Ventriculitis: Infection or Inflammation
Abstract
:1. Introduction
2. Ventriculitis
2.1. Definitions
2.2. Incidence
2.3. Why Does Ventriculitis Matter?
2.4. Risk Factors
3. Infection or Inflammation?
3.1. Central Nervous System Inflammation
3.2. CSF Features of Inflammation
3.3. CSF Features of Infection
4. Prevention and Treatment
4.1. Catheter Type
4.2. Prevention Bundles
4.3. Antibiotics
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Lozier, A.; Sciacca, R.; Romagnoli, M.; Connoly, E.S. Ventriculostomy-related infections: A critical review of the literature. Neurosurgery 2002, 51, 227–233. [Google Scholar] [CrossRef]
- Luque-Paz, D.; Revest, M.; Eugène, F.; Boukthir, S.; Dejoies, L.; Tattevin, P.; Le Reste, P.-J. Ventriculitis: A Severe Complication of Central Nervous System Infections. Open Forum Infect. Dis. 2021, 8, ofab216. [Google Scholar] [CrossRef] [PubMed]
- Tunkel, A.R.; Hasbun, R.; Bhimraj, A.; Byers, K.; Kaplan, S.L.; Scheld, W.M.; van de Beek, D.; Bleck, T.P.; Garton, H.J.L.; Zunt, J.R. 2017 Infectious Diseases Society of America’s Clinical Practice Guidelines for Healthcare-Associated Ventriculitis and Meningitis. Clin. Infect. Dis. 2017, 64, e34–e65. [Google Scholar] [CrossRef] [PubMed]
- Dorresteijn, K.R.; Jellema, K.; Van De Beek, D.; Brouwer, M.C. Factors and measures predicting external CSF drain-associated ventriculitis: A review and meta-analysis. Neurology 2019, 93, 964–972. [Google Scholar] [CrossRef] [PubMed]
- Network, N.H.S. CDC/NHSN Surveillance Definitions for Specific Types of Infections; Center for Diseases Control and Prevention (CDC): Atlanta, GA, USA, 2021.
- Gozal, Y.M.; Farley, C.W.; Hanseman, D.J.; Harwell, D.; Magner, M.; Andaluz, N.; Shutter, L. Ventriculostomy-associated infection: A new, standardized reporting definition and institutional experience. Neurocrit. Care 2014, 21, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Jamjoom, A.A.B.; Joannides, A.J.; Poon, M.T.C.; Chari, A.; Zaben, M.; Abdulla, M.A.H.; Roach, J.; Glancz, L.J.; Solth, A.; Duddy, J.; et al. Prospective, multicentre study of external ventricular drainage-related infections in the UK and Ireland. J. Neurol. Neurosurg. Psychiatry 2018, 89, 120–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Citerio, G.; Signorini, L.; Bronco, A.; Vargiolu, A.; Rota, M.; Latronico, N. External ventricular and lumbar drain device infections in icu patients: A prospective multicenter Italian study. Crit. Care Med. 2015, 43, 1630–1637. [Google Scholar] [CrossRef]
- Mounier, R.; Lobo, D.; Cook, F.; Fratani, A.; Attias, A.; Martin, M.; Chedevergne, K.; Bardon, J.; Tazi, S.; Nebbad, B.; et al. Clinical, biological, and microbiological pattern associated with ventriculostomy-related infection: A retrospective longitudinal study. Acta Neurochir. 2015, 157, 2209–2217. [Google Scholar] [CrossRef]
- Ramanan, M.; Lipman, J.; Shorr, A.; Shankar, A. A meta-analysis of ventriculostomy-associated cerebrospinal fluid infections. BMC Infect. Dis. 2015, 15, 3. [Google Scholar] [CrossRef] [Green Version]
- Bischoff, P.; Schröder, C.; Gastmeier, P.; Geffers, C. Surveillance of external ventricular drainage-associated meningitis and ventriculitis in German intensive care units. Infect. Control Hosp. Epidemiol. 2020, 41, 452–457. [Google Scholar] [CrossRef]
- Kitchen, W.J.; Singh, N.; Hulme, S.; Galea, J.; Patel, H.C.; King, A.T. External ventricular drain infection: Improved technique can reduce infection rates. Br. J. Neurosurg. 2011, 25, 632–635. [Google Scholar] [CrossRef]
- Lyke, K.E.; Obasanjo, O.O.; Williams, M.A.; O’Brien, M.; Chotani, R.; Perl, T.M. Ventriculitis complicating use of intraventricular catheters in adult neurosurgical patients. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2001, 33, 2028–2033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kourbeti, I.S.; Vakis, A.F.; Papadakis, J.A.; Karabetsos, D.A.; Bertsias, G.; Filippou, M.; Ioannou, A.; Neophytou, C.; Anastasaki, M.; Samonis, G. Infections in traumatic brain injury patients. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2012, 18, 359–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narotam, P.K.; van Dellen, J.R.; du Trevou, M.D.; Gouws, E. Operative sepsis in neurosurgery: A method of classifying surgical cases. Neurosurgery 1994, 34, 406–409. [Google Scholar] [CrossRef]
- Mahé, V.; Kermarrec, N.; Ecoffey, C. Infections related to external ventricular drainage. Ann. Fr. Anesth. Reanim. 1995, 14, 8–12. [Google Scholar] [CrossRef]
