New Antimicrobials Based on the Adarotene Scaffold with Activity against Multi-Drug Resistant Staphylococcus aureus and Vancomycin-Resistant Enterococcus
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Antimicrobial Activity
2.3. NMR Investigation
3. Materials and Methods
3.1. Chemistry. General Information
3.2. NMR Investigation on the Interaction of Adarotene with a Model of Microorganism Membrane
3.3. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boucher, H.W.; Talbot, G.H.; Benjamin, D.K., Jr.; Bradley, J.; Guidos, R.J.; Jones, R.N.; Murray, B.E.; Bonomo, R.A.; Gilbert, D. 10 × ’20 Progress—Development of new drugs active against gram-negative bacilli: An update from the infectious diseases society of America. Clin. Infect. Dis. 2013, 56, 1685–1694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossolini, G.M.; Arena, F.; Giani, T. 138—Mechanisms of Antibacterial Resistance. In Infectious Diseases, 4th ed.; Cohen, J., Powderly, W.G., Opal, S.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 2, pp. 1181–1196.e1. [Google Scholar] [CrossRef]
- Arias, C.C.; Murray, B.E. A new antibiotic and the evolution of resistance. N. Engl. J. Med. 2015, 372, 1168–1170. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final report and recommendations. Rev. Antimicrob. Resist. 2016. Available online: https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf (accessed on 10 December 2020).
- Inter Agency Coordination Group on AMR. AMR Framework for Action Supported by the IACG. Working Document. McKinsey & Company. 2017. Available online: http://www.who.int/antimicrobial-resistance/interagency-coordination-group/20170818_AMR_FfA_v01.pdf (accessed on 10 December 2020).
- European Centre for Disease Prevention and Control. Surveillance of Antimicrobial Resistance in Europe—Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) 2017; ECDC: Stockholm, Sweden, 2018; Available online: https://www.ecdc.europa.eu/sites/default/files/documents/surveillance-antimicrobial-resistance-Europe-2018.pdf (accessed on 10 December 2020).
- Cassini, A.; Diaz Högberg, L.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Skov Simonsen, G.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Ali, J.; Rafiq, Q.A.; Ratcliffe, E. Antimicrobial resistance mechanisms and potential synthetic treatments. Future Sci. OA 2018, 4, FSO290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, S.Y.C.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vestergaard, M.; Frees, D.; Ingmer, H. Antibiotic Resistance and the MRSA Problem. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E.; Magrini, N. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics; World Health Organization: Geneva, Switzerland, 2017; Available online: https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf (accessed on 10 December 2020).
- Kim, W.; Zhu, W.; Hendricks, G.L.; Tyne, D.; Steele, A.D.; Keohane, C.E.; Fricke, N.; Conery, A.L.; Shen, S.; Pan, W.; et al. A new class of synthetic retinoid antibiotics effective against bacterial persisters. Nature 2018, 556, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Cincinelli, R.; Dallavalle, S.; Nannei, R.; Carella, S.; De Zani, D.; Merlini, L.; Penco, S.; Garattini, E.; Giannini, G.; Pisano, C.; et al. Synthesis and structure−activity relationships of a new series of retinoid-Related biphenyl-4-ylacrylic acid endowed with antiproliferative and proapoptotic activity. J. Med. Chem. 2005, 48, 4931–4946. [Google Scholar] [CrossRef] [PubMed]
- Cincinelli, R.; Dallavalle, S.; Nannei, R.; Merlini, L.; Penco, S.; Giannini, G.; Pisano, C.; Vesci, L.; Ferrara, F.F.; Zuco, V.; et al. Synthesis and structure-activity relationships of new antiproliferative and proapoptotic retinoid-related biphenyl-4-yl-acrylic acids. Bioorg. Med. Chem. 2007, 15, 4863–4875. [Google Scholar] [CrossRef] [PubMed]
- Cincinelli, R.; Musso, L.; Giannini, G.; Zuco, V.; De Cesare, M.; Zunino, F.; Dallavalle, S. Influence of the adamantyl moiety on the activity of biphenylacrylohydroxamic acid-based HDAC inhibitors. Eur. J. Med. Chem. 2014, 79, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Giannini, G.; Brunetti, T.; Battistuzzi, G.; Alloatti, D.; Quattrociocchi, G.; Cima, M.G.; Merlini, L.; Dallavalle, S.; Cincinelli, R.; Nannei, R.; et al. New retinoid derivatives as back-ups of Adarotene. Bioorg. Med. Chem. 2012, 20, 2405–2415. [Google Scholar] [CrossRef] [PubMed]
