Bee Bread Exhibits Higher Antimicrobial Potential Compared to Bee Pollen
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Bee Pollen (BP) and Bee Bread (BB) Samples
4.2. Chemicals and Reagents
4.3. Bacterial Strains and Media
4.4. Preparation of BP and BB Ethanolic Extracts
4.5. Investigation of Antimicrobial Potential of Alcoholic Extracts of BP and BB—Determination of Values of MIC (Minimum Inhibitory Concentration) and MBC (Minimum Bactericidal Concentration)
4.6. Time-Kill Assay—Determination of Kinetic of Bactericidal Effects of BP and BB Extracts and Suspensions of Raw Materials against Staphylococci
4.7. Total Phenolics Determination
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marcucci, M.C. Propolis: Chemical composition, biological properties and therapeutic activity. Apidologie 1995, 26, 83–99. [Google Scholar] [CrossRef]
- Simone-Finstrom, M.; Spivak, M. Propolis and bee health: The natural history and significance of resin use by honey bees. Apidologie 2010, 41, 295–311. [Google Scholar] [CrossRef] [Green Version]
- Grecka, K.; Kuś, P.M.; Okińczyc, P.; Worobo, R.W.; Walkusz, J.; Szweda, P. The anti-staphylococcal potential of ethanolic polish propolis extracts. Molecules 2019, 24, 1732. [Google Scholar] [CrossRef] [Green Version]
- Pobiega, K.; Kraśniewska, K.; Przybył, J.L.; Bączek, K.; Żubernik, J.; Witrowa-Rajchert, D.; Gniewosz, M. Growth Biocontrol of Foodborne Pathogens and Spoilage Microorganisms of Food by Polish Propolis Extracts. Molecules 2019, 24, 2965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwakman, P.H.; te Velde, A.A.; de Boer, L.; Speijer, D.; Vandenbroucke-Grauls, C.M.; Zaat, S.A. How honey kills bacteria. FASEB J. 2010, 24, 2576–2582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwakman, P.H.; Zaat, S.A. Antibacterial components of honey. IUBMB Life 2012, 64, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Szweda, P. Antimicrobial activity of honey. In Honey Analysis; Toledo, A.A., Ed.; InTech: Rijeka, Croatia, 2017. [Google Scholar]
- Grecka, K.; Kuś, P.M.; Worobo, R.W.; Szweda, P. Study of the Anti-Staphylococcal Potential of Honeys Produced in Northern Poland. Molecules 2018, 23, 260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bucekova, M.; Jardekova, L.; Juricova, V.; Bugarova, V.; Di Marco, G.; Gismondi, A.; Leonardi, D.; Farkasovska, J.; Godocikova, J.; Laho, M.; et al. Antibacterial Activity of Different Blossom Honeys: New Findings. Molecules 2019, 24, 1573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brudzynski, K.; Abubaker, A.; St-Martin, L.; Castle, A. Re-examining the role of hydrogen peroxide in bacteriostatic and bactericidal activities of honey. Front. Microbiol. 2011, 2, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodschneider, R.; Crailsheim, K. Nutrition and health in honey bees. Apidologie 2010, 41, 278–294. [Google Scholar] [CrossRef]
