Extended-Spectrum-β-Lactamase- and AmpC-Producing Escherichia coli in Domestic Dogs: Spread, Characterisation and Associated Risk Factors
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Sampling
4.2. Isolation and Identification of ESBL/AmpC E. coli
4.3. Analysis of Resistance Genes
4.4. Antimicrobial Susceptibility Testing
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gil-Gil, T.; Laborda, P.; Sanz-García, F.; Hernando-Amado, S.; Blanco, P.; Martínez, J.L. Antimicrobial resistance: A multifaceted problem with multipronged solutions. Microbiologyopen 2019, 8, e945. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zeng, X.; Yang, Q.; Qiao, S. Antimicrobial Peptides as Potential Alternatives to Antibiotics in Food Animal Industry. Int. J. Mol. Sci. 2016, 17, 603. [Google Scholar] [CrossRef] [PubMed]
- Ljungquist, O.; Ljungquist, D.; Myrenås, M.; Rydén, C.; Finn, M.; Bengtsson, B. Evidence of household transfer of ESBL-/pAmpC-producing Enterobacteriaceae between humans and dogs—A pilot study. Infect. Ecol. Epidemiol. 2016, 6, 31514. [Google Scholar] [CrossRef] [PubMed]
- Goossens, H.; Grabein, B. Prevalence and antimicrobial susceptibility data for extended-spectrum β-lactamase- and AmpC-producing Enterobacteriaceae from the MYSTIC Program in Europe and the United States (1997–2004). Diagn. Microbiol. Infect. Dis. 2005, 53, 257–264. [Google Scholar] [CrossRef]
- Belas, A.; Salazar, A.S.; da Gama, L.T.; Couto, N.; Pomba, C. Risk factors for faecal colonisation with Escherichia coli producing extended-spectrum and plasmid-mediated AmpC β-lactamases in dogs. Vet. Rec. 2014, 175, 202. [Google Scholar] [CrossRef] [PubMed]
- Madec, J.-Y.; Haenni, M. Antimicrobial resistance plasmid reservoir in food and food-producing animals. Plasmid 2018, 99, 72–81. [Google Scholar] [CrossRef]
- Oloso, N.O.; Fagbo, S.; Garbati, M.; Olonitola, S.O.; Awosanya, E.J.; Aworh, M.K.; Adamu, H.; Odetokun, I.A.; Fasina, F.O. Antimicrobial Resistance in Food Animals and the Environment in Nigeria: A Review. Int. J. Environ. Res. Public Health 2018, 15, 1284. [Google Scholar] [CrossRef] [Green Version]
- Saputra, S.; Jordan, D.; Mitchell, T.; Wong, H.S.; Abraham, R.J.; Kidsley, A.; Turnidge, J.; Trott, D.J.; Abraham, S. Antimicrobial resistance in clinical Escherichia coli isolated from companion animals in Australia. Vet. Microbiol. 2017, 211, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Bourély, C.; Cazeau, G.; Jarrige, N.; Leblond, A.; Madec, J.; Haenni, M.; Gay, E. Antimicrobial resistance patterns of bacteria isolated from dogs with otitis. Epidemiol. Infect. 2019, 147, e121. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.R.; Miller, S.; Johnston, B.; Clabots, C.; DebRoy, C. Sharing of Escherichia coli Sequence Type ST131 and Other Multidrug-Resistant and Urovirulent E. coli Strains among Dogs and Cats within a Household. J. Clin. Microbiol. 2009, 47, 3721–3725. [Google Scholar] [CrossRef] [Green Version]