- Cincinelli, R.; Musso, L.; Guglielmi, M.B.; La Porta, I.; Fucci, A.; D’Andrea, L.E.; Cardile, F.; Colelli, F.; Signorino, G.; Darwiche, N.; et al. Novel adamantyl retinoid-related molecules with POLA1 inhibitory activity. Bioorg. Chem. 2020, 104, 104253. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, A.V.; Kim, W.; Escobar, I.E.; Mylonakis, E.; Wuest, W.M. Structure−activity relationship and anticancer profile of second-generation anti-MRSA synthetic retinoids. ACS Med. Chem. Lett. 2020, 11, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Rakhmatullin, I.Z.; Galiullina, L.F.; Klochkova, E.A.; Latfullin, I.A.; Aganov, A.V.; Klochkov, V.V. Structural studies of pravastatin and simvastatin and their complexes with SDS micelles by NMR spectroscopy. J. Mol. Struct. 2016, 1105, 25–29. [Google Scholar] [CrossRef]
- Usachev, K.S.; Filippov, A.V.; Filippova, E.A.; Antzutkin, O.N.; Klochkov, V.V. Solution structures of Alzheimer’s amyloid Aβ13–23 peptide: NMR studies in solution and in SDS. J. Mol. Struct. 2013, 1049, 436–440. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Standard: M07; Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th ed.; CLSI: Wayne, PA, USA, 2018. [Google Scholar]
- Clinical and Laboratory Standards Institute. Standard: M26; Methods for Determining Bactericidal Activity of Antimicrobial Agents, 1st ed.; CLSI: Wayne, PA, USA, 1999. [Google Scholar]
- Levison, M.E. Pharmacodynamics of antimicrobial drugs. Infect. Dis. Clin. N. Am. 2004, 18, 451–465. [Google Scholar] [CrossRef] [PubMed]
- Kondo, Y.; Ito, T.; Ma, X.X.; Watanabe, S.; Kreiswirth, B.N.; Etienne, J.; Hiramatsu, K. Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: Rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob. Agents Chemother. 2007, 51, 264–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutka-Malen, S.; Evers, S.; Courvalin, P. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J. Clin. Microbiol. 1995, 33, 24–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
S. aureus Strain 1 | E. faecalis Strain 1 | ||||
---|---|---|---|---|---|
cpd | IC50 a (µM) | MIC [MBC] g | MIC [MBC] g | ||
(µg/mL) | (µM) | (µg/mL) | (µM) | ||
Adarotene | 0.23 ± 0.08 b | 8 [16] | 21 [42] | 1 [32] | 3 [85] |
1 | 30 b | 64 | 216 | >256 | >864 |
2 | >10 c | 256 | 573 | 128 | 287 |
3 | 7.8 ± 0.7 f | 32 | 50 | 128 | 201 |
4 | 8.3 ± 1.4 b | 128 [128] | 361 [361] | 32 [128] | 90 [360] |
5 | 1.1 ± 0.6 d | 64 | 164 | >256 | >657 |
6 | 6.6 ± 0.5 b | >256 | >549 | >256 | >550 |
7 | >3 b | 4 [16] | 10 [40] | 4 [16] | 10 [40] |
8 | 7.19 ± 1.27 b | 2 [8] | 5 [20] | 1 [8] | 3 [21] |
9 | >10 f | 2 [4] | 5 [10] | 1 [4] | 2 [10] |
10 | 48.42 ± 0.88 b | 16 [16] | 42 [42] | 16 [32] | 42 [85] |
11 | 0.52 ± 0.07 e | 16 [32] | 40 [80] | 8 | 20 |
12 | 0.23 ± 0.07 e | 4 | 9 | 2 | 5 |
13 | 1.24 ± 0.07 e | 8 [16] | 18 [36] | 4 [16] | 9 [36] |
14 | >10 f | 8 [8] | 15 [15] | 4 [16] | 8 [31] |
15 | 1.64 ± 0.03 e | 64 | 159 | 64 | 159 |
16 | >10 c | 4 [4] | 8 [8] | 2 [4] | 4 [8] |
17 | >10 c | 4 [4] | 9 [9] | 8 [16] | 19 [38] |
18 | >10 c | 128 | 269 | 128 | 269 |
19 | >10 c | 32 [64] | 72 [144] | 32 [64] | 72 [144] |
20 | 3.2 ± 0.2 c | 2 [32] | 5 [80] | 8 | 20 |
S. aureus ATCC 25923 | S. aureus Strain 2 | E. faecalis ATCC 51299 | E. faecalis Strain 2 | |||||
---|---|---|---|---|---|---|---|---|
cpd | MIC [MBC] a | |||||||
(µg/mL) | (µM) | (µg/mL) | (µM) | (µg/mL) | (µM) | (µg/mL) | (µM) | |
Adarotene | 8 [16] | 21 [42] | 4 [8] | 10 [21] | 2 [32] | 5 [84] | 4 [32] | 10 [84] |
2 | 256 | 572 | 256 | 572 | 64 | 143 | 128 | 286 |
16 | 2 [4] | 4 [8] | 2 [2] | 4 [4] | 2 [8] | 4 [16] | 2 [8] | 4 [16] |
17 | 2 [4] | 5 [10] | 4 [32] | 10 [74] | 8 [32] | 18 [74] | 8 [16] | 18 [36] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Princiotto, S.; Mazzini, S.; Musso, L.; Arena, F.; Dallavalle, S.; Pisano, C. New Antimicrobials Based on the Adarotene Scaffold with Activity against Multi-Drug Resistant Staphylococcus aureus and Vancomycin-Resistant Enterococcus. Antibiotics 2021, 10, 126. https://doi.org/10.3390/antibiotics10020126
Princiotto S, Mazzini S, Musso L, Arena F, Dallavalle S, Pisano C. New Antimicrobials Based on the Adarotene Scaffold with Activity against Multi-Drug Resistant Staphylococcus aureus and Vancomycin-Resistant Enterococcus. Antibiotics. 2021; 10(2):126. https://doi.org/10.3390/antibiotics10020126
Chicago/Turabian StylePrinciotto, Salvatore, Stefania Mazzini, Loana Musso, Fabio Arena, Sabrina Dallavalle, and Claudio Pisano. 2021. "New Antimicrobials Based on the Adarotene Scaffold with Activity against Multi-Drug Resistant Staphylococcus aureus and Vancomycin-Resistant Enterococcus" Antibiotics 10, no. 2: 126. https://doi.org/10.3390/antibiotics10020126
APA StylePrinciotto, S., Mazzini, S., Musso, L., Arena, F., Dallavalle, S., & Pisano, C. (2021). New Antimicrobials Based on the Adarotene Scaffold with Activity against Multi-Drug Resistant Staphylococcus aureus and Vancomycin-Resistant Enterococcus. Antibiotics, 10(2), 126. https://doi.org/10.3390/antibiotics10020126