- Kieliszek, M.; Piwowarek, K.; Kot, A.; Błażejak, S.; Chlebowska-Śmigiel, A.; Wolska, I. Pollen and bee bread as new health-oriented products: A review. Trends Food Sci. Technol. 2018, 71, 170–180. [Google Scholar] [CrossRef]
- Kostić, A.Ž.; Milinčić, D.D.; Barać, M.B.; Ali Shariati, M.; Tešić, Ž.L.; Pešić, M.B. The Application of Pollen as a Functional Food and Feed Ingredient—The Present and Perspectives. Biomolecules 2020, 10, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdella, E.M.; Tohamy, A.; Ahmad, R.R. Antimutagenic activity of Egyptian propolis and bee pollen water extracts against cisplatininduced chromosomal abnormalities in bone marrow cells of mice. Iran. J. Cancer Prev. 2009, 2, 175–181. [Google Scholar]
- Fatrcová-Šramková, K.; Nôžková, J.; Máriássyová, M.; Kačániová, M. Biologically active antimicrobial and antioxidant substances in the Helianthus annuus L. bee pollen. J. Environ. Sci. Health Part B 2016, 51, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Didaras, N.A.; Karatasou, K.; Dimitriou, T.G.; Amoutzias, G.D.; Mossialos, D. Antimicrobial Activity of Bee-Collected Pollen and Beebread: State of the Art and Future Perspectives. Antibiotics 2020, 9, 811. [Google Scholar] [CrossRef] [PubMed]
- Casteel, D.B. The behavior of the honey bee in pollen collection. U.S.D.A. Bur. Entomol. Bull. 1912, 121, 1–36. [Google Scholar]
- Gilliam, M. Microbiology of pollen and bee bread: The yeasts. Apidologie 1979, 10, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Komosińska-Vassev, K.; Olczyk, P.; Kaźmierczak, J.; Mencner, Ł.; Olczyk, K. Bee pollen: Chemical composition and therapeutic application. Evid. Based Complement. Altern. Med. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Disayathanoowat, T.; Li, H.; Supapimon, N.; Suwannarach, N.; Lumyong, S.; Chantawannakul, P.; Guo, J. Different Dynamics of Bacterial and Fungal Communities in Hive-Stored Bee Bread and Their Possible Roles: A Case Study from Two Commercial Honey Bees in China. Microorganisms 2020, 8, 264. [Google Scholar] [CrossRef] [Green Version]
- Vásquez, A.; Olofsson, T.C. The lactic acid bacteria involved in the production of bee pollen and bee bread. J. Apic. Res. 2009, 48, 189–195. [Google Scholar] [CrossRef]
- Attard, E. A rapid microtitre plate Folin-Ciocalteu method for the assessment of polyphenols. Open Life Sci. 2013, 8, 48–53. [Google Scholar] [CrossRef]
- Markiewicz-Żukowska, R.; Naliwajko, S.; Bartosiuk, E.; Moskwa, J.; Isidorov, V.; Soroczyńska, J.; Borawska, M. Chemical composition and antioxidant activity of beebread, and its influence on the glioblastoma cell line (U87MG). J. Apic. Sci. 2013, 57, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Silva-Carvalho, R.; Baltazar, F.; Almeida-Aguiar, C. Propolis: A complex natural product with a plethora of biological activities that can be explored for drug development. Evid. Based Complement. Alternat. Med. 2015, 206439. [Google Scholar] [CrossRef]
