Bioactivity and Control Efficacy of the Novel Antibiotic Tetramycin against Various Kiwifruit Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pathogens and Materials
2.2. In Vitro Toxicity Tests
Colony counts in control dish
diameter in treatment dish)/(Mycelial growth diameter in control dish − 5)]
2.3. Field Experiments
2.3.1. Study Site
2.3.2. Field Experiment Design of Kiwifruit Canker
disease spots before treatment
(100 − Healing rate of control)
2.3.3. Field Experiment Design of Soft Rot, Blossom Blight and Brown Spot Diseases in Kiwifruit
Total number of flower buds
Incidence rate of control
(Total number of leaf × the highest grade)
Disease index of control
Incidence rate of control
2.4. Analytical Methods
2.5. Statistical Analyses
3. Results
3.1. Toxicity Effects of Different Antibiotics against Eight Pathogens of Kiwifruit
3.2. Field Control Effects of Tetramycin on Canker Disease of Kiwifruit
3.3. Field Control Effects of Tetramycin on Soft Rot, Blossom Blight and Brown Spot Diseases of Kiwifruit
3.4. The Effects of Tetramycin on Defense-Related Substances and Enzyme Activity in Kiwifruit
3.5. The Effects of Tetramycin on Growth and Quality of Kiwifruit
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, H.; Zhou, H.; Li, P. Lacquer wax coating improves the sensory and quality attributes of kiwifruit during ambient storage. Sci. Hortic. 2019, 244, 31–41. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, L.; Zhang, L.; Guo, Y.; Qi, X.; He, L. Effects of quercetin on postharvest blue mold control in kiwifruit. Sci. Hortic. 2018, 228, 18–25. [Google Scholar] [CrossRef]
- Huang, H.W. Kiwifruit: Chapter 7—Cultivation and Management; Academic Press: Beijing, China, 2016; Volume 7, pp. 265–295. [Google Scholar]
- Scortichini, M.; Marcelletti, S.; Ferrante, P.; Petriccione, M.; Firrao, G. Pseudomonas syringae pv. actinidiae: A re-emerging, multi-faceted, pandemic pathogen. Mol. Plant Pathol. 2012, 13, 631–640. [Google Scholar] [CrossRef]
- Cimmino, A.; Iannaccone, M.; Petriccione, M.; Masi, M.; Evidente, M.; Capparelli, R.; Scortichini, M.; Evidente, A. An ELISA method to identify the phytotoxic Pseudomonas syringae pv. actinidiae exopolysaccharides: A tool for rapid immunochemical detection of kiwifruit bacterial canker. Phytochem. Lett. 2017, 19, 136–140. [Google Scholar] [CrossRef]
- Prencipe, S.; Nari, L.; Vittone, G.; Gullino, M.L.; Spadaro, D. Effect of bacterial canker caused by Pseudomonas syringae pv. actinidiae on postharvest quality and rots of kiwifruit ‘Hayward’. Postharvest Biol. Technol. 2016, 113, 119–124. [Google Scholar] [CrossRef]
- Hawthorne, B.; Rees-George, J.; Samuels, G.J. Fungi associated with leaf spots and post-harvest fruit rots of kiwifruit (Actinidia chinensis) in New Zealand. N. Z. J. Bot. 1982, 20, 143–150. [Google Scholar] [CrossRef]
- Manning, M.A.; Meier, X.; Olsen, T.L.; Johnston, P.R. Fungi associated with fruit rots of Actinidia chinensis ‘Hort16A’ in New Zealand. N. Z. J. Crop. Hortic. Sci. 2003, 31, 315–324. [Google Scholar] [CrossRef] [Green Version]
- Koh, Y.J.; Hur, J.; Jung, J.S. Postharvest fruit rots of kiwifruit (Actinidia deliciosa) in Korea. N. Z. J. Crop. Hortic. Sci. 2005, 33, 303–310. [Google Scholar] [CrossRef]
- Prodi, A.; Sandalo, S.; Tonti, S.; Nipoti, P.; Pisi, A. Phiaphora-like fungi associated with kiwifruit elephantiasis. Plant Physiol. 2008, 90, 487–494. [Google Scholar] [CrossRef]