- Nam, H.-M.; Lee, H.-S.; Byun, J.-W.; Yoon, S.-S.; Jung, S.-C.; Joo, Y.-S.; Lim, S.-K. Prevalence of Antimicrobial Resistance in Fecal Escherichia coli Isolates from Stray Pet Dogs and Hospitalized Pet Dogs in Korea. Microb. Drug Resist. 2010, 16, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.; Epstein, S.; Westropp, J. Antimicrobial Susceptibility Patterns in Urinary Tract Infections in Dogs (2010–2013). J. Vet. Intern. Med. 2015, 29, 1045–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertelloni, F.; Salvadori, C.; Lotti, G.; Cerri, D.; Ebani, V.V. Antimicrobial resistance in Enterococcus strains isolated from healthy domestic dogs. Acta Microbiol. Immunol. Hung. 2016, 64, 301–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, V.M.; Pinchbeck, G.; McIntyre, K.M.; Nuttall, T.; McEwan, N.J.; Dawson, S.; Williams, N. Routine antibiotic therapy in dogs increases the detection of antimicrobial-resistant faecal Escherichia coli. J. Antimicrob. Chemother. 2018, 73, 3305–3316. [Google Scholar] [CrossRef]
- Mdegela, R.; Mwakapeje, E.; Rubegwa, B.; Gebeyehu, D.; Niyigena, S.; Msambichaka, V.; Nonga, H.; Antoine-Moussiaux, N.; Fasina, F. Antimicrobial Use, Residues, Resistance and Governance in the Food and Agriculture Sectors, Tanzania. Antibiotics 2021, 10, 454. [Google Scholar] [CrossRef]
- Pedersen, K.; Jensen, H.; Finster, K.; Jensen, V.F.; Heuer, O.E. Occurrence of antimicrobial resistance in bacteria from diagnostic samples from dogs. J. Antimicrob. Chemother. 2007, 60, 775–781. [Google Scholar] [CrossRef] [Green Version]
- Wedley, A.L.; Dawson, S.; Maddox, T.W.; Coyne, K.P.; Pinchbeck, G.L.; Clegg, P.; Nuttall, T.; Kirchner, M.; Williams, N.J. Carriage of antimicrobial resistant Escherichia coli in dogs: Prevalence, associated risk factors and molecular characteristics. Vet. Microbiol. 2017, 199, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Awosile, B.B.; McClure, J.T.; Saab, M.E.; Heider, L.C. Antimicrobial resistance in bacteria isolated from cats and dogs from the Atlantic Provinces, Canada from 1994–2013. Can. Vet. J. 2018, 59, 885–893. [Google Scholar]
- Schmidt, V.M.; Pinchbeck, G.L.; Nuttall, T.; McEwan, N.; Dawson, S.; Williams, N. Antimicrobial resistance risk factors and characterisation of faecal E. coli isolated from healthy Labrador retrievers in the United Kingdom. Prev. Vet. Med. 2015, 119, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Benavides, J.; Salgado-Caxito, M.; Opazo-Capurro, A.; Muñoz, P.G.; Piñeiro, A.; Medina, M.O.; Rivas, L.; Munita, J.; Millán, J. ESBL-Producing Escherichia coli Carrying CTX-M Genes Circulating among Livestock, Dogs, and Wild Mammals in Small-Scale Farms of Central Chile. Antibiotics 2021, 10, 510. [Google Scholar] [CrossRef]
- Aslantaş, Ö.; Yilmaz, E.Ş. Prevalence and molecular characterization of extended-spectrum β-lactamase (ESBL) and plasmidicAmpCb-lactamase (pAmpC) producing Escherichia coli in dogs. J. Vet. Med. Sci. 2017, 79, 1024–1030. [Google Scholar] [CrossRef] [Green Version]
