Antibacterial, Immunomodulatory, and Lung Protective Effects of Boswelliadalzielii Oleoresin Ethanol Extract in Pulmonary Diseases: In Vitro and In Vivo Studies
Abstract
:1. Introduction
2. Results
2.1. Gas Chromatography/Mass Spectroscopy (GC/MS) Analysis of FEE
2.2. In Vitro Antibacterial and Antibiofilm Activities of FEE
2.2.1. Antibacterial Activity
2.2.2. Antibiofilm Activity
2.3. Immunomodulatory Activity of FEE
2.3.1. Cell Viability Assay
2.3.2. Assessment of FEE Effect on Genes Expression by Quantitative Real Time PCR (qRT-PCR)
2.4. In Vitro Anticancer Effect of FEE
2.5. In Vivo Lung Protective Activity of FEE
2.5.1. Effect of FEE on Lung Histological Characters
2.5.2. Immunohistochemical Studies
TNF-α Immunohistochemical Staining
COX-2 Immunohistochemical Staining
NF-κB (P65) Antigen Immunohistochemical Staining
B-Cell Lymphoma-2 (Bcl-2) Immunohistochemical Staining
3. Discussion
4. Materials and Methods
4.1. The Utilized Chemicals
4.2. Preparation of Frankincense Ethanol Extract
4.3. GC/MS Data Analysis
4.4. In Vitro Antibacterial and Antibiofilm Activities of FEE
4.4.1. Collection and Identification of P. aeruginosa Clinical Isolates
4.4.2. Screening of the Antibacterial Activity
4.4.3. MIC Determination
4.4.4. Antibiofilm Activity
4.4.5. Effect of FEE on Biofilm Morphology Using Bright Field and SEM
4.5. Immunomodulatory Effect of FEE
4.5.1. Isolation of PBMCs
4.5.2. MTT Cell Viability Test
4.5.3. qRT-PCR
4.6. In Vitro Anti-Lung Cancer Effect of FEE (SRB Assay)
4.7. In Vivo Lung-Protective Effect of FEE
4.7.1. Animals
4.7.2. Induction of Lung Damage in Mice by Benzo (a) Pyrene
4.7.3. Preparation of the Specimens for Histological Examination
4.7.4. Specimen Preparation for Immunohistochemistry Investigations
4.7.5. Morphometrical Examination
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, H.; Shin, J.W.; Park, S.-G.; Kim, W. Microbial Communities in the Upper Respiratory Tract of Patients with Asthma and Chronic Obstructive Pulmonary Disease. PLoS ONE 2014, 9, 109710. [Google Scholar] [CrossRef]
- Nishiga, M.; Wang, D.W.; Han, Y.; Lewis, D.B.; Wu, J.C. COVID-19 and cardiovascular disease: From basic mechanisms to clinical perspectives. Nat. Rev. Cardiol. 2020, 17, 543–558. [Google Scholar] [CrossRef]
- Claxton, S.; Porter, P.; Brisbane, J.; Bear, N.; Wood, J.; Peltonen, V.; Della, P.; Smith, C.; Abeyratne, U. Identifying acute exacerbations of chronic obstructive pulmonary disease using patient-reported symptoms and cough feature analysis. NPJ Digit. Med. 2021, 4, 1–7. [Google Scholar] [CrossRef]
- Alamgeer Younis, W.; Asif, H.; Sharif, A.; Riaz, H.; Bukhari, I.A.; Assiri, A.M. Traditional medicinal plants used for respiratory disorders in Pakistan: A review of the ethno-medicinal and pharmacological evidence. Chinese Med. 2018, 13, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Gupta, I.; Gupta, V.; Parihar, A.; Gupta, S.; Lüdtke, R.; Safayhi, H.; Ammon, H.P. Effects of Boswellia serrata gum resin in patients with bronchial asthma: Results of a double-blind, placebo-controlled, 6-week clinical study. Eur. J. Med. Res. 1998, 3, 511–514. [Google Scholar]