- Luongo, L.; Santori, A.; Riccioni, L.; Belisario, A. Phomopsis sp. associated with post-harvest fruit rot of kiwifruit in Italy. J. Plant Pathol. 2011, 93, 205–209. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, X.M.; Long, Y.H.; Li, M. Control of soft rot in kiwifruit by pre-harvest application of chitosan composite coating and its effect on preserving and improving kiwifruit quality. Food Sci. 2016, 37, 274–281. [Google Scholar] [CrossRef]
- Long, Y.H.; Yin, X.H.; Wang, M.; Wu, X.M.; Li, R.Y.; Tian, X.L.; Li, M. Effects of sulfur on kiwifruit canker caused by Pseudomonas syringae pv. actinidae. Bangladesh J. Bot. 2017, 46, 1183–1192. [Google Scholar]
- Li, L.; Pan, H.; Deng, L.; Wang, Z.P.; Li, D.W.; Zhang, Q.; Chen, M.Y.; Zhong, C.H. First Report of Alternaria tenuissima Causing Brown Spot Disease of Kiwifruit Foliage in China. Plant Dis. 2018, 103, 582. [Google Scholar] [CrossRef]
- Zhang, C.; Long, Y.-H.; Wang, Q.-P.; Li, J.-H.; An, H.M.; Wu, X.-M.; Li, M. The effect of preharvest 28.6% chitosan composite film sprays for controlling soft rot on kiwifruit and its defense responses. Hortic. Sci. 2019, 46, 180–194. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Long, Y.; Li, J.; Li, M.; Xing, D.; An, H.; Wu, X.; Wu, Y. A Chitosan Composite Film Sprayed before Pathogen Infection Effectively Controls Postharvest Soft Rot in Kiwifruit. Agronomy 2020, 10, 265. [Google Scholar] [CrossRef] [Green Version]
- Cameron, A.; Sarojini, V. Pseudomonas syringae pv. actinidiae: Chemical control, resistance mechanisms and possible alternatives. Plant Pathol. 2013, 63, 1–11. [Google Scholar] [CrossRef]
- Wicaksono, W.A.; Jones, E.E.; Casonato, S.; Monk, J.; Ridgway, H.J. Biological control of Pseudomonas syringae pv. actinidiae (Psa), the causal agent of bacterial canker of kiwifruit, using endophytic bacteria recovered from a medicinal plant. Biol. Control. 2018, 116, 103–112. [Google Scholar] [CrossRef]
- Ma, X.; Xiang, S.; Xie, H.; He, L.; Sun, X.; Zhang, Y.; Huang, J. Fabrication of pH-Sensitive Tetramycin Releasing Gel and Its Antibacterial Bioactivity against Ralstonia solanacearum. Molecules 2019, 24, 3606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, C.; Guo, M.; Liang, Y.; Dong, H.; Ding, G.; Zhang, W.; Tang, G.; Yang, J.; Kong, D.; Cao, Y. Pectin-conjugated silica microcapsules as dual-responsive carriers for increasing the stability and antimicrobial efficacy of kasugamycin. Carbohydr. Polym. 2017, 172, 322–331. [Google Scholar] [CrossRef]
- Chen, G.; Qiao, Y.; Liu, F.; Zhang, X.; Liao, H.; Zhang, R.; Dong, J. Dissipation and dietary risk assessment of kasugamycin and saisentong in Chinese cabbage. Environ. Sci. Pollut. Res. 2020, 27, 35228–35238. [Google Scholar] [CrossRef]
- Yi, C.; Chen, J.; Hu, D.; Song, B. First report about the screening, characterization, and fosmid library construction of Xanthomonas oryzae pv. oryzae strain with resistance to Fubianezuofeng. Pestic. Biochem. Physiol. 2020, 169, 104645. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Yao, F.; Zheng, X.; Cui, D.; Shao, Y.; Zhu, C.; Deng, Z.; You, D. Genome Mining of the Biosynthetic Gene Cluster of the Polyene Macrolide Antibiotic Tetramycin and Characterization of a P450 Monooxygenase Involved in the Hydroxylation of the Tetramycin B Polyol Segment. ChemBioChem 2012, 13, 2234–2242. [Google Scholar] [CrossRef]