- Van den Bunt, G.; Fluit, A.C.; Spaninks, M.P.; Timmerman, A.J.; Geurts, Y.; Kant, A.; Scharringa, J.; Mevius, D.; Wagenaar, J.A.; Bonten, M.J.M.; et al. Faecal carriage, risk factors, acquisition and persistence of ESBL-producing Enterobacteriaceae in dogs and cats and co-carriage with humans belonging to the same household. J. Antimicrob. Chemother. 2020, 75, 342–350. [Google Scholar] [CrossRef]
- Torres, R.T.; Fernandes, J.; Carvalho, J.; Cunha, M.V.; Caetano, T.; Mendo, S.; Serrano, E.; Fonseca, C. Wild boar as a reservoir of antimicrobial resistance. Sci. Total. Environ. 2020, 717, 135001. [Google Scholar] [CrossRef]
- Graham, D.W.; Bergeron, G.; Bourassa, M.W.; Dickson, J.; Gomes, F.; Howe, A.; Kahn, L.H.; Morley, P.S.; Scott, H.M.; Simjee, S.; et al. Complexities in understanding antimicrobial resistance across domesticated animal, human, and environmental systems. Ann. N. Y. Acad. Sci. 2019, 1441, 17–30. [Google Scholar] [CrossRef]
- Li, Y.; Fernández, R.; Durán, I.; Molina-López, R.A.; Darwich, L. Antimicrobial Resistance in Bacteria Isolated from Cats and Dogs from the Iberian Peninsula. Front. Microbiol. 2021, 11, 621597. [Google Scholar] [CrossRef]
- Stolle, I.; Prenger-Berninghoff, E.; Stamm, I.; Scheufen, S.; Hassdenteufel, E.; Guenther, S.; Bethe, A.; Pfeifer, Y.; Ewers, C. Emergence of OXA-48 carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in dogs. J. Antimicrob. Chemother. 2013, 68, 2802–2808. [Google Scholar] [CrossRef] [Green Version]
- Rzewuska, M.; Stefanska, I.; Kizerwetter-Swida, M.; Chrobak-Cmiel, D.; Szczygielska, P.; Lesniak, M.; Binek, M. Characterization of extended-spectrum-beta-lactamases produced by Escherichia coli strains isolated from dogs in Poland. Pol. J. Microbiol. 2015, 64, 285–288. [Google Scholar] [CrossRef]
- Baede, V.O.; Wagenaar, J.A.; Broens, E.M.; Duim, B.; Dohmen, W.; Nijsse, R.; Timmerman, A.J.; Hordijk, J. Longitudinal Study of Extended-Spectrum-β-Lactamase- and AmpC-Producing Enterobacteriaceae in Household Dogs. Antimicrob. Agents Chemother. 2015, 59, 3117–3124. [Google Scholar] [CrossRef] [Green Version]
- Phan, M.-D.; Peters, K.M.; Sarkar, S.; Forde, B.M.; Lo, A.W.; Stanton-Cook, M.; Roberts, L.W.; Upton, M.; Beatson, S.A.; Schembri, M.A. Third-generation cephalosporin resistance conferred by a chromosomally encoded blaCMY-23 gene in the Escherichia coli ST131 reference strain EC958. J. Antimicrob. Chemother. 2015, 70, 1969–1972. [Google Scholar] [CrossRef] [Green Version]
- Manageiro, V.; Ferreira, E.; Pinto, M.; Fonseca, F.; Ferreira, M.; Bonnet, R.; Caniça, M. Two novel CMY-2-type β-lactamases encountered in clinical Escherichia coli isolates. Ann. Clin. Microbiol. Antimicrob. 2015, 14, 12. [Google Scholar] [CrossRef] [Green Version]
- Aguirre, L.; Vidal, A.; Seminati, C.; Tello, M.; Redondo, N.; Darwich, L.; Martín, M. Antimicrobial resistance profile and prevalence of extended-spectrum beta-lactamases (ESBL), AmpC beta-lactamases and colistin resistance (mcr) genes in Escherichia coli from swine between 1999 and 2018. Porc. Health Manag. 2020, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Athanasakopoulou, Z.; Reinicke, M.; Diezel, C.; Sofia, M.; Chatzopoulos, D.; Braun, S.; Reissig, A.; Spyrou, V.; Monecke, S.; Ehricht, R.; et al. Antimicrobial Resistance Genes in ESBL-Producing Escherichia coli Isolates from Animals in Greece. Antibiotics 2021, 10, 389. [Google Scholar] [CrossRef]
