Molecular Characterization of Rifampicin-Resistant Staphylococcus aureus Isolates from Retail Foods in China
Abstract
:1. Introduction
2. Results
2.1. Distribution of Rifampicin-Resistant S. aureus from Retail Foods in China
2.2. Antibiotic Resistance of Rifampicin-Resistant S. aureus Isolates
2.3. Rifampicin Resistance Levels and Associated rpoB Mutations
2.4. Distribution of Molecular Types
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains
4.2. Antimicrobial Susceptibility Testing
4.3. Detection of Rifampicin Resistance-Associated Mutations
4.4. Molecular Typing
4.4.1. spa-Typing
4.4.2. Multilocus Sequencing Typing
4.4.3. SCCmec Typing
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Boucher, H.W.; Corey, G.R. Epidemiology of methicillin-resistant Staphylococcus aureus. Clin. Infect. Dis. 2008, 46 (Suppl. 5), S344–S349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hennekinne, J.A.; De Buyser, M.L.; Dragacci, S. Staphylococcus aureus and its food poisoning toxins: Characterization and outbreak investigation. FEMS Microbiol. Rev. 2012, 36, 815–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fetsch, A.; Contzen, M.; Hartelt, K.; Kleiser, A.; Maassen, S.; Rau, J.; Kraushaar, B.; Layer, F.; Strommenger, B. Staphylococcus aureus food-poisoning outbreak associated with the consumption of ice-cream. Int. J. Food Microbiol. 2014, 187, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Vaiyapuri, M.; Joseph, T.C.; Rao, B.M.; Lalitha, K.V.; Prasad, M.M. methicillin-resistant Staphylococcus aureus in seafood: Prevalence, laboratory detection, clonal nature, and control in seafood chain. J. Food Sci. 2019, 84, 3341–3351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paudyal, N.; Anihouvi, V.; Hounhouigan, J.; Matsheka, M.I.; Sekwati-Monang, B.; Amoa-Awua, W.; Atter, A.; Ackah, N.B.; Mbugua, S.; Asagbra, A.; et al. Prevalence of foodborne pathogens in food from selected African countries—A meta-analysis. Int. J. Food Microbiol. 2017, 249, 35–43. [Google Scholar] [CrossRef]
- Chajęcka-Wierzchowska, W.; Zadernowska, A.; Nalepa, B.; Sierpińska, M.; Laniewska-Trokenheim, L. Retail ready-to-eat food as a potential vehicle for Staphylococcus spp. harboring antibiotic resistance genes. J. Food Prot. 2014, 77, 993–998. [Google Scholar] [CrossRef]
- Chajęcka-Wierzchowska, W.; Zadernowska, A.; Nalepa, B.; Sierpińska, M.; Łaniewska-Trokenheim, Ł. Coagulase-negative staphylococci (CoNS) isolated from ready-to-eat food of animal origin--phenotypic and genotypic antibiotic resistance. Food Microbiol. 2015, 46, 222–226. [Google Scholar] [CrossRef]
- Ou, Q.; Zhou, J.; Lin, D.; Bai, C.; Zhang, T.; Lin, J.; Zheng, H.; Wang, X.; Ye, J.; Ye, X.; et al. A large meta-analysis of the global prevalence rates of S. aureus and MRSA contamination of milk. Crit. Rev. Food Sci. Nutr. 2018, 58, 2213–2228. [Google Scholar] [CrossRef]
- Forrest, G.N.; Tamura, K. Rifampin combination therapy for non-mycobacterial infections. Clin. Microbiol. Rev. 2010, 23, 14–34. [Google Scholar] [CrossRef] [Green Version]
- Deresinski, S. Vancomycin in combination with other antibiotics for the treatment of serious methicillin-resistant Staphylococcus aureus infections. Clin. Infect. Dis. 2009, 49, 1072–1079. [Google Scholar] [CrossRef] [Green Version]