- Wang, H.; Song, L.; Ju, W.; Wang, X.; Dong, L.; Zhang, Y.; Ya, P.; Yang, C.; Li, F. The acute airway inflammation induced by PM2.5 exposure and the treatment of essential oils in Balb/c mice. Sci. Rep. 2017, 7, srep44256. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.; Lou, H.X. Bioactive constituents of Myrrh and frankincense, two simultaneously prescribed gum resins in Chinese traditional medicine. Chem. Biodivers. 2008, 5, 540–553. [Google Scholar] [CrossRef] [PubMed]
- Impellizzeri, D.; Talero, E.; Siracusa, R.; Alcaide, A.; Cordaro, M.; Maria Zubelia, J.; Bruschetta, G.; Crupi, R.; Esposito, E.; Cuzzocrea, S.; et al. Protective effect of polyphenols in an inflammatory process associated with experimental pulmonary fibrosis in mice. Br. J. Nutr. 2015, 114, 853–865. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Prova, S.R.; Sultana, S.A.; Das, R.; Nainu, F.; Emran, T.; Bin Tareq, A.M.; Uddin, M.S.; Alqahtani, A.M.; Dhama, K.; et al. Therapeutic potential of indole alkaloids in respiratory diseases: A comprehensive review. Phytomedicine 2021, 90, 153649. [Google Scholar] [CrossRef]
- DeCarlo, A.; Johnson, S.; Okeke-Agulu, K.I.; Dosoky, N.S.; Wax, S.J.; Owolabi, M.S.; Setzer, W.N. Compositional analysis of the essential oil of Boswellia dalzielii frankincense from West Africa reveals two major chemotypes. Phytochemistry 2019, 164, 24–32. [Google Scholar] [CrossRef]
- Langenheim, J.H. Plant Resins: Chemistry, Evolution, Ecology, and Ethnobotany. Timber Press, Inc.: Portland, OR, USA, 2003; ISBN 978-0881925746. [Google Scholar]
- Boswellia Dalzielii in Global Plants. Available online: https://plants.jstor.org/compilation/Boswellia.dalzielii (accessed on 14 July 2021).
- Efferth, T.; Oesch, F. Anti-inflammatory and anti-cancer activities of frankincense: Targets, treatments and toxicities. In Seminars in Cancer Biology; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar] [CrossRef]
- Soliman, A.M.; Majeed, R.R.; Himyari, H.F.A.; Um, D.; Khan, S.A. In Vitro Cytotoxic, Antioxidant and Antimicrobial Activities of Alcoholic and Chloroform Extracts of Dhofari Frankincense. Dhaka Univ. J. Pharm. Sci. 2020, 19, 105–110. [Google Scholar] [CrossRef]
- Mikhaeil, B.R.; Maatooq, G.T.; Badria, F.A.; Amer, M.M.A. Chemistry and immunomodulatory activity of frankincense oil. Z. Für. Nat. C. 2003, 58, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Hamidpour, R.; Hamidpour, S.; Hamidpour, M.; Shahlari, M. Frankincense (Rǔ Xiāng; Boswellia species): From the selection of traditional applications to the novel phytotherapy for the prevention and treatment of serious diseases. J. Tradit. Complement. Med. 2013, 3, 221–226. [Google Scholar] [CrossRef] [Green Version]
- Davies, G.; Wells, A.U.; Doffman, S.; Watanabe, S.; Wilson, R. The effect of Pseudomonas aeruginosa on pulmonary function in patients with bronchiectasis. Eur. Respir. J. 2006, 28, 974–979. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Clemente, M.; Rosa, D.; de la Máiz, L.; Girón, R.; Blanco, M.; Olveira, C.; Canton, R.; Martinez-García, M.A. Impact of Pseudomonas aeruginosa Infection on Patients with Chronic Inflammatory Airway Diseases. J. Clin. Med. 2020, 9, 3800. [Google Scholar] [CrossRef] [PubMed]