- Ghodousi, A.; Bonura, C.; Di Noto, A.M.; Mammina, C. Extended-Spectrum ß-Lactamase, AmpC-Producing, and Fluoroquinolone-Resistant Escherichia coli in Retail Broiler Chicken Meat, Italy. Foodborne Pathog. Dis. 2015, 12, 619–625. [Google Scholar] [CrossRef] [Green Version]
- Dorado-García, A.; Smid, J.H.; Van Pelt, W.; Bonten, M.J.M.; Fluit, A.C.; Bunt, G.V.D.; AWagenaar, J.; Hordijk, J.; Dierikx, C.M.; Veldman, K.T.; et al. Molecular relatedness of ESBL/AmpC-producing Escherichia coli from humans, animals, food and the environment: A pooled analysis. J. Antimicrob. Chemother. 2018, 73, 339–347. [Google Scholar] [CrossRef]
- Ramos, S.; Silva, V.; Dapkevicius, M.D.L.E.; Caniça, M.; Tejedor-Junco, M.T.; Igrejas, G.; Poeta, P. Escherichia coli as Commensal and Pathogenic Bacteria among Food-Producing Animals: Health Implications of Extended Spectrum β-lactamse (ESBL) Production. Animals 2020, 10, 2239. [Google Scholar] [CrossRef]
- Carattoli, A.; García-Fernández, A.; Varesi, P.; Fortini, D.; Gerardi, S.; Penni, A.; Mancini, C.; Giordano, A. Molecular Epidemiology of Escherichia coli Producing Extended-Spectrum β-Lactamases Isolated in Rome, Italy. J. Clin. Microbiol. 2008, 46, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Adam, A.M.; Altalhi, T.A.; El-Megharbel, S.M.; Saad, H.A.; Refat, M.S. Using a Modified Polyamidoamine Fluorescent Dendrimer for Capturing Environment Polluting Metal Ions Zn2+, Cd2+, and Hg2+: Synthesis and Characterizations. Crystals 2021, 11, 92. [Google Scholar] [CrossRef]
- Livermore, D.M.; Canton, R.; Gniadkowski, M.; Nordmann, P.; Rossolini, G.M.; Arlet, G.; Ayala, J.; Coque, T.M.; Kern-Zdanowicz, I.; Luzzaro, F.; et al. CTX-M: Changing the face of ESBLs in Europe. J. Antimicrob. Chemother. 2006, 59, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Mrowiec, P.; Klesiewicz, K.; Małek, M.; Skiba-Kurek, I.; Sowa-Sierant, I.; Skałkowska, M.; Budak, A.; Karczewska, E. Antimicrobial susceptibility and prevalence of extended-spectrum beta-lactamases in clinical strains of Klebsiella pneumoniae isolated from pediatric and adult patients of two Polish hospitals. New Microbiol. 2019, 42, 197–204. [Google Scholar]
- González, D.; Gallagher, E.; Zúñiga, T.; Leiva, J.; Vitas, A.I. Prevalence and characterization of β-lactamase-producing Enterobacteriaceae in healthy human carriers. Int. Microbiol. 2020, 23, 171–177. [Google Scholar] [CrossRef]
- Bailey, J.; Pinyon, J.; Anantham, S.; Hall, R.M. Distribution of the blaTEM gene and blaTEM-containing transposons in commensal Escherichia coli. J. Antimicrob. Chemother. 2011, 66, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Mugnaioli, C.; Luzzaro, F.; De Luca, F.; Brigante, G.; Perilli, M.; Amicosante, G.; Stefani, S.; Toniolo, A.; Rossolini, G.M. CTX-M-Type Extended-Spectrum β-Lactamases in Italy: Molecular Epidemiology of an Emerging Countrywide Problem. Antimicrob. Agents Chemother. 