- Aubry-Damon, H.; Soussy, C.J.; Courvalin, P. Characterization of mutations in the rpoB gene that confer rifampin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 1998, 42, 2590–2594. [Google Scholar] [CrossRef] [Green Version]
- Hellmark, B.; Söderquist, B.; Unemo, M. Simultaneous species identification and detection of rifampicin resistance in staphylococci by sequencing of the rpoB gene. Eur. J. Clin. Microbiol. 2009, 28, 183–190. [Google Scholar] [CrossRef]
- Zimmerli, W.; Sendi, P. Role of rifampin against staphylococcal biofilm infections in vitro, in animal models, and in orthopedic-device-related infections. Antimicrob. Agents Chemother. 2019, 63, e01746-18. [Google Scholar] [CrossRef] [Green Version]
- Telenti, A.; Imboden, P.; Marchesi, F.; Lowrie, D.; Cole, S.; Colston, M.J.; Matter, L.; Schopfer, K.; Bodmer, T. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 1993, 341, 647–650. [Google Scholar] [CrossRef]
- Wi, Y.M.; Greenwood-Quaintance, K.E.; Brinkman, C.L.; Lee, J.Y.H.; Howden, B.P.; Patel, R. Rifampicin resistance in Staphylococcus epidermidis: Molecular characterisation and fitness cost of rpoB mutations. Int. J. Antimicrob. Agents 2018, 51, 670–677. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, M.; Hishinuma, T.; Katayama, Y.; Cui, L.; Kapi, M.; Hiramatsu, K. Mutation of RNA polymerase beta subunit (rpoB) promotes hVISA-to-VISA phenotypic conversion of strain Mu3. Antimicrob. Agents Chemother. 2011, 55, 4188–4195. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, Y.; Cui, L.; Katayama, Y.; Kozue, K.; Hiramatsu, K. Impact of rpoB mutations on reduced vancomycin susceptibility in Staphylococcus aureus. J. Clin. Microbiol. 2011, 49, 2680–2684. [Google Scholar] [CrossRef] [Green Version]
- Cui, L.; Isii, T.; Fukuda, M.; Ochiai, T.; Neoh, H.M.; Camargo, I.L.; Watanabe, Y.; Shoji, M.; Hishinuma, T.; Hiramatsu, K. An RpoB mutation confers dual heteroresistance to daptomycin and vancomycin in Staphylococcus aureus. Antimicrob. Agents Chemother. 2010, 54, 5222–5233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aiba, Y.; Katayama, Y.; Hishinuma, T.; Murakami-Kuroda, H.; Cui, L.; Hiramatsu, K. Mutation of RNA polymerase β-subunit gene promotes heterogeneous-to-homogeneous conversion of β-lactam resistance in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2013, 57, 4861–4871. [Google Scholar] [CrossRef] [Green Version]
- Guérillot, R.; Gonçalves da Silva, A.; Monk, I.; Giulieri, S.; Tomita, T.; Alison, E.; Porter, J.; Pidot, S.; Gao, W.; Peleg, A.Y.; et al. Convergent evolution driven by rifampin exacerbates the global burden of drug-resistant Staphylococcus aureus. mSphere 2018, 3, e00550-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Huang, J.; Wu, Q.; Zhang, J.; Zhang, F.; Yang, X.; Wu, H.; Zeng, H.; Chen, M.; Ding, Y.; et al. Staphylococcus aureus isolated from retail meat and meat products in china: Incidence, antibiotic resistance and genetic diversity. Front. Microbiol. 2018, 9, 2767. [Google Scholar] [CrossRef]
