Antimicrobial Resistance Patterns and Dynamics of Extended-Spectrum β-Lactamase-Producing Uropathogenic Escherichia coli in Cusco, Peru
Abstract
:1. Introduction
2. Results
2.1. Antimicrobial Resistance Characterization
2.2. Factors Associated with Antimicrobial Resistance
2.3. Potential Antimicrobial Resistance Phenotypes by Latent Class Analysis (LCA)
3. Discussion
4. Materials and Methods
4.1. Clinical Isolates
4.2. Antimicrobial Susceptibility Testing
4.3. Molecular Testing for β-Lactamase Genes
4.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Stamm, W.E.; Norrby, S.R. Urinary Tract Infections: Disease Panorama and Challenges. J. Infect. Dis. 2001, 183, S1–S4. [Google Scholar] [CrossRef]
- Foxman, B. Urinary Tract Infection Syndromes: Occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect. Dis. Clin. N. Am. 2014, 28, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Astete, S.; Madrid, L.; Fukuda, F.; Buckley, A.; Meritens, D.; Menchola, J.V. Sensibilidad Antibiótica de Los Gérmenes Causantes de Infecciones Urinarias en Pacientes Ambulatorios en El Hospital Nacional Arzobispo Loayza. 2004. Available online: http://www.scielo.org.pe/pdf/rspmi/v17n1/a02v17n1 (accessed on 20 September 2020).
- Hooton, T.M. Clinical Practice. Uncomplicated Urinary Tract Infection. N. Engl. J. Med. 2012, 366, 1028–1037. [Google Scholar] [CrossRef] [PubMed]
- Paul, R. State of the globe: Rising antimicrobial resistance of pathogens in urinary tract infection. J. Glob. Infect. Dis. 2018, 10, 117–118. [Google Scholar] [CrossRef] [PubMed]
- Paterson, D.L. Resistance in gram-negative bacteria: Enterobacteriaceae. Am. J. Infect. Control. 2006, 34, S20–S28. [Google Scholar] [CrossRef]
- Garau, J. Other antimicrobials of interest in the era of extended-spectrum β-lactamases: Fosfomycin, nitrofurantoin and tigecycline. Clin. Microbiol. Infect. 2008, 14, 198–202. [Google Scholar] [CrossRef] [Green Version]
- Bradford, P.A. Extended-Spectrum β-Lactamases in the 21st Century: Characterization, Epidemiology, and Detection of This Important Resistance Threat. Clin. Microbiol. Rev. 2001, 14, 933–951. [Google Scholar] [CrossRef] [Green Version]
- D’Andrea, M.M.; Arena, F.; Pallecchi, L.; Rossolini, G.M. CTX-M-type β-lactamases: A successful story of antibiotic resistance. Int. J. Med. Microbiol. 2013, 303, 305–317. [Google Scholar] [CrossRef]
- Gupta, K.; Bhadelia, N. Management of Urinary Tract Infections from Multidrug-Resistant Organisms. Infect. Dis. Clin. N. Am. 2014, 28, 49–59. [Google Scholar] [CrossRef]
- Gupta, K.; Hooton, T.M.; Naber, K.G.; Wullt, B.; Colgan, R.; Miller, L.G.; Moran, G.J.; Nicolle, L.E.; Raz, R.; Schaeffer, A.J.; et al. International Clinical Practice Guidelines for the Treatment of Acute Uncomplicated Cystitis and Pyelonephritis in Women: A 2010 Update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin. Infect. Dis. 2011, 52, e103–e120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, E.S.; Stafford, R.S. National patterns in the treatment of urinary tract infections in women by ambulatory care physicians. Arch. Intern. Med. 2002, 162, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Sastry, S.; Doi, Y. Fosfomycin: Resurgence of an old companion. J. Infect. Chemother. 2016, 22, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, T.; Muratani, T. Newer carbapenems for urinary tract infections. Int. J. Antimicrob. Agents 2004, 24, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Ulleryd, P.; Zackrisson, B.; Aus, G.; Bergdahl, S.; Hugosson, J.; Sandberg, T. Prostatic involvement in men with febrile urinary tract infection as measured by serum prostate-specific antigen and transrectal ultrasonography. BJU Int. 2001, 84, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Ulleryd, P. Febrile urinary tract infection in men. Int. J. Antimicrob. Agents 2003, 22, 89–93. [Google Scholar] [CrossRef]