- Haydak, M.H.; Vivino, A.E. The Changes in the Thiamine, Riboflavin, Niacin and Pantothenic Acid Content in the Food of Female Honeybees during Growth with a Note on the Vitamin K Activity of Royal Jelly and Beebread1. Ann. Entomol. Soc. Am. 1950, 43, 361–367. [Google Scholar] [CrossRef]
- Arruda, V.; Pereira, A.; Freitas, A.; Barth, O.; Almeida-Muradian, L. Dried bee pollen: B complex vitamins, physicochemical and botanical composition. J. Food Compos. Anal. 2013, 29, 100–105. [Google Scholar] [CrossRef]
- Farag, S.; El-Rayes, T. Effect of Bee-pollen Supplementation on Performance, Carcass Traits and Blood Parameters of Broiler Chickens. Asian J. Anim. Vet. Adv. 2016, 11, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Bakour, M.; Fernandes, A.; Barros, L.; Soković, M.; Ferreira, I.; Badiaa, L. Bee bread as a functional product: Chemical composition and bioactive properties. LWT 2019, 109, 276–282. [Google Scholar] [CrossRef] [Green Version]
- Szczesna, T. Long-chain fatty acids composition of honeybee-collected pollen. J. Apic. Sci. 2006, 50, 65–79. [Google Scholar]
- Mărgăoan, R.; Marghitas, L.; Dezmirean, D.; Francisc, D.; Bunea, A.; Socaci, S.; Bobis, O. Predominant and Secondary Pollen Botanical Origins Influence the Carotenoid and Fatty Acid Profile in Fresh Honeybee-Collected Pollen. J. Agric. Food Chem. 2014, 62, 6306–6316. [Google Scholar] [CrossRef]
- Kaplan, M.; Karaoglu, Ö.; Eroglu, N.; Silici, S. Fatty Acid and Proximate Composition of Bee Bread. Food Technol. Biotechnol. 2016, 54, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Nagai, T.; Nagashima, T.; Myoda, T.; Inoue, R. Preparation and functional properties of extracts from bee bread. Food/Nahrung 2004, 48, 226–229. [Google Scholar] [CrossRef] [PubMed]
- Barene, I.; Daberte, I.; Siksna, S. Investigation of bee bread and development of its dosage forms. Medicinos Teorija ir Praktika 2014, 21, 16–22. [Google Scholar] [CrossRef]
- Sarić, A.; Balog, T.; Sobocanec, S.; Kusić, B.; Sverko, V.; Rusak, G.; Likić, S.; Bubalo, D.; Pinto, B.; Reali, D.; et al. Antioxidant effects of flavonoid from Croatian Cystus incanus L. rich bee pollen. Food Chem. Toxicol. 2009, 47, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Iorizzo, M.; Lombardi, S.J.; Ganassi, S.; Testa, B.; Ianiro, M.; Letizia, F.; Succi, M.; Tremonte, P.; Vergalito, F.; Cozzolino, A.; et al. Antagonistic Activity against Ascosphaera apis and Functional Properties of Lactobacillus kunkeei Strains. Antibiotics 2020, 9, 262. [Google Scholar] [CrossRef] [PubMed]
- Iorizzo, M.; Testa, B.; Lombardi, S.J.; Ganassi, S.; Ianiro, M.; Letizia, F.; Succi, M.; Tremonte, P.; Vergalito, F.; Cozzolino, A.; et al. Antimicrobial Activity against Paenibacillus larvae and Functional Properties of Lactiplantibacillus plantarum Strains: Potential Benefits for Honeybee Health. Antibiotics 2020, 9, 442. [Google Scholar] [CrossRef]