- Wu, S.; Huang, J.; Zhang, F.; Wu, Q.; Zhang, J.; Pang, R.; Zeng, H.; Yang, X.; Chen, M.; Wang, J.; et al. Prevalence and characterization of food-related methicillin-resistant Staphylococcus aureus (MRSA) in China. Front. Microbiol. 2019, 10, 304. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Huang, J.; Wu, Q.; Zhang, F.; Zhang, J.; Lei, T.; Chen, M.; Ding, Y.; Xue, L. Prevalence and characterization of Staphylococcus aureus isolated from retail vegetables in China. Front. Microbiol. 2018, 9, 1263. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Jumei, Z.; Shubo, Y.; Qingping, W.; Weipeng, G.; Jiahui, H.; Shuzhen, C. Prevalence of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus in retail ready-to-eat foods in China. Front. Microbiol. 2016, 7, 816. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wu, S.; Huang, J.; Yang, R.; Zhang, J.; Lei, T.; Dai, J.; Ding, Y.; Xue, L.; Wang, J.; et al. Presence and characterization of a novel cfr-carrying Tn558 transposon derivative in Staphylococcus delphini isolated from retail food. Front. Microbiol. 2021, 11, 3379. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Fang, R.; Zhou, B.; Tian, X.; Zhang, X.; Zheng, X.; Zhang, S.; Dong, G.; Cao, J.; Zhou, T. Evolution of resistance mechanisms and biological characteristics of rifampicin-resistant Staphylococcus aureus strains selected in vitro. BMC Microbiol. 2019, 19, 220. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.-H.; Giske, C.G.; Wei, Z.-Q.; Shen, P.; Heddini, A.; Li, L.-J. Epidemiology and characteristics of antimicrobial resistance in China. Drug Resist. Updates 2011, 14, 236–250. [Google Scholar] [CrossRef] [PubMed]
- Şanlıbaba, P. Prevalence, antibiotic resistance, and enterotoxin production of Staphylococcus aureus isolated from retail raw beef, sheep, and lamb meat in Turkey. Int. J. Food Microbiol. 2021, 361, 109461. [Google Scholar] [CrossRef]
- Pereira, V.; Lopes, C.; Castro, A.; Silva, J.; Gibbs, P.; Teixeira, P. Characterization for enterotoxin production, virulence factors, and antibiotic susceptibility of Staphylococcus aureus isolates from various foods in Portugal. Food Microbiol. 2009, 26, 278–282. [Google Scholar] [CrossRef]
- Papadopoulos, P.; Papadopoulos, T.; Angelidis, A.S.; Boukouvala, E.; Zdragas, A.; Papa, A.; Hadjichristodoulou, C.; Sergelidis, D. Prevalence of Staphylococcus aureus and of methicillin-resistant S. aureus (MRSA) along the production chain of dairy products in north-western Greece. Food Microbiol. 2018, 69, 43–50. [Google Scholar] [CrossRef]
- Aboshkiwa, M.; Rowland, G.; Coleman, G. Nucleotide sequence of the Staphylococcus aureus RNA polymerase rpoB gene and comparison of its predicted amino acid sequence with those of other bacteria. Biochim. Biophys. Acta (BBA) Gene Struct. Expr. 1995, 1262, 73–78. [Google Scholar] [CrossRef]
- Campbell, E.A.; Korzheva, N.; Mustaev, A.; Murakami, K.; Nair, S.; Goldfarb, A.; Darst, S.A. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 2001, 104, 901–912. [Google Scholar] [CrossRef]
- Jin, D.J.; Gross, C.A. Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. J. Mol. Biol. 1988, 202, 45–58. [Google Scholar] [CrossRef]
- Lavania, M.; Singh, I.; Turankar, R.P.; Gupta, A.K.; Ahuja, M.; Pathak, V.; Sengupta, U. Enriched whole genome sequencing identified compensatory mutations in the RNA polymerase gene of rifampicin-resistant Mycobacterium leprae strains. Infect. Drug Resist. 2018, 11, 169–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.-Y.; Fung, C.-P.; Chang, F.-Y.; Huang, L.-Y.; Chang, J.-C.; Siu, L.K. Mutations of the rpoB gene in rifampicin-resistant Streptococcus pneumoniae in Taiwan. J. Antimicrob. Chemother. 2004, 53, 375–378. [Google Scholar] [CrossRef] [Green Version]