- Tenney, J.; Hudson, N.; Alnifaidy, H.; Li, J.T.C.; Fung, K.H. Risk factors for aquiring multidrug-resistant organisms in urinary tract infections: A systematic literature review. Saudi Pharm. J. 2018, 26, 678–684. [Google Scholar] [CrossRef]
- Neuner, E.A.; Sekeres, J.; Hall, G.S.; van Duin, D. Experience with Fosfomycin for Treatment of Urinary Tract Infections Due to Multidrug-Resistant Organisms. Antimicrob. Agents Chemother. 2012, 56, 5744–5748. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Baño, J.; Navarro, M.D.; Romero, L.; Martínez-Martínez, L.; Muniain, M.A.; Perea, E.J.; Pérez-Cano, R.; Pascual, A. Epidemiology and Clinical Features of Infections Caused by Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in Nonhospitalized Patients. J. Clin. Microbiol. 2004, 42, 1089–1094. [Google Scholar] [CrossRef] [Green Version]
- Guet-Revillet, H.; Emirian, A.; Groh, M.; Nebbad-Lechani, B.; Weiss, E.; Joinlambert, O.; Bille, E.; Jullien, V.; Zahar, J.R. Pharmacological Study of Cefoxitin as an Alternative Antibiotic Therapy to Carbapenems in Treatment of Urinary Tract Infections Due to Extended-Spectrum-β-Lactamase-Producing Escherichia coli. Antimicrob. Agents Chemother. 2014, 58, 4899–4901. [Google Scholar] [CrossRef] [Green Version]
- Scholes, D.; Hooton, T.M.; Roberts, P.L.; Stapleton, A.E.; Gupta, K.; Stamm, W.E. Risk Factors for Recurrent Urinary Tract Infection in Young Women. J. Infect. Dis. 2000, 182, 1177–1182. [Google Scholar] [CrossRef] [Green Version]
- Nicolle, L.E. Urinary Tract Infections in the Elderly. Clin. Geriatr. Med. 2009, 25, 423–436. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Foreign Trade and Tourism—MINCETUR Reporte Interactivo de Turismo. Available online: https://www.mincetur.gob.pe/centro_de_Informacion/mapa_interactivo/index.html (accessed on 24 June 2020).
- MacPherson, D.W.; Gushulak, B.D.; Baine, W.B.; Bala, S.; Gubbins, P.O.; Holtom, P.; Segarra-Newnham, M. Population mobility, globalization, and antimicrobial drug resistance. Emerg. Infect. Dis. 2009, 15, 1727–1732. [Google Scholar] [CrossRef] [PubMed]
- Khawcharoenporn, T.; Vasoo, S.; Singh, K. Urinary Tract Infections due to Multidrug-Resistant Enterobacteriaceae: Prevalence and Risk Factors in a Chicago Emergency Department. Emerg. Med. Int. 2013, 2013, 258517. [Google Scholar] [CrossRef] [Green Version]
- Shakya, P.; Barrett, P.; Diwan, V.; Marothi, Y.; Shah, H.; Chhari, N.; Tamhankar, A.J.; Pathak, A.; Lundborg, C.S. Antibiotic resistance among Escherichia coli isolates from stool samples of children aged 3 to 14 years from Ujjain, India. BMC Infect. Dis. 2013, 13, 477. [Google Scholar] [CrossRef] [PubMed]
- Ray, J.; Paul, R.; Haldar, A.; Mondol, S. A study on antibiotic resistance pattern of Escherichia coli isolated from urine specimens in Eastern India. Int. J. Med. Sci. Public Health 2015, 4, 1670. [Google Scholar] [CrossRef]
- M02Ed13/Performance Standards for Antimicrobial Disk Susceptibility Tests, 13th Edition. Available online: https://clsi.org/standards/products/microbiology/documents/m02/ (accessed on 2 November 2019).