2006, 50, 2700–2706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giufrè, M.; Ricchizzi, E.; Accogli, M.; Barbanti, F.; Monaco, M.; de Araujo, F.P.; Farina, C.; Fazii, P.; Mattei, R.; Sarti, M.; et al. Colonization by multidrug-resistant organisms in long-term care facilities in Italy: A point-prevalence study. Clin. Microbiol. Infect. 2017, 23, 961–967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melo, L.C.; Boisson, M.N.G.; Saras, E.; Médaille, C.; Boulouis, H.-J.; Madec, J.-Y.; Haenni, M. OXA-48-producing ST372 Escherichia coli in a French dog. J. Antimicrob. Chemother. 2017, 72, 1256–1258. [Google Scholar]
- Valat, C.; Drapeau, A.; Beurlet, S.; Bachy, V.; Boulouis, H.-J.; Pin, R.; Cazeau, G.; Madec, J.-Y.; Haenni, M. Pathogenic Escherichia coli in Dogs Reveals the Predominance of ST372 and the Human-Associated ST73 Extra-Intestinal Lineages. Front. Microbiol. 2020, 11, 580. [Google Scholar] [CrossRef]
- Hong, J.S.; Song, W.; Jeong, S.H. Molecular Characteristics of NDM-5-Producing Escherichia coli from a Cat and a Dog in South Korea. Microb. Drug Resist. 2020, 26, 1005–1008. [Google Scholar] [CrossRef]
- Sotgiu, G.; Are, B.; Pesapane, L.; Palmieri, A.; Muresu, N.; Cossu, A.; Dettori, M.; Azara, A.; Mura, I.; Cocuzza, C.; et al. Nosocomial transmission of carbapenem-resistant Klebsiella pneumoniae in an Italian university hospital: A molecular epidemiological study. J. Hosp. Infect. 2018, 99, 413–418. [Google Scholar] [CrossRef]
- Isler, B.; Ezure, Y.; Romero, J.L.G.-F.; Harris, P.; Stewart, A.G.; Paterson, D.L. Is Ceftazidime/Avibactam an Option for Serious Infections Due to Extended-Spectrum-β-Lactamase- and AmpC-Producing Enterobacterales ?: A Systematic Review and Meta-analysis. Antimicrob. Agents Chemother. 2020, 65, 01052-20. [Google Scholar] [CrossRef]
- Van Damme, I.; Garcia-Graells, C.; Biasino, W.; Gowda, T.; Botteldoorn, N.; De Zutter, L. High abundance and diversity of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in faeces and tonsils of pigs at slaughter. Vet. Microbiol. 2017, 208, 190–194. [Google Scholar] [CrossRef]
- Clermont, O.; Christenson, J.K.; Denamur, E.; Gordon, D.M. The Clermont Escherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups. Environ. Microbiol. Rep. 2013, 5, 58–65. [Google Scholar] [CrossRef]
- Fang, H.; Ataker, F.; Hedin, G.; Dornbusch, K. Molecular epidemiology of extended-spectrum beta-lactamases among Escherichia coli isolates collected in a Swedish hospital and its associated health care facilities from 2001 to 2006. J. Clin. Microbiol. 2008, 46, 707–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehman, M.; Hasted, T.-L.; Persaud-Lachhman, M.G.; Yin, X.; Carrillo, C.; Diarra, M.S. Genome Analysis and Multiplex PCR Method for the Molecular Detection of Coresistance to Cephalosporins and Fosfomycin in Salmonella enterica Serovar Heidelberg. J. Food Prot. 2019, 82, 1938–1949. [Google Scholar] [CrossRef] [PubMed]