- Nolte, O.; Müller, M.; Reitz, S.; Ledig, S.; Ehrhard, I.; Sonntag, H.G. Description of new mutations in the rpoB gene in rifampicin-resistant Neisseria meningitidis selected in vitro in a stepwise manner. J. Med. Microbiol. 2003, 52, 1077–1081. [Google Scholar] [CrossRef]
- Zhou, W.; Shan, W.; Ma, X.; Chang, W.; Zhou, X.; Lu, H.; Dai, Y. Molecular characterization of rifampicin-resistant Staphylococcus aureus isolates in a Chinese teaching hospital from Anhui, China. BMC Microbiol. 2012, 12, 240. [Google Scholar] [CrossRef] [Green Version]
- Liang, B.; Mai, J.; Liu, Y.; Huang, Y.; Zhong, H.; Xie, Y.; Deng, Q.; Huang, L.; Yao, S.; He, Y.; et al. Prevalence and characterization of Staphylococcus aureus isolated from women and children in Guangzhou, China. Front. Microbiol. 2018, 9, 2790. [Google Scholar] [CrossRef] [Green Version]
- Baines, S.L.; Holt, K.E.; Schultz, M.B.; Seemann, T.; Howden, B.O.; Jensen, S.O.; van Hal, S.J.; Coombs, G.W.; Firth, N.; Powell, D.R.; et al. Convergent adaptation in the dominant global hospital clone ST239 of methicillin-resistant Staphylococcus aureus. mBio 2015, 6, e00080-15. [Google Scholar] [CrossRef] [Green Version]
- Murphy, C.K.; Mullin, S.; Osburne, M.S.; van Duzer, J.; Siedlecki, J.; Yu, X.; Kerstein, K.; Cynamon, M.; Rothstein, D.M. In vitro activity of novel rifamycins against rifamycin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2006, 50, 827–834. [Google Scholar] [CrossRef] [Green Version]
- Frénay, H.M.; Bunschoten, A.E.; Schouls, L.M.; van Leeuwen, W.J.; Vandenbroucke-Grauls, C.M.; Verhoef, J.; Mooi, F.R. Molecular typing of methicillin-resistant Staphylococcus aureus on the basis of protein A gene polymorphism. Eur. J. Clin. Microbiol. Infect. Dis. 1996, 15, 60–64. [Google Scholar] [CrossRef]
- Wichelhaus, T.A.; Schäfer, V.; Brade, V.; Böddinghaus, B. Molecular characterization of rpoB mutations conferring cross-resistance to rifamycins on methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 1999, 43, 2813–2816. [Google Scholar] [CrossRef] [Green Version]
- Lim, K.T.; Teh, C.S.; Yusof, M.Y.; Thong, K.L. Mutations in rpoB and fusA cause resistance to rifampicin and fusidic acid in methicillin-resistant Staphylococcus aureus strains from a tertiary hospital in Malaysia. Trans. R. Soc. Trop. Med. Hyg. 2014, 108, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.T.; Liao, C.H.; Chen, S.Y.; Yang, C.J.; Hsu, H.S.; Teng, L.J.; Hsueh, P.R. Characterization of rifampin-resistant Staphylococcus aureus nasal carriage in patients receiving Rifampin-containing regimens for tuberculosis. Infect. Drug Resist. 2018, 11, 1175–1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Wu, J.; Francis, K.P.; Purchio, T.F.; Kadurugamuwa, J.L. Monitoring in vivo fitness of rifampicin-resistant Staphylococcus aureus mutants in a mouse biofilm infection model. J. Antimicrob. Chemother. 2005, 55, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Bliziotis, I.A.; Fragoulis, K.N. Oral rifampin for eradication of Staphylococcus aureus carriage from healthy and sick populations: A systematic review of the evidence from comparative trials. Am. J. Infect. Control. 2007, 35, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Purrello, S.M.; Garau, J.; Giamarellos, E.; Mazzei, T.; Pea, F.; Soriano, A.; Stefani, S. methicillin-resistant Staphylococcus aureus infections: A review of the currently available treatment options. J. Glob. Antimicrob. Resist. 2016, 7, 178–186. [Google Scholar] [CrossRef] [Green Version]
