer patients. Am. J. Infect. Control 2013, 41, 1249–1252. [Google Scholar] [CrossRef] [PubMed]
- Isler, B.; Doi, Y.; Bonomo, R.A.; Paterson, D.L. New Treatment Options against Carbapenem-Resistant Acinetobacter baumannii Infections. Antimicrob. Agents Chemother. 2018, 63, e01110-18. [Google Scholar] [CrossRef] [Green Version]
- Freire, A.T.; Melnyk, V.; Kim, M.J.; Datsenko, O.; Dzyublik, O.; Glumcher, F.; Chuang, Y.C.; Maroko, R.T.; Dukart, G.; Cooper, C.A.; et al. Comparison of tigecycline with imipenem/cilastatin for the treatment of hospital-acquired pneumonia. Diagn. Microbiol. Infect. Dis. 2010, 68, 140–151. [Google Scholar] [CrossRef]
- Tamma, P.D.; Avdic, E.; Li, D.X.; Dzintars, K.; Cosgrove, S.E. Association of adverse events with antibiotic use in hospitalized patients. JAMA Intern. Med. 2017, 177, 1308–1315. [Google Scholar] [CrossRef] [Green Version]
- Chastre, J.; Wolff, M.; Fagon, J.Y.; Chevret, S.; Thomas, F.; Wermert, D.; Clementi, E.; Gonzalez, J.; Jusserand, D.; Asfar, P.; et al. Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: A randomized trial. JAMA 2003, 290, 2588–2598. [Google Scholar] [CrossRef]
- Park, H.J.; Cho, J.H.; Kim, H.J.; Han, S.H.; Jeong, S.H.; Byun, M.K. Colistin monotherapy versus colistin/rifampicin combination therapy in pneumonia caused by colistin-resistant Acinetobacter baumannii: A randomised controlled trial. J. Glob. Antimicrob. Resist. 2019, 17, 66–71. [Google Scholar] [CrossRef]
- Katip, W.; Uitrakul, S.; Oberdorfer, P. The effectiveness and nephrotoxicity of loading dose colistin combined with or without meropenem for the treatment of carbapenem-resistant A. baumannii. Int. J. Infect. Dis. 2020, 97, 391–395. [Google Scholar] [CrossRef]
- Durante-Mangoni, E.; Signoriello, G.; Andini, R.; Mattei, A.; De Cristoforo, M.; Murino, P.; Bassetti, M.; Malacarne, P.; Petrosillo, N.; Galdieri, N.; et al. Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: A multicenter, randomized clinical trial. Clin. Infect. Dis. 2013, 57, 349–358. [Google Scholar] [CrossRef] [Green Version]
- De Waele, J.J.; Martin-Loeches, I. Optimal duration of antibiotic treatment in Gram-negative infections. Curr. Opin. Infect. Dis. 2018, 31, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Katip, W.; Oberdorfer, P. Clinical Efficacy and Nephrotoxicity of Colistin Alone versus Colistin Plus Vancomycin in Critically Ill Patients Infected with Carbapenem-Resistant Acinetobacter baumannii: A Propensity Score-Matched Analysis. Pharmaceutics 2021, 13, 162. [Google Scholar] [CrossRef] [PubMed]
- Tansarli, G.S.; Andreatos, N.; Pliakos, E.E.; Mylonakis, E. A Systematic Review and Meta-analysis of Antibiotic Treatment Duration for Bacteremia Due to Enterobacteriaceae. Antimicrob. Agents Chemother. 2019, 63, e02495-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sousa, A.; Pérez-Rodríguez, M.T.; Suárez, M.; Val, N.; Martínez-Lamas, L.; Nodar, A.; Longueira, R.; Crespo, M. Short-versus long-course therapy in gram-negative bacilli bloodstream infections. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 851–857. [Google Scholar] [CrossRef]