- Yong, D.; Lee, K.; Yum, J.H.; Shin, H.B.; Rossolini, G.M.; Chong, Y. Imipenem-EDTA Disk Method for Differentiation of Metallo-β-Lactamase-Producing Clinical Isolates of Pseudomonas spp. and Acinetobacter spp. Society 2002, 40, 3798–3801. [Google Scholar] [CrossRef]
- Pasteran, F.; Mendez, T.; Guerriero, L.; Rapoport, M.; Corso, A. Sensitive Screening Tests for Suspected Class A Carbapenemase Production in Species of Enterobacteriaceae. J. Clin. Microbiol. 2009, 47, 1631–1639. [Google Scholar] [CrossRef] [Green Version]
- Tan, T.Y.; Ng, L.S.Y.; He, J.; Koh, T.H.; Hsu, L.Y. Evaluation of Screening Methods to Detect Plasmid-Mediated AmpC in Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. Antimicrob. Agents Chemother. 2008, 53, 146–149. [Google Scholar] [CrossRef] [Green Version]
- Arlet, G.; Philippon, A. Construction by polymerase chain reaction and intragenic DNA probes for three main types of transferable β-lactamases (TEM, SHV, CARB). FEMS Microbiol. Lett. 1991, 82, 19–25. [Google Scholar] [CrossRef]
- Essack, S.Y.; Hall, L.M.C.; Pillay, D.G.; McFadyen, M.L.; Livermore, D.M. Complexity and Diversity of Klebsiella pneumoniae Strains with Extended-Spectrum β-Lactamases Isolated in 1994 and 1996 at a Teaching Hospital in Durban, South Africa. Antimicrob. Agents Chemother. 2001, 45, 88–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batchelor, M.; Hopkins, K.; Threlfall, E.J.; Clifton-Hadley, F.A.; Stallwood, A.D.; Davies, R.H.; Liebana, E. blaCTX-M Genes in Clinical Salmonella Isolates Recovered from Humans in England and Wales from 1992–2003. Antimicrob. Agents Chemother. 2005, 49, 1319–1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cleaver Scientific. runSAFE Safe DNA Staining Reagent. Available online: https://www.cleaverscientific.com/electrophoresis-products/runsafe/ (accessed on 2 November 2019).
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nylund, K.L.; Asparouhov, T.; Muthén, B.O. Deciding on the Number of Classes in Latent Class Analysis and Growth Mixture Modeling: A Monte Carlo Simulation Study. Struct. Equ. Model. A Multidiscip. J. 2007, 14, 535–569. [Google Scholar] [CrossRef]
- Lanza, S.T.; Rhoades, B.L. Latent Class Analysis: An Alternative Perspective on Subgroup Analysis in Prevention and Treatment. Prev. Sci. 2013, 14, 157–168. [Google Scholar] [CrossRef] [Green Version]
Category/Agent | Total (n = 99) | Gender | p-Value | Age Groups (Years) | p-Value | Health Care Service | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Female (n = 45) | Male (n = 54) | <18 (n = 6) | 18–60 (n = 55) | >60 (n = 38) | Emergency (n = 41) | Outpatient (n = 58) | |||||
% (n) | % (n) | % (n) | % (n) | % (n) | % (n) | % (n) | % (n) | ||||
1. Aminoglycosides | |||||||||||
Gentamicin | 50.5 (50) | 51.2 (23) | 50.0 (27) | 1.000 | 50.0 (3) | 52.7 (29) | 47.4 (18) | 0.895 | 51.2 (21) | 50.0 (29) | 1.000 |
Amikacin | 46.5 (46) | 53.3 (24) | 40.7 (22) | 0.231 | 66.7 (4) | 50.9 (28) | 36.8 (14) | 0.249 | 41.5 (17) | 50.0 (29) | 0.421 |
2. Penicillins + β-lactamase inhibitors | |||||||||||
Piperacillin/tazobactam | 35.6 (35) | 35.6 (16) | 35.2 (19) | 1.000 | 50.0 (3) | 40.0 (22) | 26.3 (10) | 0.300 | 31.7 (13) | 37.9 (22) | 0.670 |