- Haaber, J.; Penadés, J.R.; Ingmer, H. Transfer of Antibiotic Resistance in Staphylococcus aureus. Trends Microbiol. 2017, 25, 893–905. [Google Scholar] [CrossRef]
- Cuny, C.; Köck, R.; Witte, W. Livestock associated MRSA (LA-MRSA) and its relevance for humans in Germany. Int. J. Med. Microbiol. 2013, 303, 331–337. [Google Scholar] [CrossRef]
- David, M.Z.; Siegel, J.; Lowy, F.D.; Zychowski, D.; Taylor, A.; Lee, C.J.; Boylevavra, S.; Daum, R.S. Asymptomatic carriage of sequence type 398, spa type t571 methicillin-susceptible Staphylococcus aureus in an urban jail: A newly emerging, transmissible pathogenic strain. J. Clin. Microbiol. 2013, 51, 2443–2447. [Google Scholar] [CrossRef] [Green Version]
- Mediavilla, J.R.; Chen, L.; Uhlemann, A.C.; Hanson, B.M.; Rosenthal, M.; Stanak, K.; Koll, B.; Fries, B.C.; Armellino, D.; Schilling, M.E. methicillin-Susceptible Staphylococcus aureus ST398, New York and New Jersey, USA. Emerg. Infect. Dis. 2012, 18, 700–702. [Google Scholar] [CrossRef]
- Valentindomelier, A.S.; Girard, M.; Bertrand, X.; Violette, J.; François, P.; Donnio, P.Y.; Talon, D.; Quentin, R.; Schrenzel, J.; Meemarquet, N.V.D. methicillin-susceptible ST398 Staphylococcus aureus responsible for bloodstream infections: An emerging human-adapted subclone? PLoS ONE 2011, 6, e28369. [Google Scholar]
- Argudín, M.A.; Tenhagen, B.A.; Fetsch, A.; Sachsenröder, J.; Käsbohrer, A.; Schroeter, A.; Hammerl, J.A.; Hertwig, S.; Helmuth, R.; Bräunig, J. Virulence and resistance determinants of German Staphylococcus aureus ST398 isolates from nonhuman sources. Appl. Environ. Microbiol. 2011, 77, 3052–3060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gombas, D.E.; Chen, Y.; Clavero, R.S.; Scott, V.N. Survey of Listeria monocytogenes in ready-to-eat foods. J. Food Prot. 2003, 66, 559–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, J.B.; Cockerill, F.R., III; Bradford, P.A. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Fifth Informational Supplement; M100-S25; The Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015; pp. 128–160. [Google Scholar]
- Mick, V.; Domínguez, M.A.; Tubau, F.; Liñares, J.; Pujol, M.; Martín, R. Molecular characterization of resistance to Rifampicin in an emerging hospital-associated methicillin-resistant Staphylococcus aureus clone ST228, Spain. BMC Microbiol. 2010, 10, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shopsin, B.; Gomez, M.; Montgomery, S.O.; Smith, D.H.; Waddington, M.; Dodge, D.E.; Bost, D.A.; Riehman, M.; Naidich, S.; Kreiswirth, B.N. Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. J. Clin. Microbiol. 1999, 37, 3556–3563. [Google Scholar] [CrossRef] [Green Version]
- Enright, M.C.; Day, N.P.J.; Davies, C.E.; Peacock, S.J.; Spratt, B.G. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 2013, 51, 306–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; Mcclure, J.A.; Elsayed, S.; Louie, T.; Conly, J.M. Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol. 2005, 43, 5026–5033. [Google Scholar] [CrossRef] [Green Version]