- Lee, C.C.; Hsieh, C.C.; Yang, C.Y.; Hong, M.Y.; Lee, C.H.; Tang, H.J.; Ko, W.C. Short versus long duration antimicrobial treatment for community-onset bacteraemia: A propensity score matching study. Int. J. Antimicrob. Agents 2019, 54, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Pugh, R.; Grant, C.; Cooke, R.P.; Dempsey, G. Short-course versus prolonged-course antibiotic therapy for hospital-acquired pneumonia in critically ill adults. Cochrane Database Syst. Rev. 2015, 2015, CD007577. [Google Scholar] [CrossRef]
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratalà, J.; et al. Executive Summary: Management of Adults With Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 2016, 63, 575–582. [Google Scholar] [CrossRef]
- Nelson, A.N.; Justo, J.A.; Bookstaver, P.B.; Kohn, J.; Albrecht, H.; Al-Hasan, M.N. Optimal duration of antimicrobial therapy for uncomplicated Gram-negative bloodstream infections. Infection 2017, 45, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Hachem, R.Y.; Chemaly, R.F.; Ahmar, C.A.; Jiang, Y.; Boktour, M.R.; Rjaili, G.A.; Bodey, G.P.; Raad, I.I. Colistin is effective in treatment of infections caused by multidrug-resistant Pseudomonas aeruginosa in cancer patients. Antimicrob. Agents Chemother. 2007, 51, 1905–1911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazer, L.H.; Rihani, S.; Hawari, F.I.; Le, J. High-dose colistin for microbiologically documented serious respiratory infections associated with carbapenem-resistant Acinetobacter baummannii in critically ill cancer patients: A retrospective cohort study. Infect. Dis. 2015, 47, 755–760. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.-Y.; Peng, J.; Wei, Y.-S.; Peng, H.-P.; Yang, H.; Zhao, C.-X.; Liang, G.-J.; Wang, G.-Q. The impact of chemotherapy-associated neutrophil/ lymphocyte counts on prognosis of adjuvant chemotherapy in colorectal cancer. BMC Cancer 2013, 13, 177. [Google Scholar]
- Van Faassen, H.; KuoLee, R.; Harris, G.; Zhao, X.; Conlan, J.W.; Chen, W. Neutrophils play an important role in host resistance to respiratory infection with Acinetobacter baumannii in mice. Infect. Immun. 2007, 75, 5597–5608. [Google Scholar] [CrossRef] [Green Version]
- Andes, D.R.; Van Ogtrop, M.L.; Craig, W.A. Impact of neutrophils on the in vivo activity of fluoroquinolones. In Proceedings of the Program and abstracts of the 37th Meeting of the Infectious Diseases Society of America (Philadelphia), Arlington, VA, USA, 18–21 November 1999; Infectious Diseases Society of America: Arlington, VA, USA, 1999. [Google Scholar]
- Theuretzbacher, U. Pharmacokinetic and pharmacodynamic issues for antimicrobial therapy in patients with cancer. Clin. Infect. Dis. 2012, 54, 1785–1792. [Google Scholar] [CrossRef] [Green Version]
- Karaiskos, I.; Giamarellou, H. Multidrug-resistant and extensively drug-resistant Gram-negative pathogens: Current and emerging therapeutic approaches. Expert Opin. Pharmacother. 2014, 15, 1351–1370. [Google Scholar] [CrossRef]
- Pogue, J.M.; Lee, J.; Marchaim, D.; Yee, V.; Zhao, J.J.; Chopra, T.; Lephart, P.; Kaye, K.S. Incidence of and risk factors for colistin-associated nephrotoxicity in a large academic health system. Clin. Infect. Dis. 2011, 53, 879–884. [Google Scholar] [CrossRef] [Green Version]
- Hartzell, J.D.; Neff, R.; Ake, J.; Howard, R.; Olson, S.; Paolino, K.; Vishnepolsky, M.; Weintrob, A.; Wortmann, G. Nephrotoxicity associated with intravenous colistin (colistimethate sodium) treatment at a tertiary care medical center. Clin. Infect. Dis. 2009, 48, 1724–1728. [Google Scholar] [CrossRef]