Amoxicillin/clavulanic acid | 37.4 (37) | 31.1 (14) | 42.6 (23) | 0.298 | 50.0 (3) | 45.5 (25) | 23.7 (9) | 0.079 | 43.9 (18) | 32.8 (19) | 0.296 |
3. Cephamycin | |||||||||||
Cefoxitin | 29.3 (29) | 42.2 (19) | 18.5 (10) | 0.014 | 50.0 (3) | 21.8 (12) | 36.8 (14) | 0.149 | 29.3 (12) | 29.3 (17) | 1.000 |
4. Fluoroquinolone | |||||||||||
Ciprofloxacin | 83.8 (83) | 84.4 (38) | 83.3 (45) | 1.000 | 83.3 (5) | 83.6 (46) | 84.2 (32) | 1.000 | 78.1 (32) | 87.9 (51) | 0.268 |
5. Folate pathway inhibitor | |||||||||||
Trimethoprim/ Sulfamethoxazole | 80.8 (80) | 88.9 (40) | 74.1 (40) | 0.076 | 83.3 (5) | 81.8 (45) | 79.0 (30) | 0.915 | 87.8 (36) | 75.9 (44) | 0.196 |
6. Phosponic acid | |||||||||||
Fosfomycin | 14.1 (14) | 11.1 (5) | 16.7 (9) | 0.565 | 16.7 (1) | 12.7 (7) | 15.8 (6) | 0.904 | 17.1 (7) | 12.1 (7) | 0.563 |
7. Nitrofuran | |||||||||||
Nitrofurantoin | 53.5 (53) | 51.1 (23) | 55.6 (30) | 0.690 | 66.7 (4) | 52.7 (29) | 52.6 (20) | 0.896 | 48.8 (20) | 56.9 (33) | 0.540 |
XDR * | |||||||||||
Yes | 16.2 (16) | 24.4 (11) | 9.3 (5) | 0.055 | 33.3 (2) | 12.7 (7) | 18.4 (7) | 0.313 | 14.6 (6) | 17.2 (10) | 0.788 |
blaCTX-M Group 1 | blaCTX-M Group 9 | blaCTX-M-14 | blaTEM | n (%) |
---|---|---|---|---|
+ | − | − | − | 18 (31.0) |
+ | − | − | + | 11 (18.9) |
+ | + | + | − | 6 (10.3) |
− | + | + | − | 6 (10.3) |
− | − | − | − | 4 (6.9) |
+ | − | − | + | 3 (5.2) |
− | − | − | + | 3 (5.2) |
+ | − | + | − | 2 (3.4) |
+ | + | + | + | 2 (3.4) |
− | − | − | + | 1 (1.7) |
− | + | + | + | 1 (1.7) |
− | − | + | + | 1 (1.7) |
n = 42, 72.4% | n = 15, 25.9% | n = 18, 31.0% | n = 22, 37.9% | Total |
Category/Agent | Trimester | p-Value | |||
---|---|---|---|---|---|
First (n = 25) | Second (n = 23) | Third (n = 27) | Fourth (n = 24) | ||
% (n) | % (n) | % (n) | % (n) | ||
1. Aminoglycosides | |||||
Gentamicin | 48.0 (12) | 39.1 (9) | 51.9 (14) | 62.5 (15) | 0.460 |
Amikacin | 24.0 (6) | 47.8 (11) | 51.9 (14) | 62.5 (15) | 0.046 |
2. Penicillins + β-lactamase inhibitors | |||||
Piperacillin/tazobactam | 32.0 (8) | 43.5 (10) | 25.9 (7) | 41.7 (10) | 0.521 |
Amoxicillin/clavulanic acid | 26.1 (6) | 45.8 (11) | 31.0 (9) | 47.8 (11) | 0.273 |
3. Cephamycin | |||||
Cefoxitin | 8.0 (2) | 34.8 (8) | 40.7 (11) | 33.3 (8) | 0.035 |
4. Fluoroquinolone | |||||
Ciprofloxacin | 76.0 (19) | 73.9 (17) | 92.6 (25) | 91.7 (22) | 0.146 |
5. Folate pathway inhibitor | |||||
Trimethoprim/sulfamethoxazole | 88.0 (22) | 69.6 (16) | 81.5 (22) | 83.3 (20) | 0.451 |
6. Phosphonic acid | |||||
Fosfomycin | 24.0 (6) | 0.0 (0) | 7.4 (2) | 25.0 (6) | 0.015 |
7. Nitrofuran | |||||
Nitrofurantoin | 76.0 (19) | 65.2 (15) | 40.7 (11) | 33.3 (8) | 0.007 |
XDR * | |||||
Yes | 4.0 (1) | 17.4 (4) | 25.9 (7) | 16.7 (4) | 0.171 |
Goodness-of-Fit Criteria * | Number of Classes | ||||
---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | |
Adjusted Bayesian Information Criteria | 95.990 | 82.766 | 83.650 | 89.314 | 95.754 |
Entropy | 0.795 | 0.696 | 0.709 | 0.752 | 0.764 |
Phenotypes | AMY | CEP | FLU | FPI | MON | PHA | NIT |
---|---|---|---|---|---|---|---|
% (n) | % (n) | % (n) | % (n) | % (n) | % (n) | % (n) | |
3-phenotype model | |||||||