Types of Product | No. of S. aureus | No. (%) of RIF-R S. aureus Isolates | No. (%) of RIF-R MRSA | No. (%) of RIF-R MSSA | p-Value a |
---|---|---|---|---|---|
Raw meat | 419 | 35 (8.4) | 4 (1.0) | 31 (7.4) | <0.01 |
Aquatic products | 473 | 45 (9.5) | 1 (0.2) | 44 (9.3) | <0.01 |
Quick-frozen meat | 358 | 43 (12.0) | 1 (0.3) | 42 (11.7) | <0.01 |
Ready-to-eat food | 131 | 22 (16.8) | 1 (0.8) | 21 (16.0) | <0.01 |
Edible mushrooms | 41 | 1 (2.4) | 0 (0.0) | 1 (2.4) | <0.01 |
Vegetables | 29 | 0 (0.0) | 0 (0.0) | 0 (0.0) | NA b |
Pasteurized milk | 12 | 3 (25.0) | 0 (0.0) | 3 (25.0) | <0.01 |
Total | 1463 | 149 (10.2) | 7 (0.5) | 142 (9.7) | <0.01 |
Antibiotics a | RIF-R S. aureus (n = 149) | RIF-R MRSA (n = 7) | RIF-R MSSA (n = 142) | p-Value b | |||
---|---|---|---|---|---|---|---|
NO. of R (%) | NO. of I (%) | NO. of R (%) | NO. of I (%) | NO. of R (%) | NO. of I (%) | ||
AMC | 10 (6.7) | - | 6 (85.71) | - | 4 (2.82) | - | <0.01 |
AMP | 141 (94.6) | - | 7 (100) | - | 134 (94.37) | - | 1.000 |
FEP | 6 (4.0) | 2 (1.3) | 5 (71.43) | 2 (28.57) | 1 (0.7) | 0 (0.0) | <0.01 |
FOX | 7 (4.7) | - | 7 (100) | - | 0 (0.0) | - | NA |
PEN | 138 (92.6) | - | 7 (100) | - | 131 (92.25) | - | 0.980 |
CAZ | 8 (5.4) | 23 (15.4) | 7 (100) | 0 (0.0) | 1 (0.7) | 23 (16.20) | <0.01 |
AMK | 10 (6.7) | 51 (34.2) | 1 (14.29) | 3 (42.86) | 9 (6.34) | 48 (33.80) | 0.877 |
GEN | 43 (28.9) | 0 (0.0) | 5 (71.43) | 0 (0.0) | 38 (26.76) | 0 (0.0) | <0.01 |
KAN | 113 (75.8) | 11 (7.4) | 5 (71.43) | 1 (14.29) | 108 (76.06) | 10 (7.04) | 1.000 |
STR | 24 (16.1) | 103 (69.1) | 4 (57.14) | 2 (28.57) | 20 (14.08) | 101 (71.13) | 0.398 |
CHL | 16 (10.7) | 27 (18.1) | 4 (57.14) | 0 (0.0) | 12 (8.45) | 27 (19.01) | <0.01 |
CLI | 45 (30.2) | 16 (10.7) | 6 (85.71) | 0 (0.0) | 39 (27.46) | 16 (11.27) | <0.01 |
ERY | 80 (53.7) | 16 (10.7) | 7 (100) | 0 (0.0) | 73 (51.41) | 16 (11.27) | 0.069 |
TEL | 40 (26.8) | 27 (18.1) | 6 (85.71) | 1 (14.29) | 34 (23.94) | 26 (18.31) | <0.01 |
CIP | 27 (18.1) | 31 (20.8) | 4 (57.14) | 1 (14.29) | 23 (16.20) | 30 (21.13) | 0.034 |
NOR | 39 (26.2) | 11 (7.4) | 4 (57.14) | 0 (0.0) | 35 (24.65) | 11 (7.75) | 0.190 |
TET | 73 (49.0) | 5 (3.4) | 5 (71.43) | 0 (0.0) | 68 (47.89) | 5 (3.52) | 0.461 |
LZD | 0 (0.0) | - | 0 (0.0) | - | 0 (0.0) | - | NA |
RIF | 122 (81.9) | 27 (18.1) | 4 (57.14) | 3 (42.86) | 118 (83.10) | 24 (16.90) | 0.216 c |
SXT | 10 (6.7) | 2 (1.3) | 4 (57.14) | 0 | 6 (4.23) | 2 (1.41) | <0.01 |
QD | 5 (3.4) | 11 (7.4) | 0 (0.0) | 1 (14.29) | 5 (3.52) | 10 (7.04) | NA |
TEC | 0 (0.0) | 42 (28.2) | 0 (0.0) | 2(28.57) | 0 (0.0) | 40 (28.17) | NA |
NIT | 3 (2.0) | 18 (12.1) | 2 (28.57) | 0 (0.0) | 1 (0.7) | 18 (12.68) | <0.01 |
FD | 37 (24.8) | - | 2 (28.57) | 0 (0.0) | 35 (24.65) | 0 (0.0) | 1.000 |
0–3 Antimicrobial | 14 (9.4) | 0(0.0) | 14 (9.9) | - | |||
4–10 Antimicrobial | 116 (77.9) | 2 (28.6) | 114 (80.2) | - | |||
11–15 Antimicrobial | 16 (10.7) | 2 (28.6) | 14 (9.9) | - | |||
16–24 Antimicrobial | 3 (2.0) | 3 (42.8) | 0 (0.0) | - |
Nucleotide Mutation | Amino Acid Substitution | Mutation Types | RIF MIC (μg/mL) | Number of Isolates |
---|---|---|---|---|
CAT → AAT | His481/Asn | cluster I | 2 | 77 |
GCA → ACA, CAT → AAT | Asp473/Tyr, His481/Asn | cluster I | 2 | 1 |
CAT → AAT | His481/Asn | cluster I | 4 | 51 |