- Deepika, M.S.; Thangam, R.; Sakthidhasan, P.; Arun, S.; Sivasubramanian, S.; Thirumurugan, R. Combined Effect of a Natural Flavonoid Rutin from Citrus Sinensis and Conventional Antibiotic Gentamicin on Pseudomonas Aeruginosa Biofilm Formation. Food Control. 2018, 90, 282–294. [Google Scholar] [CrossRef]
- Selim, S.A.; Adam, M.E.; Hassan, S.M.; Albalawi, A.R. Chemical composition, antimicrobial and antibiofilm activity of the essential oil and methanol extract of the Mediterranean cypress (Cupressus sempervirens L.). BMC Complement. Altern. Med. 2014, 14, 1–8. [Google Scholar] [CrossRef]
- Zheng, D.; Liwinski, T.; Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020, 30, 492–506. [Google Scholar] [CrossRef]
- Zhao, S.; Gao, Q.; Rong, C.; Wang, S.; Zhao, Z.; Liu, Y.; Xu, J. Immunomodulatory effects of edible and medicinal mushrooms and their bioactive immunoregulatory products. J. Fungi 2020, 6, 269. [Google Scholar] [CrossRef] [PubMed]
- Piccardo, M.T.; Stella, A.; Valerio, F. Is the smokers exposure to environmental tobacco smoke negligible? Environ. Health 2010, 9, 5. [Google Scholar] [CrossRef] [Green Version]
- Shahid, A.; Ali, R.; Ali, N.; Hasan, S.K.; Rashid, S.; Majed, F.; Sultana, S. Attenuation of genotoxicity, oxidative stress, apoptosis and inflammation by rutin in benzo(a)pyrene exposed lungs of mice: Plausible role of NF-κB, TNF-α and Bcl-2. J. Complement. Integr. Med. 2016, 13, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Qamar, W.; Khan, A.Q.; Khan, R.; Lateef, A.; Tahir, M.; Rehman, M.U.; Ali, F.; Sultana, S. Benzo(a)pyrene-induced pulmonary inflammation, edema, surfactant dysfunction, and injuries in rats: Alleviation by farnesol. Exp. Lung Res. 2012, 38, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Samaras, V.; Rafailidis, P.I.; Mourtzoukou, E.G.; Peppas, G.; Falagas, M.E. Chronic bacterial and parasitic infections and cancer: A review. J. Infect. Dev. Ctries. 2010, 4, 267–281. [Google Scholar] [CrossRef] [Green Version]
- Ammon, H. Modulation of the immune system by Boswellia serrata extracts and boswellic acids. Phytomedicine 2010, 17, 862–867. [Google Scholar] [CrossRef]
- Morikawa, T.; Matsuda, H.; Yoshikawa, M. A review of anti-inflammatory terpenoids from the incense gum resins frankincense and myrrh. J. Oleo Sci. 2017, 66, 805–814. [Google Scholar] [CrossRef] [Green Version]
- Al-Harrasi, A.; Al-Saidi, S. Phytochemical Analysis of the Essential Oil from Botanically Certified Oleogum Resin of Boswellia sacra (Omani Luban). Molecules 2008, 13, 2181. [Google Scholar] [CrossRef]
- Hayashi, S.; Amemori, H.; Kameoka, H.; Hanafusa, M.; Furukawa, K. Comparison of Volatile Compounds from Olibanum from Various Countries. J. Essent. Oil Res. 2011, 10, 25–30. [Google Scholar] [CrossRef]
- Frank, M.B.; Yang, Q.; Osban, J.; Azzarello, J.T.; Saban, M.R.; Saban, R.; Ashley, R.A.; Welter, J.C.; Fung, K.M.; Lin, H.K. Frankincense oil derived from Boswellia carteri induces tumor cell specific cytotoxicity. BMC Complement. Altern. Med. 2009, 9, 6. [Google Scholar] [CrossRef] [Green Version]