- Velásquez, P.; Rodríguez, K.; Retamal, M.A.; Giordano, A.; Valenzuela, L.M.; Montenegro, G. Relation between composition, antioxidant and antibacterial activities and botanical origin of multifloral bee pollen. J. Appl. Bot. Food Qual. 2017, 90, 306–314. [Google Scholar]
- Pascoal, A.; Rodrigues, S.; Teixeira, A.; Feás, X.; Estevinho, L.M. Biological activities of commercial bee pollens: Antimicrobial, antimutagenic, antioxidant and anti-inflammatory. Food Chem. Toxicol. 2014, 63, 233–239. [Google Scholar] [CrossRef]
- Karadal, F.; Onmaz, N.E.; Abay, S.; Yildirim, Y.; Al, S.; Tatyuz, I.; Akcay, A. A Study of Antibacterial and Antioxidant Activities of Bee Products: Propolis, Pollen and Honey Samples. Ethiop. J. Health Dev. 2018, 32, 116–122. [Google Scholar]
- Abouda, Z.; Zerdani, I.; Kalalou, I.; Faid, M.; Ahami, M.T. The Antibacterial Activity of Moroccan Bee Bread and Bee-Pollen (Fresh and Dried) against Pathogenic Bacteria. Res. J. Microbiol. 2011, 6, 376–384. [Google Scholar]
- Khider, M.; Elbanna, K.; Mahmoud, A.; Owayss, A.A. Egyptian honeybee pollen as antimicrobial, antioxidant agents, and dietary food supplements. Food Sci. Biotechnol. 2013, 22, 1–9. [Google Scholar] [CrossRef]
- Graikou, K.; Kapeta, S.; Aligiannis, N.; Sotiroudis, G.; Chondrogianni, N.; Gonos, E.; Chinou, I. Chinou I: Chemical analysis of Greek pollen-antioxidant, antimicrobial and proteasome activation. Chem. Cent. J. 2011, 5, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urcan, A.; Criste, A.; Dezmirean, D.; Bobiș, O.; Mărghitaș, L.; Mărgăoan, R.; Hrinca, A. Antimicrobial Activity of Bee Bread Extracts Against Different Bacterial Strains. Bull. UASVM Anim. Sci. Biotechnol. 2018, 75, 7. [Google Scholar] [CrossRef] [Green Version]
- Akhir, R.A.M.; Bakar, M.F.A.; Sanusi, S.B. Antioxidant and antimicrobial activity of stingless bee bread and propolis extracts. AIP Conf. Proc. 2017, 1891, 020090. [Google Scholar]
- Ivanišová, E.; Kacaniova, M.; Frančáková, H.; Petrová, J.; Hutková, J.; Brovarskyi, V.; Velychko, S.; Adamchuk, L.; Schubertová, Z.; Musilová, J. Bee bread—Perspective source of bioactive compounds for future. Potravinarstvo 2015, 9, 592–598. [Google Scholar]
- Kacaniova, M.; Vuković, N.; Chlebo, R.; Haščík, P.; Rovná, K.; Cubon, J.; Dzugan, M.; Pasternakiewicz, A. The antimicrobial activity of honey, bee pollen loads and beeswax from Slovakia. Arch. Biol. Sci. 2012, 64, 927–934. [Google Scholar] [CrossRef]
- AbdElsalam, E.; Foda, H.S.; Abdel-Aziz, M.S.; Abd, F.K. Antioxidant and Antimicrobial activities of Egyptian Bee Pollen. Middle East J. Appl. Sci. 2018, 8, 1248–1255. [Google Scholar]
- Šimunović, K.; Abramovi, H.; Lilek, N.; Angelova, M.; Podržaj, L.; Smole Možina, S. Microbiological quality, antioxidative and antimicrobial properties of Slovenian bee pollen. AGROFOR 2019, 4. [Google Scholar] [CrossRef]