- Forrest, A.; Garonzik, S.M.; Thamlikitkul, V.; Giamarellos-Bourboulis, E.J.; Paterson, D.L.; Li, J.; Silveira, F.P.; Nation, R.L. Pharmacokinetic/Toxicodynamic Analysis of Colistin-Associated Acute Kidney Injury in Critically Ill Patients. Antimicrob. Agents Chemother. 2017, 61, e01367-17. [Google Scholar] [CrossRef] [Green Version]
- Horan, T.C.; Andrus, M.; Dudeck, M.A. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am. J. Infect. Control 2008, 36, 309–332. [Google Scholar] [CrossRef] [PubMed]
- Kellum, J.A.; Bellomo, R.; Ronco, C. Definition and classification of acute kidney injury. Nephron Clin. Pract. 2008, 109, c182–c187. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Twentieth Informational Supplement M100-S20; CLSI: Wayne, PA, USA, 2010. [Google Scholar]
- Choi, S.H.; Cho, E.B.; Chung, J.W.; Lee, M.K. Changes in the early mortality of adult patients with carbapenem-resistant Acinetobacter baumannii bacteremia during 11 years at an academic medical center. J. Infect. Chemother. 2019, 25, 6–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bitew, A.; Molalign, T.; Chanie, M. Species distribution and antibiotic susceptibility profile of bacterial uropathogens among patients complaining urinary tract infections. BMC Infect. Dis. 2017, 17, 654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristic | Short Course (n = 84) | Long Course (n = 44) | p Value |
---|---|---|---|
Sex (no. (%) of patients) | |||
Male | 31 (36.90) | 19 (43.18) | 0.568 |
Female | 53 (63.10) | 25 (56.82) | |
Age (years), mean ± SD | 61.39 ± 13.44 | 63.41 ± 14.22 | 0.431 |
Type of malignancy, n (%) | |||
Solid tumor | 73 (86.91) | 38 (86.36) | 1.000 |
| 17 (20.24) | 10 (22.73) | |
| 9 (10.71) | 1 (2.27) | |
| 10 (11.90) | 3 (6.82) | |
| 7 (8.33) | 6 (13.64) | |
| 9 (10.71) | 8 (18.18) | |
| 6 (7.14) | 1 (2.27) | |
| 6 (7.14) | 4 (3.70) | |
| 9 (10.71) | 5 (11.36) | |
Hematologic malignancies | 11 (13.09) | 6 (13.64) | 1.000 |
| 6 (7.14) | 4 (9.09) | |
| 5 (5.95) | 2 (4.55) | |
Comorbidities *, n (%) | 44 (52.38) | 23 (52.27) | 1.000 |
| 20 (23.81) | 13 (29.55) | 0.527 |
| 17 (20.24) | 10 (22.73) | 0.821 |
| 7 (8.33) | 4 (9.09) | 1.000 |
| 7 (8.33) | 1 (2.27) | 0.262 |
| 5 (5.95) | 0 (0.00) | 0.164 |
| 8 (9.52) | 9 (20.45) | 0.103 |
ICU status, n (%) | 50 (59.52) | 28 (63.64) | 0.706 |
Septic shock, n (%) | 51 (60.71) | 27 (61.36) | 1.000 |
Mechanical ventilation, n (%) | 58 (69.05) | 39 (88.64) | 0.017 |
Charlson score, mean ± SD | 4.14 ± 2.39) | 4.32 ± 2.32 | 0.691 |
Baseline SCr, mg/dl, median (IQR) | 0.7 (0.5–1.2) | 0.9 (0.5–1.6) | 0.281 |
Baseline GFR, ml/min, median (IQR) | 94.96 (29.65–114.68) | 67.6 (29.83–110.21) | 0.394 |
Baseline GFR < 50, mL/min, n (%) | 27 (32.14) | 17 (38.64) | 0.557 |
Baseline GFR < 20, mL/min, n (%) | 16 (19.05) | 7 (15.91) | 0.810 |
Total CMS dose, g, median (IQR) | 1.68 (1.04–2.40) | 3.22 (2.10–4.50) | 0.001 |
Meropenem, n (%) | 25 (29.76) | 13 (29.55) | 1.000 |
Concomitant nephrotoxic medications **, n (%) | |||
Aminoglycosides | 3 (3.57) | 3 (6.82) | 0.413 |
Diuretics | 59 (70.24) | 37 (84.09) | 0.131 |
Amphotericin B | 4 (4.76) | 7 (15.91) | 0.046 |
Vasopressor | 49 (58.33) | 29 (65.91) | 0.450 |