- Camarda, L.; Dayton, T.; Di Stefano, V.; Pitonzo, R.; Schillaci, D. Chemical composition and antimicrobial activity of some oleogum resin essential oils from Boswellia spp. (Burseraceae). Ann. Chim. 2007, 97, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Raja, A.F.; Ali, F.; Khan, I.A.; Shawl, A.S.; Arora, D.S.; Shah, B.A.; Taneja, S.C. Antistaphylococcal and biofilm inhibitory activities of acetyl-11-keto-β-boswellic acid from Boswellia serrata. BMC Microbiol. 2011, 11, 54. [Google Scholar] [CrossRef] [Green Version]
- Thi, M.T.T.; Wibowo, D.; Rehm, B.H. Pseudomonas aeruginosa Biofilms. Int. J. Mol. Sci. 2020, 21, 8671. [Google Scholar] [CrossRef]
- Pidwill, G.R.; Gibson, J.F.; Cole, J.; Renshaw, S.A.; Foster, S.J. The Role of Macrophages in Staphylococcus Aureus Infection. Front. Immunol. 2021, 11, 3506. [Google Scholar] [CrossRef] [PubMed]
- Viola, A.; Munari, F.; Sánchez-Rodríguez, R.; Scolaro, T.; Castegna, A. The Metabolic Signature of Macrophage Responses. Front. Immunol. 2019, 10, 1462. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Li, J.; Cui, L.; Wang, Y.; Lin, J.; Qu, Y.; Wang, H. Cortisol modulates inflammatory responses in LPS-stimulated RAW264.7 cells via the NF-κB and MAPK pathways. BMC Vet. Res. 2018, 14, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Committee on New Directions in the Study of Antimicrobial Therapeutics Promising. Approaches to the Development of Immunomodulation for the Treatment of Infectious Diseases: Immunomodulation. Available online: https://www.ncbi.nlm.nih.gov/books/NBK19846/ (accessed on 2 October 2021).
- Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front. Physiol. 2020, 11. [Google Scholar] [CrossRef]
- Ezzat, M.I.; Hassan, M.; Abdelhalim, M.A.; El-Desoky, A.M.; Mohamed, S.O.; Ezzat, S.M. Immunomodulatory effect of Noni fruit and its isolates: Insights into cell-mediated immune response and inhibition of LPS-induced THP-1 macrophage inflammation. Food Funct. 2021, 12, 3170–3179. [Google Scholar] [CrossRef]
- Tomé-Carneiro, J.; Larrosa, M.; Yáñez-Gascón, M.J.; Dávalos, A.; Gil-Zamorano, J.; Gonzálvez, M.; García-Almagro, F.J.; Ruiz Ros, J.A.; Tomás-Barberán, F.A.; Espín, J.C.; et al. One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacol. Res. 2013, 72, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Elinav, E.; Nowarski, R.; Thaiss, C.A.; Hu, B.; Jin, C.; Flavell, R.A. Inflammation-induced cancer: Crosstalk between tumours, immune cells and microorganisms. Nat. Rev. Cancer 2013, 13, 759–771. [Google Scholar] [CrossRef]
- Multhoff, G.; Molls, M.; Radons, J. Chronic Inflammation in Cancer Development. Front. Immunol. 2011, 2, 98. [Google Scholar] [CrossRef] [Green Version]
- Hardwick, J.M.; Soane, L. Multiple Functions of BCL-2 Family Proteins. Cold Spring Harb. Perspect. Biol. 2013, 5, a008722. [Google Scholar] [CrossRef] [Green Version]
- Kew Science. Boswellia Dalzielii Hutch. Plants of the World Online. Available online: http://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:127040-1 (accessed on 3 October 2021).