- Olczyk, P.; Koprowski, R.; Kaźmierczak, J.; Mencner, L.; Wojtyczka, R.; Stojko, J.; Olczyk, K.; Komosinska-Vassev, K. Bee Pollen as a Promising Agent in the Burn Wounds Treatment. Evid. Based Complement. Alternat. Med. 2016, 2016, 8473937. [Google Scholar]
- Morais, M.; Moreira, L.; Feás, X.; Estevinho, L.M. Honeybee-collected pollen from five Portuguese Natural Parks: Palynological origin, phenolic content, antioxidant properties and antimicrobial activity. Food Chem. Toxicol. 2011, 49, 1096–1101. [Google Scholar] [CrossRef] [Green Version]
- Tomás, A.; Falcão, S.I.; Russo-Almeida, P.; Vilas-Boas, M. Potentialities of beebread as a food supplement and source of nutraceuticals: Botanical origin, nutritional composition and antioxidant activity. J. Apic. Res. 2017, 56, 219–230. [Google Scholar] [CrossRef]
- Urcan, A.C.; Criste, A.D.; Dezmirean, D.S.; Mărgăoan, R.; Caeiro, A.; Graça Campos, M. Similarity of Data from Bee Bread with the Same Taxa Collected in India and Romania. Molecules 2018, 23, 2491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bridi, R.; Atala, E.; Núñez Pizarro, P.; Montenegro, G. Honeybee Pollen Load: Phenolic Composition and Antimicrobial Activity and Antioxidant Capacity. J. Nat. Prod. 2019, 82, 559–565. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Seventeenth Informational Supplement; CLSI Document M100–S17; Clinical Laboratory Standard Institute: Wayne, PA, USA, 2007. [Google Scholar]
Product | S. aureus ATCC 253923 | S. aureus ATCC 29213 | S. epidermidis ATCC 12228 | E. coli ATCC 25922 | P. aeruginosa ATCC 27853 | TPC [mg GAE/g] | Sample Location | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC (v/w) [%] | MBC (v/w) [%] | MIC (v/w) [%] | MBC (v/w) [%] | MIC (v/w) [%] | MBC (v/w) [%] | MIC (v/w) [%] | MBC (v/w) [%] | MIC (v/w) [%] | MBC (v/w) [%] | |||
BP1 | 10 | >20 | 10 | 20 | 10 | >20 | >20 | >20 | 20 | 20 | 21.05 ± 0.09 | Szczytno a |
BP2 | 20 | >20 | 20 | >20 | 20 | >20 | >20 | >20 | 10 | 20 | 20.61 ± 0.16 | Mielec a |
BP3 | 10 | 20 | >20 | >20 | 10 | >20 | >20 | >20 | 10 | 20 | 20.92 ± 0.18 | Mielec a |
BP4 | 20 | >20 | >20 | >20 | 20 | >20 | 20 | >20 | 20 | 20 | 20.96 ± 0.23 | Mielec a |
BP5 | 10 | >20 | 10 | 10 | 10 | >20 | 20 | 20 | 20 | 20 | 20.74 ± 0.06 | Gdańsk a |
BP6 | 10 | 20 | 20 | 20 | 20 | >20 | 20 | >20 | 20 | 20 | 20.37 ± 0.17 | Kozaki |
BP7 | 10 | 20 | 10 | 20 | 10 | 20 | 20 | 20 | 20 | 20 | 20.81 ± 0.09 | Koryciny |
BP8 | 20 | >20 | >20 | >20 | 20 | >20 | 20 | >20 | >20 | >20 | 20.76 ± 0.28 | Stróże |
BP9 | 10 | 20 | 10 | 10 | 10 | 10 | 20 | >20 | 20 | 20 | 20.49 ± 0.43 | Czarne |
BP10 | 10 | 20 | 20 | 20 | 10 | >20 | 20 | >20 | 20 | 20 | 20.99 ± 0.16 | Brusy |
BP11 | 10 | 20 | 10 | 20 | 5 | 20 | 20 | >20 | 10 | 20 | 20.40 ± 0.06 | Bielsko-Biała a |
BP12 | 20 | >20 | >20 | >20 | 20 | >20 | >20 | >20 | 10 | 20 | 19.95 ± 0.22 | Gdańsk a |