- Ren, J.; Cui, Y.; Zhang, F.; Cui, H.; Ni, X.; Chen, F.; Li, L.; Xia, H. Enhancement of nystatin production by redirecting precursor fluxes after disruption of the tetramycin gene from Streptomyces ahygroscopicus. Microbiol. Res. 2014, 169, 602–608. [Google Scholar] [CrossRef]
- Zhao, X.; Zhong, L.; Zhang, Q.; Xu, C.; Zhu, H.; Lu, Z.; Shen, L.; Wang, G.; Jie, D. Effect of tetramycin on mycelia growth and spore germination of rice blast pathogen. J. Microbiol. 2010, 2, 43–45. [Google Scholar]
- Song, Y.; He, L.; Chen, L.; Ren, Y.; Lu, H.; Geng, S.; Mu, W.; Liu, F. Baseline sensitivity and control efficacy of antibiosis fungicide tetramycin against Botrytis cinerea. Eur. J. Plant Pathol. 2016, 146, 337–347. [Google Scholar] [CrossRef]
- Chen, L.L.; Guo, B.B.; Li, B.X.; Mu, W.; Liu, F. Toxicity and control efficacy of tetramycin against Passalora fulva. Chin. J. Pestic. Sci. 2017, 19, 324–330. [Google Scholar]
- Ma, D.; Zhu, J.; He, L.; Cui, K.; Mu, W.; Liu, F. Baseline Sensitivity and Control Efficacy of Tetramycin against Phytophthora capsici Isolates in China. Plant Dis. 2017, 102, 863–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; He, L.; Li, X.; Lin, J.; Mu, W.; Liu, F. Toxicity and biochemical action of the antibiotic fungicide tetramycin on Colletotrichum scovillei. Pestic. Biochem. Physiol. 2018, 147, 51–58. [Google Scholar] [CrossRef]
- Ma, D.; Zhu, J.; Jiang, J.; Zhao, Y.; Li, B.; Mu, W.; Liu, F. Evaluation of bioactivity and control efficacy of tetramycin against Corynespora cassiicola. Pestic. Biochem. Physiol. 2018, 152, 106–113. [Google Scholar] [CrossRef]
- Wang, L.P.; Chang, G.B.; Meng, S.; Sun, C.H. Study on the poplar canker disease controlled using four hygromycin in field. J. Microbiol. 2014, 34, 68–70. [Google Scholar]
- Li, H.; Liu, J.B.; Wang, T.J.; Jiang, H.; Zhang, R.B.; Guan, W.J. Research progress of ATP-binding cassette transporters in Polyene antibiotic biosynthesis Gene Cluster. Microbiol. China 2014, 41, 950–958. [Google Scholar]
- Zhong, L.J. Studies on the rice resistance to rice blast induced by tetramycin. J. Anhui Agric. Sci. 2010, 38, 6263–6264. [Google Scholar]
Diseases | Pathogens | Antibiotic Bactericides | Regression Equation | Determination Coefficient (R2) | EC50 (mg kg−1) |
---|---|---|---|---|---|
Canker | Psa | 0.3% Tetramycin AS | y = 4.9514 + 0.5947x | 0.9839 | 1.21 |
4.0% Kasugamycin WP | y = 1.9636 + 1.4521x | 0.9098 | 123.31 | ||
3.0% Zhongshengmycin WP | y = 3.6935 + 1.0628x | 0.9923 | 16.95 | ||
Soft rot | B. dothidea | 0.3% Tetramycin AS | y = 6.0759 + 1.2511x | 0.9963 | 0.14 |
5.0% Polyoxin AS | y = 2.0651 + 1.5223x | 0.9931 | 84.75 | ||
4.0% Kasugamycin WP | y = 3.1542 + 0.6457x | 0.9652 | 722.21 | ||
Phomopsis sp. | 0.3% Tetramycin AS | y = 1.1510 + 9.3601x | 0.9968 | 0.09 | |
5.0% Polyoxin AS | y = 2.3579 + 1.6551x | 0.9684 | 39.48 | ||
4.0% Kasugamycin WP | y = 2.6214 + 0.7634x | 0.9857 | 1306.36 | ||
Blossom blight | P. fulva | 0.3% Tetramycin AS | y = 4.9404 + 0.6414x | 0.9744 | 1.24 |
4.0% Kasugamycin WP | y = 3.6968 + 0.6237x | 0.9144 | 122.91 | ||
3.0% Zhongshengmycin WP | y = 3.1389 + 0.7711x | 0.9040 | 259.24 | ||
Brown spot | A. tenuissima | 0.3% Tetramycin AS | y = 5.7631 + 0.9705x | 0.9928 | 0.16 |
5.0% Polyoxin AS | y = 2.3767 + 2.2548x | 0.959 | 14.57 | ||
4.0% Kasugamycin WP | y = 4.1000 + 0.2867x | 0.9432 | 1362.11 | ||
Crown gall | A. tumefaciens | 0.3% Tetramycin AS | y = 7.3724 + 1.0031x | 0.9962 | 0.72 |