- El-Sayed, N.R.; Samir, R.; Abdel-Hafez, L.J.M.; Ramadan, M.A. Olive Leaf Extract Modulates Quorum Sensing Genes and Biofilm Formation in Multi-Drug Resistant Pseudomonas Aeruginosa. Antibiotics 2020, 9, 1–19. [Google Scholar] [CrossRef]
- Ozer, B.; Duran, N.; Onlen, Y.; Savas, L. Efflux Pump Genes and Antimicrobial Resistance of Pseudomonas Aeruginosa Strains Isolated from Lower Respiratory Tract Infections Acquired in an Intensive Care Unit. J. Antibiot. 2012, 65, 9–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, K.E. Theory of Antibiotic Inhibition Zones in Agar Media. Nat. Cell Biol. 1955, 176, 510–511. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, M.P.; Patel, J.B.; Bobenchik, A.M.; Campeau, S.; Cullen, S.K.; Galas, M.F.; Gold, H.; Humphries, R.M.; Kirn, T.J.; Lewis Ii, J.S.; et al. M100 Performance Standards for Antimicrobial Susceptibility Testing A CLSI Supplement for Global Application. In Performance Standards for Antimicrobial Susceptibility Testing Performance Standards for Antimicrobial Susceptibility Testing; CLSI: Wayne, PA, USA, 2020; ISBN 9781684400324. [Google Scholar]
- Elekhnawy, E.A.; Sonbol, F.I.; Elbanna, T.E.; Abdelaziz, A.A. Evaluation of the impact of adaptation of Klebsiella pneumoniae clinical isolates to benzalkonium chloride on biofilm formation. Egypt. J. Med. Hum. Genet. 2021, 22, 1–6. [Google Scholar] [CrossRef]
- Attallah, N.G.M.; Negm, W.A.; Elekhnawy, E.; Altwaijry, N.; Elmongy, E.I.; El-Masry, T.A.; Alturki, E.A.; Yousef, D.A.; Shoukheba, M.Y. Antibacterial Activity of Boswellia Sacra Flueck. Oleoresin Extract against Porphyromonas Gingivalis Periodontal Pathogen. Antibiotics 2021, 10, 859. [Google Scholar] [CrossRef] [PubMed]
- Attallah, N.G.M.; Negm, W.A.; Elekhnawy, E.; Elmongy, E.I.; Altwaijry, N.; El-Haroun, H.; El-Masry, T.A.; El-Sherbeni, S.A. Elucidation of Phytochemical Content of Cupressus macrocarpa Leaves: In Vitro and In Vivo Antibacterial Effect against Methicillin-Resistant Staphylococcus aureus Clinical Isolates. Antibiotics 2021, 10, 890. [Google Scholar] [CrossRef]
- Chan-Zapata, I.; Canul-Canche, J.; Fernández-Martín, K.; Martín-Quintal, Z.; Torres-Romero, J.C.; Lara-Riegos, J.C.; Ramírez-Camacho, M.A.; Arana-Argáez, V.E. Immunomodulatory effects of the methanolic extract from Pouteria campechiana leaves in macrophage functions. Food Agric. Immunol. 2017, 29, 386–399. [Google Scholar] [CrossRef] [Green Version]
- Lanucara, F.; Eyers, C.E. Mass spectrometric-based quantitative proteomics using SILAC. Methods Enzymol. 2011, 500, 133–150. [Google Scholar] [PubMed]
- Alley, M.C.; Scudiero, D.A.; Monks, A.; Hursey, M.; Czerwinski, M.J.; Fine, D.L.; Abbott, B.J.; Mayo, J.G.; Shoemaker, R.; Boyd, M.R. Feasibility of Drug Screening with Panels of Human Tumor Cell Lines Using a Microculture Tetrazolium Assay. Cancer Res. 1988, 48, 584–588. [Google Scholar]