BP13 | 10 | 20 | 10 | 20 | 10 | 20 | >20 | >20 | 10 | 10 | 20.93 ± 0.19 | Cychry |
BP14 | 10 | >20 | 20 | >20 | 20 | 20 | >20 | >20 | 10 | 20 | 19.91 ± 0.18 | Malbork a |
BP15 | 10 | 10 | 5 | 5 | 5 | 10 | 20 | 20 | 10 | 10 | 19.32 ± 0.12 | Niżna Łąka |
BP16 | 20 | 20 | 10 | 20 | 10 | 10 | >20 | >20 | 20 | 20 | 20.39 ± 0.35 | Siedlce a |
BP17 | 20 | 20 | 20 | 20 | 5 | 20 | 20 | >20 | 10 | 20 | 16.38 ± 0.35 | Miłogoszcz |
BP18 | 20 | >20 | >20 | >20 | 10 | 20 | 20 | >20 | 10 | 20 | 13.95 ± 0.50 | Miłogoszcz |
BP19 | 20 | >20 | 10 | 20 | 20 | >20 | >20 | >20 | 10 | 20 | 19.81 ± 0.35 | Miłogoszcz |
BP20 | 10 | 10 | 5 | 5 | 10 | 20 | >20 | >20 | 10 | 10 | 19.60 ± 0.41 | Modzele |
BP21 | 20 | >20 | >20 | >20 | 20 | >20 | >20 | >20 | 20 | 20 | 16.17 ± 0.81 | Miłogoszcz |
BP22 | 20 | 20 | 20 | >20 | 10 | >20 | 20 | >20 | 10 | 10 | 20.56 ± 0.34 | Wałcz a |
BP23 | 20 | 20 | 10 | 10 | 10 | >20 | 20 | >20 | 20 | 20 | 14.79 ± 0.20 | Miłogoszcz |
BP24 | 10 | 20 | 10 | 20 | 10 | >20 | 20 | 20 | 10 | 10 | 20.24 ± 0.18 | Czaplinek |
BP25 | 10 | 20 | 10 | 20 | 20 | >20 | 20 | >20 | 10 | 10 | 20.95 ± 0.32 | Stanisławowo |
BP26 | 10 | >20 | 10 | 10 | 20 | >20 | 20 | >20 | 20 | 20 | 19.08 ± 0.14 | Mielec a |
BP27 | >20 | >20 | 20 | >20 | 20 | >20 | >20 | >20 | 20 | 20 | 20.40 ± 0.08 | Miłogoszcz |
BP28 | 20 | >20 | 20 | >20 | 20 | >20 | >20 | >20 | 20 | 20 | 18.34 ± 0.25 | Mielec a |
BP29 | 10 | 20 | 10 | 10 | 10 | >20 | >20 | >20 | 10 | 20 | 16.64 ± 0.21 | Miłogoszcz |
BP30 | 10 | 20 | 10 | 10 | 20 | >20 | >20 | >20 | 10 | 10 | 18.94 ± 0.21 | Pelplin a |
BB1 | 10 | 10 | 2.5 | 5 | 5 | 10 | 20 | >20 | 10 | 20 | 20.18 ± 1.22 | Legnica a |
BB2 | 5 | 5 | 2.5 | 5 | 5 | 20 | 20 | 20 | 10 | 10 | 19.47 ± 0.38 | Malbork a |
BB3 | 10 | 20 | 5 | 5 | 5 | 10 | 20 | 20 | 10 | 10 | 16.88 ± 0.52 | Bielsko-Biała a |
BB4 | 5 | 5 | 2.5 | 5 | 5 | 10 | 20 | >20 | 10 | 10 | 19.42 ± 0.31 | Cychry |
BB5 | 5 | 5 | 2.5 | 5 | 5 | 10 | 20 | 20 | 10 | 10 | 17.65 ± 0.29 | Stanisławowo |
BB6 | 2.5 | 5 | 2.5 | 5 | 5 | 10 | 20 | >20 | 10 | 10 | 17.03 ± 0.41 | Czaplinek |
BB7 | 5 | 10 | 2.5 | 2.5 | 5 | 10 | 20 | 20 | 10 | 20 | 18.89 ± 0.43 | Mielec a |
BB8 | 5 | 5 | 5 | 5 | 5 | 10 | 20 | >20 | 10 | 20 | 19.07 ± 0.04 | Mielec a |
BB9 | 5 | 5 | 2.5 | 5 | 5 | 10 | 20 | >20 | 10 | 10 | 17.15 ± 0.25 | nd |
BB10 | 5 | 10 | 2.5 | 5 | 10 | 10 | 20 | 20 | 10 | 10 | 19.50 ± 0.33 | Brusy |
BB11 | 2.5 | 2.5 | 2.5 | 2.5 | 5 | 10 | 20 | 20 | 10 | 10 | 18.98 ± 0.18 | Częstochowa a |
BB12 | 5 | 5 | 2.5 | 5 | 10 | 10 | 20 | >20 | 10 | 10 | 18.64 ± 0.13 | Miłogoszcz |
BB13 | 5 | 5 | 2.5 | 2.5 | 10 | 10 | 20 | 20 | 10 | 10 | 19.66 ± 0.13 | Malbork a |
BB14 | 5 | 5 | 2.5 | 2.5 | 10 | 10 | 20 | 20 | 10 | 10 | 18.54 ± 0.11 | Suchorzew |
BB15 | 5 | 10 | 5 | 5 | 5 | 10 | 20 | 20 | 10 | 10 | 18.20 ± 0.30 | Miłogoszcz |
BB16 | 2.5 | 5 | 5 | 5 | 5 | 10 | 20 | 20 | 10 | 10 | 18.49 ± 0.29 | Miłogoszcz |