4.0% Kasugamycin WP | y = 3.5950 + 0.6408x | 0.9813 | 519.24 | ||
3.0% Zhongshengmycin WP | y = 4.1821 + 0.2371x | 0.9759 | 2811.88 | ||
Root rot | A. mellea | 0.3% Tetramycin AS | y = 5.6952 + 0.5530x | 0.9922 | 0.06 |
5.0% Polyoxin AS | y = 4.3471 + 0.5381x | 0.9866 | 16.34 | ||
4.0% Kasugamycin WP | y = 2.8248 + 0.7971x | 0.9801 | 558.41 | ||
P. cactorum | 0.3% Tetramycin AS | y = 5.2013 + 0.2600x | 0.9942 | 0.17 | |
5.0% Polyoxin AS | y = 4.5736 + 0.4337x | 0.9915 | 9.62 | ||
4.0% Kasugamycin WP | y = 0.8490 + 1.4371x | 0.9920 | 793.17 |
Treatments | Healing Rate of Disease Spots (%) | Control Effect (%) |
---|---|---|
0.3% Tetramycin AS | 72.68 ± 3.46 aA | 74.45 ± 3.61 aA |
3.0% Zhongshengmycin WP | 50.23 ± 2.97 bB | 45.24 ± 3.32 bB |
CK | 3.95 ± 0.38 cC |
Treatments | Soft Rot | Blossom Blight | Brown Spot | |||
---|---|---|---|---|---|---|
Incidence Rate of Disease Fruit(%) | Control Effect (%) | Incidence Rate of Disease Flower Bud (%) | Control Effect (%) | Disease Index | Control Effect (%) | |
0.3% Tetramycin AS | 9.00 ± 2.65 cC | 83.55 ± 3.47 aA | 5.25 ± 0.75 cC | 84.74 ± 2.60 aA | 3.21 ± 0.99 cC | 89.62 ± 2.56 aA |
5.0% Polyoxin AS | 21.00 ± 1.73 bB | 60.83 ± 4.63 bB | 22.56 ± 2.28 bB | 34.73 ± 5.40 bB | 13.67 ± 1.86 bB | 55.51 ± 3.31 bB |
CK | 54.00 ± 6.24 aA | 34.56 ± 2.03 aA | 30.63 ± 1.96 aA |
Treatments | Longitudinal Diameter (mm) | Transverse Diameter (mm) | Lateral Diameter (mm) | Fruit Shape Index | Single Fruit Volume (cm3) | Single Fruit Weight (g) |
---|---|---|---|---|---|---|
0.3% Tetramycin AS | 76.60 ± 1.05 a | 53.15 ± 0.51 a | 41.91 ± 0.82 a | 1.61 ± 0.02 a | 71.42 ± 1.06 a | 80.93 ± 0.86 a |
5.0% Polyoxin AS | 76.14 ± 0.74 a | 51.57 ± 0.50 b | 42.49 ± 0.70 a | 1.62 ± 0.03 a | 69.84 ± 1.69 b | 77.10 ± 0.14 b |
CK | 75.24 ± 0.17 ab | 51.05 ± 0.38 b | 41.35 ± 0.09 a | 1.63 ± 0.01 a | 66.50 ± 0.68 c | 76.19 ± 0.80 bc |
Treatments | Vitamin C (g kg−1) | Total Soluble Sugar (%) | Soluble Solid (%) | Dry Matter (%) | Soluble Protein (%) | Titratable Acidity (%) |
---|---|---|---|---|---|---|
0.3% Tetramycin AS | 1.89 ± 0.01 a | 12.44 ± 0.11 a | 1.89 ± 0.01 a | 19.50 ± 0.05 a | 1.76 ± 0.05 a | 1.01 ± 0.01 b |
5.0% Polyoxin AS | 1.83 ± 0.01 ab | 12.08 ± 0.02 b | 1.82 ± 0.01 b | 19.25 ± 0.10 a | 1.74 ± 0.01 a | 1.12 ± 0.06 a |
CK | 1.81 ± 0.01 b | 12.07 ± 0.02 b | 1.81 ± 0.01 b | 18.39 ± 0.08 b | 1.71 ± 0.01 ab | 1.13 ± 0.03 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Zhang, C.; Long, Y.; Wu, X.; Su, Y.; Lei, Y.; Ai, Q. Bioactivity and Control Efficacy of the Novel Antibiotic Tetramycin against Various Kiwifruit Diseases. Antibiotics 2021, 10, 289. https://doi.org/10.3390/antibiotics10030289
Wang Q, Zhang C, Long Y, Wu X, Su Y, Lei Y, Ai Q. Bioactivity and Control Efficacy of the Novel Antibiotic Tetramycin against Various Kiwifruit Diseases. Antibiotics. 2021; 10(3):289. https://doi.org/10.3390/antibiotics10030289
Chicago/Turabian StyleWang, Qiuping, Cheng Zhang, Youhua Long, Xiaomao Wu, Yue Su, Yang Lei, and Qiang Ai. 2021. "Bioactivity and Control Efficacy of the Novel Antibiotic Tetramycin against Various Kiwifruit Diseases" Antibiotics 10, no. 3: 289. https://doi.org/10.3390/antibiotics10030289
APA StyleWang, Q., Zhang, C., Long, Y., Wu, X., Su, Y., Lei, Y., & Ai, Q. (2021). Bioactivity and Control Efficacy of the Novel Antibiotic Tetramycin against Various Kiwifruit Diseases. Antibiotics, 10(3), 289. https://doi.org/10.3390/antibiotics10030289