No. | Rt (min.) | Peak Area % | Compound | Library |
---|---|---|---|---|
1 | 8.16 | 6.38 | cis-Ocimene | Wiley |
2 | 8.26 | 5.99 | α-Pinene | Wiley |
3 | 8.62 | 0.65 | Camphene | Wiley |
4 | 9.46 | 2.85 | Myrcene | Wiley |
5 | 10.03 | 3.50 | α-Thujene | Wiley |
6 | 11.02 | 0.74 | p-Cymene | Wiley |
7 | 11.13 | 4.26 | (+)-Limonene | Wiley |
8 | 12.83 | 0.62 | Verbenol | Wiley |
9 | 13.42 | 0.43 | Linalool | Wiley |
10 | 13.50 | 3.63 | p-Menth-8(10)-en-9-ol | Mainlib and Wiley |
11 | 13.57 | 0.61 | cis-Salvene | Wiley |
12 | 13.79 | 0.60 | Thujone | Wiley |
13 | 14.09 | 1.42 | α-Campholenealdehyde | Wiley |
14 | 14.53 | 3.15 | Isopinocarveol | Wiley |
15 | 14.80 | 5.80 | α-Cyclocitral | Wiley |
16 | 15.18 | 0.59 | Pinocarvone | Mainlib and Wiley |
17 | 15.45 | 1.08 | cis-Sabinol | Wiley |
18 | 15.76 | 0.82 | Verbenyl, ethyl ether | Mainlib |
19 | 16.14 | 0.48 | Myrtenal | Wiley |
20 | 16.26 | 1.08 | Myrtenol | Wiley |
21 | 16.56 | 2.99 | Verbenone | Wiley |
22 | 16.88 | 1.22 | Carveol | Wiley |
23 | 18.19 | 0.58 | 3,5-Dimethoxytoluene | Mainlib and Wiley |
24 | 18.63 | 0.53 | Anethole | Wiley |
25 | 18.69 | 0.60 | Bronyl acetate | Mainlib |
26 | 19.39 | 0.86 | 5,5-Dimethyl bicyclo [2.1.1] hexane-1-carboxylic acid | Wiley |
27 | 24.36 | 0.69 | 2,6-Octadiene-1,8-diol- 2,6-dimethyl | Mainlib and Wiley |
28 | 32.99 | 0.32 | trans-Caryophyllene | Wiley |
29 | 33.67 | 4.05 | Neryl nitrile | Mainlib and Wiley |
30 | 33.92 | 4.61 | α-Elemene | Wiley |
31 | 34.29 | 2.09 | Geranyl-alpha-terpinene | Mainlib |
32 | 34.76 | 0.57 | γ-Elemene | Mainlib |
33 | 36.61 | 0.54 | cis-α-Bisabolene epoxide | Mainlib |
34 | 37.26 | 5.24 | Methyl arachidonate | Wiley |
35 | 37.34 | 4.15 | Germacrene B | Wiley |
36 | 37.50 | 6.71 | Limonene oxide | Mainlib and Wiley |
37 | 37.63 | 5.93 | 15-Oxabicyclo [12.1.0] pentadeca-6,10-diene-7-methanol | Wiley |
38 | 37.95 | 0.99 | Nerolidyl propionate | Mainlib |
39 | 38.56 | 1.50 | 9-(3,3-Dimethyloxiran-2-yl)-2,7-dimethylnona-2,6-dien-1-ol | Mainlib and Wiley |
40 | 38.63 | 0.55 | Z-5-Methyl-6-heneicosen-11-one | Mainlib |
41 | 38.81 | 0.45 | Nerolidol-epoxy acetate | Wiley |
42 | 39.63 | 6.52 | 6-Methyl-5-octen-2-one | Mainlib |
43 | 39.92 | 0.73 | 4,8,13-Cyclotetradecatriene-1,3-diol | Mainlib and Wiley |
44 | 40.08 | 0.95 | 19-Di-torulosol | Wiley |
Item | Group I * | Group II * | Group III * | Group IV * | Group V * | Group VI * |
---|---|---|---|---|---|---|
Area percentage of TNF-α | 14.301 ± 3.590 b,c,d | 48.562 ± 5.654 a,c,d,e,f | 36.804 ± 2.674 a,b,d,e,f | 19.008 ± 2.102 a,b,c,e,f | 16.741 ± 1.755 b,c,d | 15.141± 2.097 b,c,d |