Vancomycin | 38 (45.24) | 30 (68.18) | 0.016 |
Duration of IV colistin (day), mean ± SD | 7.13 ± 2.99 | 15.82 ± 4.10 | 0.001 |
Length of hospital stay (day), median (IQR) | 31.5 (20–52) | 43.5 (35–57.5) | 0.001 |
Source of CRAB infection, n (%) | 0.065 | ||
Pneumonia | 56 (66.67) | 36 (81.82) | |
Bacteremia | 3 (3.57) | 3 (6.82) | |
UTI | 17 (20.24) | 2 (4.55) | |
Other # | 8 (9.52) | 3 (6.82) | |
Colistin MICs, median (min–max) | 0.25 (0.094–1.5) | 0.25 (0.064–1.5) | 0.853 |
Outcome | Short Course (n = 84) | Long Courses (n = 44) | p Value |
---|---|---|---|
Clinical response | 39 (46.43) | 31 (70.45) | 0.015 |
Microbiological response | 49 (58.33) | 38 (86.36) | 0.001 |
Nephrotoxicity (RIFLE criteria) | 54 (64.29) | 27 (61.36) | 0.847 |
| 17 (20.23) | 10 (22.72) | |
| 17 (20.23) | 4 (9.09) | |
| 20 (23.83) | 13 (29.55) | |
| - | - | |
| - | - | |
30-day mortality | 32 (38.10) | 5 (11.36) | 0.002 |
Outcome and Variable | Univariate Analysis | Logistic Regression Analysis | Propensity Score Analysis (IPW) | ||||||
---|---|---|---|---|---|---|---|---|---|
Crude OR | 95%CI | p Value | Adjusted OR | 95%CI for Adjusted OR | p Value | OR | 95%CI | p Value | |
Clinical response | |||||||||
Long course colistin therapy | 2.75 | 1.26–5.98 | 0.011 | 3.16 | 1.37–7.28 | 0.007 | 1.30 | 1.11–1.52 | 0.001 |
Septic shock | 0.35 | 0.16–0.74 | 0.006 | 0.30 | 0.13–0.68 | 0.004 | |||
Charlson score ≥ 4 | 0.39 | 0.19–0.79 | 0.010 | 0.34 | 0.16–0.74 | 0.006 | |||
Microbiological response | |||||||||
Long course colistin therapy | 4.52 | 1.73–11.86 | 0.002 | 4.65 | 1.72–12.54 | 0.002 | 1.32 | 1.14–1.52 | 0.001 |
Septic shock | 0.38 | 0.17–0.87 | 0.022 | 0.37 | 0.15–0.88 | 0.024 | |||
Nephrotoxicity | |||||||||
Long course colistin therapy | 0.88 | 0.42–1.87 | 0.745 | 0.91 | 0.39–2.11 | 0.826 | 1.02 | 0.85–1.22 | 0.861 |
Age ≥ 60 years | 1.72 | 0.83–3.57 | 0.146 | 2.31 | 1.01–5.33 | 0.049 | |||
30 days mortality | |||||||||
Long course colistin therapy | 0.21 | 0.07–0.58 | 0.003 | 0.11 | 0.03–0.38 | 0.001 | 0.73 | 0.65–0.83 | 0.001 |
Septic shock | 6.26 | 2.29–17.50 | 0.001 | 6.20 | 1.67–23.10 | 0.007 | |||
Charlson score ≥ 4 | 4.53 | 1.95–10.49 | 0.001 | 7.12 | 2.40–21.10 | 0.001 | |||
Baseline Scr ≥ 1 mg/dl | 2.39 | 1.10–5.22 | 0.028 | 2.85 | 1.02–7.97 | 0.046 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katip, W.; Uitrakul, S.; Oberdorfer, P. Short-Course Versus Long-Course Colistin for Treatment of Carbapenem-Resistant A.baumannii in Cancer Patient. Antibiotics 2021, 10, 484. https://doi.org/10.3390/antibiotics10050484
Katip W, Uitrakul S, Oberdorfer P. Short-Course Versus Long-Course Colistin for Treatment of Carbapenem-Resistant A.baumannii in Cancer Patient. Antibiotics. 2021; 10(5):484. https://doi.org/10.3390/antibiotics10050484
Chicago/Turabian StyleKatip, Wasan, Suriyon Uitrakul, and Peninnah Oberdorfer. 2021. "Short-Course Versus Long-Course Colistin for Treatment of Carbapenem-Resistant A.baumannii in Cancer Patient" Antibiotics 10, no. 5: 484. https://doi.org/10.3390/antibiotics10050484
APA StyleKatip, W., Uitrakul, S., & Oberdorfer, P. (2021). Short-Course Versus Long-Course Colistin for Treatment of Carbapenem-Resistant A.baumannii in Cancer Patient. Antibiotics, 10(5), 484. https://doi.org/10.3390/antibiotics10050484