GCA → ACA, CAT → AAT | Asp473/Tyr, His481/Asn | cluster I | 4 | 2 |
CAT → AAT | His481/Asn | cluster I | 8 | 10 |
CAT → AAT | His481/Asn | cluster I | 16 | 3 |
CAT → AAT | His481/Asn | cluster I | >16 | 5 |
CAT → AAT, TAA → GAA | His481/Asn, Ile527/Met | cluster I, cluster II | >128 | 1 |
CAT → TAT, CAT → AAT | Leu466/Ser, His481/Asn | cluster I | >128 | 1 |
STs (No.) | spa Types (No.) | Nucleotide Mutation | Amino Acid Substitution | Mutation Types |
---|---|---|---|---|
ST1 (97) | t127 (82) | CAT → AAT | His481/Asn | cluster I |
t1381 (1) | CAT → AAT | His481/Asn | cluster I | |
t17635 (1) | CAT → AAT | His481/Asn | cluster I | |
t177 (2) | CAT → AAT | His481/Asn | cluster I | |
t1908 (1) | CAT → AAT | His481/Asn | cluster I | |
t2207 (1) | CAT → AAT | His481/Asn | cluster I | |
t2459 (1) | CAT → AAT | His481/Asn | cluster I | |
t2720 (1) | CAT → AAT | His481/Asn | cluster I | |
t5500 (2) | CAT → AAT | His481/Asn | cluster I | |
t559 (1) | CAT → AAT | His481/Asn | cluster I | |
t127 (1) | CAT → TAT, CAT → AAT | Leu466/Ser, His481/Asn | cluster I | |
t127 (3) | GCA → ACA, CAT → AAT | Asp473/Tyr, His481/Asn | cluster I | |
ST72 (15) | t3092 (15) | CAT → AAT | His481/Asn | cluster I |
ST5 (11) | t002 (9) | CAT → AAT | His481/Asn | cluster I |
non type (2) | CAT → AAT | His481/Asn | cluster I | |
ST398 (10) | t034 (9) | CAT → AAT | His481/Asn | cluster I |
t9472 (1) | CAT → AAT | His481/Asn | cluster I | |
ST12 (5) | t213 (4) | CAT → AAT | His481/Asn | cluster I |
t17632 (1) | CAT → AAT | His481/Asn | cluster I | |
ST45 (4) | t116 (4) | CAT → AAT | His481/Asn | cluster I |
ST25 (1) | t17887 (1) | CAT → AAT | His481/Asn | cluster I |
ST59 (1) | t163 (1) | CAT → AAT | His481/Asn | cluster I |
ST2592 (1) | t127 (1) | CAT → AAT | His481/Asn | cluster I |
ST4449 (1) | t127 (1) | CAT → AAT | His481/Asn | cluster I |
ST4470 (1) | t127 (1) | CAT → AAT | His481/Asn | cluster I |
ST4472 (1) | t127 (1) | CAT → AAT | His481/Asn | cluster I |
ST9 (1) | t899 (1) | CAT → AAT, TAA → GAA | His481/Asn, Ile527/Met | cluster I, cluster II |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Zhang, F.; Zhang, J.; Dai, J.; Rong, D.; Zhao, M.; Wang, J.; Ding, Y.; Chen, M.; Xue, L.; et al. Molecular Characterization of Rifampicin-Resistant Staphylococcus aureus Isolates from Retail Foods in China. Antibiotics 2021, 10, 1487. https://doi.org/10.3390/antibiotics10121487
Huang J, Zhang F, Zhang J, Dai J, Rong D, Zhao M, Wang J, Ding Y, Chen M, Xue L, et al. Molecular Characterization of Rifampicin-Resistant Staphylococcus aureus Isolates from Retail Foods in China. Antibiotics. 2021; 10(12):1487. https://doi.org/10.3390/antibiotics10121487
Chicago/Turabian StyleHuang, Jiahui, Feng Zhang, Jumei Zhang, Jingsha Dai, Dongli Rong, Miao Zhao, Juan Wang, Yu Ding, Moutong Chen, Liang Xue, and et al. 2021. "Molecular Characterization of Rifampicin-Resistant Staphylococcus aureus Isolates from Retail Foods in China" Antibiotics 10, no. 12: 1487. https://doi.org/10.3390/antibiotics10121487
APA StyleHuang, J., Zhang, F., Zhang, J., Dai, J., Rong, D., Zhao, M., Wang, J., Ding, Y., Chen, M., Xue, L., Gu, Q., Wu, S., & Wu, Q. (2021). Molecular Characterization of Rifampicin-Resistant Staphylococcus aureus Isolates from Retail Foods in China. Antibiotics, 10(12), 1487. https://doi.org/10.3390/antibiotics10121487