- Baldo, V.; Salogni, C.; Giovannini, S.; D’Incau, M.; Boniotti, M.B.; Birbes, L.; Pitozzi, A.; Formenti, N.; Grassi, A.; Pasquali, P.; et al. Pathogenicity of Shiga Toxin Type 2e Escherichia coli in Pig Colibacillosis. Front. Vet. Sci. 2020, 7, 545818. [Google Scholar] [CrossRef] [PubMed]
- Mo, S.S.; Urdahl, A.M.; Madslien, K.; Sunde, M.; Nesse, L.L.; Slettemeås, J.S.; Norström, M. What does the fox say? Monitoring antimicrobial resistance in the environment using wild red foxes as an indicator. PLoS ONE 2018, 13, e0198019. [Google Scholar] [CrossRef]
- Garcia-Graells, C.; Berbers, B.; Verhaegen, B.; Vanneste, K.; Marchal, K.; Roosens, N.H.; Botteldoorn, N.; De Keersmaecker, S.C. First detection of a plasmid located carbapenem resistant blaVIM-1 gene in E. coli isolated from meat products at retail in Belgium in 2015. Int. J. Food Microbiol. 2020, 324, 108624. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). CLSI supplement M100-S29. In Performance Standards for Antimicrobial Susceptibility Testing, 29th ed.; CLSI: Wayne, PA, USA, 2019. [Google Scholar]
- Sweeney, M.T.; Lubbers, B.V.; Schwarz, S.; Watts, J.L. Applying definitions for multidrug resistance, extensive drug resistance and pandrug resistance to clinically significant livestock and companion animal bacterial pathogens. J. Antimicrob. Chemother. 2018, 73, 1460–1463. [Google Scholar] [CrossRef]
Genes | % | % by Phylogenetic Group | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
A (n = 19) | B1 (n = 21) | B2 (n = 6) | C (n = 6) | D (n = 5) | E (n = 6) | F (n = 6) | |||
blaCTX-M | 79.7 | 84.2 | 66.7 | 83.3 | 100 | 80 | 66.7 | 100 | 0.61 |
blaTEM | 47.8 | 57.9 | 33.3 | 33.3 | 83.3 | 0 | 83.3 | 50 | 0.03 |
blaCMY | 13 | 10.5 | 19.0 | 16.7 | 0 | 20 | 16.7 | 0 | 0.65 |
blaSHV | 5.8 | 10.5 | 9.5 | 0 | 0 | 0 | 0 | 0 | 1.00 |
Genes Combination | n | % | 95% CI |
---|---|---|---|
blaCTX-M | 27 | 39.1 | 27.3–50.9 |
blaCTX-M + blaTEM | 25 | 36.2 | 24.6–47.9 |
blaTEM | 4 | 5.8 | 0.1–11.4 |
blaCMY | 4 | 5.8 | 0.1–11.4 |
blaSHV | 3 | 4.3 | 0–9.3 |
blaCTX-M + blaCMY | 2 | 2.9 | 0–7.0 |
blaTEM + blaCMY | 2 | 2.9 | 0–7.0 |
blaCTX-M + blaTEM + blaSHV | 1 | 1.4 | 0–4.3 |
Distribution (%) of MIC Values (mg/L) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Antimicrobial | 0.015 | 0.03 | 0.06 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 |
FEP | 1.4 | 5.7 | 7.1 | 4.3 | 4.3 | 12.9 | 40.0 | 22.9 | 1.4 | |||||
FOT | 1.4 | 5.7 | 5.7 | 7.1 | 32.9 | 20.0 | 27.1 | |||||||
F/C | 60.0 | 20.0 | 1.4 | 1.4 | 1.4 | 4.3 | 1.4 | 4.3 | 2.9 | 1.4 | 1.4 | |||
FOX | 11.4 | 52.9 | 15.7 | 8.6 | 1.4 | 10.0 | ||||||||
TAZ | 1.4 | 10.0 | 15.7 | 21.4 | 10.0 | 20.0 | 12.9 | 4.3 | 1.4 | 2.9 | ||||
T/C | 54.3 | 24.3 | 4.3 | 1.4 | 2.9 | 4.3 | 4.3 | 2.9 | 1.4 | |||||
ETP | 61.4 | 27.1 | 7.1 | 1.4 | 1.4 | 1.4 | ||||||||
IMI | 98.6 | 1.4 | ||||||||||||
MERO | 97.1 | 1.4 | 1.4 | |||||||||||
TRM | 1.4 | 1.4 | 18.6 | 65.7 | 10.0 | 1.4 | 1.4 |
Antimicrobial | % of Resistant Isolates | % of Resistant Isolates with Associated Genes | |||
---|---|---|---|---|---|
blaCTX-M | blaSHV | blaCMY | blaTEM | ||
FEP (n = 60) | 86.9 | 85 | 3.3 | 8.3 | 50.0 |
FOT (n = 69) | 100 | 79.7 | 5.8 | 13.0 | 47.8 |