The color intensity of TNF-α | 10.468 ± 1.746 b,c,d | 56.555 ± 4.648 a,c,d,e,f | 49.781 ± 2.667 a,b,d,e,f | 13.634 ± 2.172 a,b,c,f | 12.491 ± 3.164 b,c | 10.077 ± 1.548 b,c,d |
Area percentage of COX-2 | 14.468 ± 1.744 b,c,d | 48.885 ± 4.942 a,c,d,e,f | 35.416 ± 2.972 a,b,d,e,f | 17.931 ± 2.49 a,b,c | 16.611 ± 2.27 b,c | 15.618 ± 1.959 b,c |
The color intensity of COX-2 | 11.623 ± 1.873 b,c,d | 46.024 ± 9.21 a, d,e,f | 44.313 ± 8.778 a,d,e,f | 14.315 ± 1.568 a,b,c,e,f | 12.007 ± 2.172 b,c,d | 11.777 ± 1.726 b,c,d |
Area percentage of NF-κb | 10.102 ± 1.359 b,c,d | 35.093 ± 2.94 a,c,d,e,f | 26.957 ± 4.768 a,b,d,e,f | 11.879 ± 0.905 a,b,c,f | 11.770 ± 1.137 b,c | 9.797 ± 2.204 b,c,d |
The color intensity of NF-κb | 15.016 ± 3.119 b,c,d | 57.511 ± 6.423 a,c,d,e,f | 43.3 ± 2.281 a,b,d,e,f | 20.808 ± 5.3 a,b,c,f | 17.722 ± 3.62 b,c | 15.764 ± 3.459 b,c,d |
Area percentage of Bcl-2 | 48.329 ± 4.509 b,c,d | 15.460 ± 3.666 a,d,e,f | 21.161 ± 4.128 a,b,d,e,f | 42.01 ± 4.137 a,b,c,f | 45.047 ± 3.435 b,c | 45.933 ± 3.992 b,c,d |
The color intensity of Bcl-2 | 46.524 ± 3.213 b,c,d | 17.404 ± 4.283 a,d,e,f | 25.372 ± 3.233 a,b,d,e,f | 42.52 ± 2.448 a,b,c,f | 44.091 ± 3.846 b,c | 45.465 ± 3.395 b,c,d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alotaibi, B.; Negm, W.A.; Elekhnawy, E.; El-Masry, T.A.; Elseady, W.S.; Saleh, A.; Alotaibi, K.N.; El-Sherbeni, S.A. Antibacterial, Immunomodulatory, and Lung Protective Effects of Boswelliadalzielii Oleoresin Ethanol Extract in Pulmonary Diseases: In Vitro and In Vivo Studies. Antibiotics 2021, 10, 1444. https://doi.org/10.3390/antibiotics10121444
Alotaibi B, Negm WA, Elekhnawy E, El-Masry TA, Elseady WS, Saleh A, Alotaibi KN, El-Sherbeni SA. Antibacterial, Immunomodulatory, and Lung Protective Effects of Boswelliadalzielii Oleoresin Ethanol Extract in Pulmonary Diseases: In Vitro and In Vivo Studies. Antibiotics. 2021; 10(12):1444. https://doi.org/10.3390/antibiotics10121444
Chicago/Turabian StyleAlotaibi, Badriyah, Walaa A. Negm, Engy Elekhnawy, Thanaa A. El-Masry, Walaa S. Elseady, Asmaa Saleh, Khalid N. Alotaibi, and Suzy A. El-Sherbeni. 2021. "Antibacterial, Immunomodulatory, and Lung Protective Effects of Boswelliadalzielii Oleoresin Ethanol Extract in Pulmonary Diseases: In Vitro and In Vivo Studies" Antibiotics 10, no. 12: 1444. https://doi.org/10.3390/antibiotics10121444
APA StyleAlotaibi, B., Negm, W. A., Elekhnawy, E., El-Masry, T. A., Elseady, W. S., Saleh, A., Alotaibi, K. N., & El-Sherbeni, S. A. (2021). Antibacterial, Immunomodulatory, and Lung Protective Effects of Boswelliadalzielii Oleoresin Ethanol Extract in Pulmonary Diseases: In Vitro and In Vivo Studies. Antibiotics, 10(12), 1444. https://doi.org/10.3390/antibiotics10121444