Phenotype 3-1 (n = 38, 38.4%) | 100.0 (38) | 76.3 (29) | 100.0 (38) | 89.5 (34) | 81.6 (31) | 7.9 (3) | 73.7 (28) |
Phenotype 3-2 (n = 31, 31.3%) | 93.6 (29) | 0.0 (0) | 67.7 (21) | 100.0 (31) | 90.3 (28) | 16.1 (5) | 0.0 (0) |
Phenotype 3-3 (n = 30, 30.3%) | 33.3 (10) | 0.0 (0) | 80.0 (24) | 50.0 (15) | 90.0 (27) | 20.0 (6) | 83.3 (25) |
4- phenotype model | |||||||
Phenotype 4-1 (n = 39, 39.4%) | 100.0 (39) | 74.4 (29) | 100.0 (39) | 89.7 (35) | 82.1 (32) | 10.3 (4) | 74.4 (29) |
Phenotype 4-2 (n = 23, 23.2%) | 17.4 (4) | 0.0 (0) | 91.3 (21) | 47.8 (11) | 91.3 (21) | 8.7 (2) | 87.0 (20) |
Phenotype 4-3 (n = 23, 23.2%) | 100.0 (23) | 0.0 (0) | 100.0 (23) | 91.3 (21) | 100.0 (23) | 13.0 (3) | 0.0 (0) |
Phenotype 4-4 (n = 14, 14.2%) | 78.6 (11) | 0.0 (0) | 0.0 (0) | 92.9 (13) | 71.4 (10) | 35.7 (5) | 28.6 (4) |
Gender | Phenotype 4-1 (n = 39) | Phenotype 4-2 (n = 23) | Phenotype 4-3 (n = 23) | Phenotype 4-4 (n = 14) | p-Value |
---|---|---|---|---|---|
% (n) | % (n) | % (n) | % (n) | ||
0.007 | |||||
Male | 64.1 (25) | 21.7 (5) | 34.7 (8) | 50.0 (7) | |
Females | 35.9 (14) | 78.3 (18) | 65.3 (15) | 50.0 (7) | |
Age (years) | 0.349 | ||||
<18 | 10.3 (4) | 4.4 (1) | 0.0 (0) | 7.1 (1) | |
18–60 | 43.6 (17) | 56.5 (13) | 73.9 (17) | 57.1 (8) | |
>60 | 46.1 (18) | 39.1 (9) | 26.1 (6) | 35.8 (5) | |
Healthcare service | 0.137 | ||||
Emergency | 46.2 (18) | 30.4 (7) | 30.4 (7) | 64.3 (9) | |
Outpatient | 53.8 (21) | 69.6 (16) | 69.6 (16) | 35.7 (5) | |
Trimester | <0.001 | ||||
First | 23.1 (9) | 43.5 (10) | 4.3 (1) | 35.7 (5) | |
Second | 23.1 (9) | 34.8 (8) | 0.0 (0) | 42.9 (6) | |
Third | 30.7 (12) | 8.7 (2) | 52.2 (12) | 7.1 (1) | |
Fourth | 23.1 (9) | 13.0 (3) | 43.5 (10) | 14.3 (2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loyola, S.; Concha-Velasco, F.; Pino-Dueñas, J.; Vasquez-Luna, N.; Juarez, P.; Llanos, C.; Salvatierra, G.; Tamariz, J.; Lescano, A.G. Antimicrobial Resistance Patterns and Dynamics of Extended-Spectrum β-Lactamase-Producing Uropathogenic Escherichia coli in Cusco, Peru. Antibiotics 2021, 10, 485. https://doi.org/10.3390/antibiotics10050485
Loyola S, Concha-Velasco F, Pino-Dueñas J, Vasquez-Luna N, Juarez P, Llanos C, Salvatierra G, Tamariz J, Lescano AG. Antimicrobial Resistance Patterns and Dynamics of Extended-Spectrum β-Lactamase-Producing Uropathogenic Escherichia coli in Cusco, Peru. Antibiotics. 2021; 10(5):485. https://doi.org/10.3390/antibiotics10050485
Chicago/Turabian StyleLoyola, Steev, Fátima Concha-Velasco, Jimena Pino-Dueñas, Nancy Vasquez-Luna, Paola Juarez, Carlos Llanos, Guillermo Salvatierra, Jesus Tamariz, and Andres G. Lescano. 2021. "Antimicrobial Resistance Patterns and Dynamics of Extended-Spectrum β-Lactamase-Producing Uropathogenic Escherichia coli in Cusco, Peru" Antibiotics 10, no. 5: 485. https://doi.org/10.3390/antibiotics10050485
APA StyleLoyola, S., Concha-Velasco, F., Pino-Dueñas, J., Vasquez-Luna, N., Juarez, P., Llanos, C., Salvatierra, G., Tamariz, J., & Lescano, A. G. (2021). Antimicrobial Resistance Patterns and Dynamics of Extended-Spectrum β-Lactamase-Producing Uropathogenic Escherichia coli in Cusco, Peru. Antibiotics, 10(5), 485. https://doi.org/10.3390/antibiotics10050485