F/C (n = 13) | 18.8 | 46.1 | 0 | 61.5 | 30.8 |
FOX (n = 14) | 20.3 | 42.8 | 0 | 57.1 | 35.7 |
TAZ (n = 62) | 89.9 | 79.0 | 6.4 | 14.5 | 46.8 |
T/C (n = 12) | 17.4 | 41.7 | 0 | 66.7 | 25.0 |
ETP (n = 8) | 11.6 | 50.0 | 0 | 50.0 | 37.5 |
IMI | 0 | 0 | 0 | 0 | 0 |
MERO (n = 1) | 1.4 | 100 | 0 | 0 | 0 |
TRM (n = 2) | 2.9 | 50 | 0 | 50 | 0 |
Antimicrobial | Gene | Parameter Estimate ± SE | X21 | p-Value |
---|---|---|---|---|
FOX | blaCMY | 1.15 ± 0.58 | 3.87 | 0.049 |
blaCTX-M | −1.15 ± 0.60 | 3.73 | 0.054 | |
blaTEM | −0.57 ± 0.48 | 1.37 | 0.24 | |
blaSHV | −1.25 ± 1.08 | 1.34 | 0.25 | |
F/C | blaCMY | 1.39 ± 0.61 | 5.19 | 0.023 |
blaCTX-M | −0.75 ± 0.64 | 1.38 | 0.24 | |
blaTEM | −0.56 ± 0.48 | 1.39 | 0.24 | |
blaSHV | −0.81 ± 1.08 | 0.56 | 0.45 | |
T/C | blaCMY | 1.33 ± 0.61 | 4.75 | 0.029 |
blaCTX-M | −1.30 ± 0.85 | 2.33 | 0.13 | |
blaTEM | −1.13 ± 0.73 | 2.40 | 0.12 | |
blaSHV | −1.36 ± 1.25 | 1.19 | 0.28 |
Antimicrobial | Interpretative Thresholds of AMR (mg/L) ECOFF (R > mg/L) 1 | Range of Concentrations (mg/L) (N° of Wells in Brackets) |
---|---|---|
Cefepime (FEP) | 0.25 | 0.06–32 (10) |
Cefotaxime (FOT) | 0.25 | 0.25–64 (9) |
Cefotaxime/clavulanic acid (F/C) | 0.25 | 0.06–64 (11) |
Cefoxitin (FOX) | 8 | 0.5–64 (8) |
Ceftazidime (TAZ) | 0.5 | 0.25–128 (10) |
Ceftazidime/clavulanic acid (T/C) | 0.5 | 0.125–128 (11) |
Ertapenem (ETP) | 0.03 | 0.015–2 (8) |
Imipenem (IMI) | 0.5 | 0.12–16 (8) |
Meropenem (MERO) | 0.06 | 0.03–16 (10) |
Temocillin (TRM) | 16 | 0.5–128 (9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Formenti, N.; Grassi, A.; Parisio, G.; Romeo, C.; Guarneri, F.; Birbes, L.; Pitozzi, A.; Scali, F.; Maisano, A.M.; Boniotti, M.B.; et al. Extended-Spectrum-β-Lactamase- and AmpC-Producing Escherichia coli in Domestic Dogs: Spread, Characterisation and Associated Risk Factors. Antibiotics 2021, 10, 1251. https://doi.org/10.3390/antibiotics10101251
Formenti N, Grassi A, Parisio G, Romeo C, Guarneri F, Birbes L, Pitozzi A, Scali F, Maisano AM, Boniotti MB, et al. Extended-Spectrum-β-Lactamase- and AmpC-Producing Escherichia coli in Domestic Dogs: Spread, Characterisation and Associated Risk Factors. Antibiotics. 2021; 10(10):1251. https://doi.org/10.3390/antibiotics10101251
Chicago/Turabian StyleFormenti, Nicoletta, Andrea Grassi, Giovanni Parisio, Claudia Romeo, Flavia Guarneri, Laura Birbes, Alessandra Pitozzi, Federico Scali, Antonio Marco Maisano, Maria Beatrice Boniotti, and et al. 2021. "Extended-Spectrum-β-Lactamase- and AmpC-Producing Escherichia coli in Domestic Dogs: Spread, Characterisation and Associated Risk Factors" Antibiotics 10, no. 10: 1251. https://doi.org/10.3390/antibiotics10101251
APA StyleFormenti, N., Grassi, A., Parisio, G., Romeo, C., Guarneri, F., Birbes, L., Pitozzi, A., Scali, F., Maisano, A. M., Boniotti, M. B., Pasquali, P., & Alborali, G. L. (2021). Extended-Spectrum-β-Lactamase- and AmpC-Producing Escherichia coli in Domestic Dogs: Spread, Characterisation and Associated Risk Factors. Antibiotics, 10(10), 1251. https://doi.org/10.3390/antibiotics10101251