BB17 | 10 | 10 | 5 | 10 | 5 | 10 | 20 | 20 | 10 | 10 | 19.04 ± 0.26 | Majdan Starowiejski |
BB18 | 5 | 5 | 5 | 5 | 5 | 10 | 20 | 20 | 10 | 10 | 18.60 ± 0.46 | Warka |
BB19 | 10 | 20 | 5 | 10 | 10 | 20 | 20 | 20 | 20 | 20 | 17.70 ± 0.38 | Modzele |
Product | BP9 | BP15 | BP20 | BB6 | BB11 | BB14 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Strain No. | MIC [v/w] [%] | MBC [v/w] [%] | MIC [v/w] [%] | MBC [v/w] [%] | MIC [v/w] [%] | MBC [v/w] [%] | MIC [v/w] [%] | MBC [v/w] [%] | MIC [v/w] [%] | MBC [v/w] [%] | MIC [v/w] [%] | MBC [v/w] [%] |
1 | 10 | 20 | 10 | 10 | 10 | 10 | 5 | 5 | 2.5 | 5 | 5 | 5 |
2 | 10 | 10 | 5 | 5 | 5 | 5 | 5 | 5 | 2.5 | 2.5 | 2.5 | 5 |
3 | 10 | 10 | 10 | 10 | 10 | 10 | 5 | 5 | 5 | 5 | 2.5 | 2.5 |
4 | 10 | 20 | 10 | 10 | 10 | 20 | 2.5 | 5 | 2.5 | 5 | 5 | 5 |
5 | 10 | 20 | 5 | 10 | 5 | 10 | 2.5 | 2.5 | 2.5 | 5 | 5 | 5 |
6 | 10 | 10 | 5 | 5 | 5 | 5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 5 |
7 | 10 | 10 | 5 | 5 | 5 | 5 | 2.5 | 5 | 2.5 | 5 | 2.5 | 2.5 |
8 | 10 | 10 | 5 | 5 | 5 | 5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
9 | 10 | 10 | 5 | 5 | 5 | 5 | 2.5 | 2.5 | 2.5 | 2.5 | 5 | 5 |
No. | Number/Phenotype | Ward/Material | Antibiogram 1 |
---|---|---|---|
1 | 4471313/MSSA | Intensive care/Nasal swab | Resistant—Pen. Sensitive—Met., Clin., Ery. |
2 | 4475564/MSSA | Internal/Nasal swab | Resistant—Pen. Clin. Ery. Sensitive—Met. |
3 | 4466686/MSSA | Surgical/Sputum | Resistant—Pen. Clin. Ery. Sensitive—Met. |
4 | 4467080/MSSA | Internal/Nasal swab | Resistant—Pen. Sensitive—Met. Clin., Ery. |
5 | 4467076/MSSA | Laryngology/A swab from the ear | Resistant—Pen. Sensitive—Met. Clin., Ery.S |
6 | 4468505/MSSA | Interna/Nasal swabl | Resistant—Pen. Clin. Ery. Sensitive—Met. |
7 | 45300223/MRSA | Pediatrics/Blood | Resistant—Pen. Clin. Ery. Met. |
8 | 9935169/MRSA | Dispensary/Wound | Resistant—Pen. Clin. Ery. Met. |
9 | 9944662/MRSA | Dermatology/Nasal swab | Resistant—Pen. Clin. Ery. Met. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pełka, K.; Otłowska, O.; Worobo, R.W.; Szweda, P. Bee Bread Exhibits Higher Antimicrobial Potential Compared to Bee Pollen. Antibiotics 2021, 10, 125. https://doi.org/10.3390/antibiotics10020125
Pełka K, Otłowska O, Worobo RW, Szweda P. Bee Bread Exhibits Higher Antimicrobial Potential Compared to Bee Pollen. Antibiotics. 2021; 10(2):125. https://doi.org/10.3390/antibiotics10020125
Chicago/Turabian StylePełka, Karolina, Olga Otłowska, Randy W. Worobo, and Piotr Szweda. 2021. "Bee Bread Exhibits Higher Antimicrobial Potential Compared to Bee Pollen" Antibiotics 10, no. 2: 125. https://doi.org/10.3390/antibiotics10020125
APA StylePełka, K., Otłowska, O., Worobo, R. W., & Szweda, P. (2021). Bee Bread Exhibits Higher Antimicrobial Potential Compared to Bee Pollen. Antibiotics, 10(2), 125. https://doi.org/10.3390/antibiotics10020125