- Mayhall, C.G.; Archer, N.H.; Lamb, V.A.; Spadora, A.C.; Baggett, J.W.; Ward, J.D.; Narayan, R.K. Ventriculostomy-related infections. A prospective epidemiologic study. N. Engl. J. Med. 1984, 310, 553–559. [Google Scholar] [CrossRef]
- Reichert, M.C.F.; Medeiros, E.A.S.; Ferraz, F.A.P. Hospital-acquired meningitis in patients undergoing craniotomy: Incidence, evolution, and risk factors. Am. J. Infect. Control 2002, 30, 158–164. [Google Scholar] [CrossRef]
- Mounier, R.; Lobo, D.; Cook, F.; Martin, M.; Attias, A.; Ait-Mamar, B.; Gabriel, I.; Bekaert, O.; Bardon, J.; Nebbad, B.; et al. From the skin to the brain: Pathophysiology of colonization and infection of external ventricular drain, a prospective observational study. PLoS ONE 2015, 10, e0142320. [Google Scholar] [CrossRef] [Green Version]
- Korinek, A.M. Risk factors for neurosurgical site infections after craniotomy: A prospective multicenter study of 2944 patients. Neurosurgery 1997, 41, 1073–1081. [Google Scholar] [CrossRef]
- Kourbeti, I.S.; Vakis, A.F.; Ziakas, P.; Karabetsos, D.; Potolidis, E.; Christou, S.; Samonis, G. Infections in patients undergoing craniotomy: Risk factors associated with post-craniotomy meningitis. J. Neurosurg. 2015, 122, 1113–1119. [Google Scholar] [CrossRef] [Green Version]
- Weisfelt, M.; van de Beek, D.; Spanjaard, L.; de Gans, J. Nosocomial bacterial meningitis in adults: A prospective series of 50 cases. J. Hosp. Infect. 2007, 66, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Aucoin, P.J.; Kotilainen, H.R.; Gantz, N.M.; Davidson, R.; Kellogg, P.; Stone, B. Intracranial pressure monitors. Epidemiologic study of risk factors and infections. Am. J. Med. 1986, 80, 369–376. [Google Scholar] [CrossRef]
- Hoefnagel, D.; Dammers, R.; Ter Laak-Poort, M.P.; Avezaat, C.J.J. Risk factors for infections related to external ventricular drainage. Acta Neurochir. 2008, 150, 209–214. [Google Scholar] [CrossRef]
- Schultz, M.; Moore, K.; Foote, A.W. Bacterial ventriculitis and duration of ventriculostomy catheter insertion. J. Neurosci. Nurs. J. Am. Assoc. Neurosci. Nurses 1993, 25, 158–164. [Google Scholar] [CrossRef]
- Holloway, K.L.; Barnes, T.; Choi, S.; Bullock, R.; Marshall, L.F.; Eisenberg, H.M.; Jane, J.A.; Ward, J.D.; Young, H.F.; Marmarou, A. Ventriculostomy infections: The effect of monitoring duration and catheter exchange in 584 patients. J. Neurosurg. 1996, 85, 419–424. [Google Scholar] [CrossRef] [Green Version]
- Arabi, Y.; Memish, Z.A.; Balkhy, H.H.; Francis, C.; Ferayan, A.; Al Shimemeri, A.; Almuneef, M.A. Ventriculostomy-Associated infections: Incidence and risk factors. Am. J. Infect. Control 2005, 33, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.H.; Spelman, D.; Bailey, M.; Cooper, D.J.; Rosenfeld, J.V.; Brecknell, J.E. External ventricular drain infections are independent of drain duration: An argument against elective revision. J. Neurosurg. 2007, 106, 378–383. [Google Scholar] [CrossRef] [Green Version]
- Stocchetti, N.; Rossi, S.; Zanier, E.R.; Colombo, A.; Beretta, L.; Citerio, G. Pyrexia in head-injured patients admitted to intensive care. Intensive Care Med. 2002, 28, 1555–1562. [Google Scholar] [CrossRef]
- Commichau, C.; Scarmeas, N.; Mayer, S.A. Risk factors for fever in the neurologic intensive care unit. Neurology 2003, 60, 837–841. [Google Scholar] [CrossRef]
- Greer, D.M.; Funk, S.E.; Reaven, N.L.; Ouzounelli, M.; Uman, G.C. Impact of fever on outcome in patients with stroke and neurologic injury: A comprehensive meta-analysis. Stroke 2008, 39, 3029–3035. [Google Scholar] [CrossRef] [Green Version]
- Pegoli, M.; Zurlo, Z.; Bilotta, F. Temperature management in acute brain injury: A systematic review of clinical evidence. Clin. Neurol. Neurosurg. 2020, 197, 106165. [Google Scholar] [CrossRef]
- Schmidt, O.I.; Heyde, C.E.; Ertel, W.; Stahel, P.F. Closed head injury—An inflammatory disease? Brain Res. Rev. 2005, 48, 388–399. [Google Scholar] [CrossRef]
- Chang, L.; Chen, Y.; Li, J.; Liu, Z.; Wang, Z.; Chen, J.; Cao, W.; Xu, Y. Cocaine-and amphetamine-regulated transcript modulates peripheral immunity and protects against brain injury in experimental stroke. Brain. Behav. Immun. 2011, 25, 260–269. [Google Scholar] [CrossRef]
- Lucas, S.-M.; Rothwell, N.J.; Gibson, R.M. The role of inflammation in CNS injury and disease. Br. J. Pharmacol. 2006, 147 (Suppl. 1), S232–S240. [Google Scholar] [CrossRef] [Green Version]
- Diringer, M.N.; Reaven, N.L.; Funk, S.E.; Uman, G.C. Elevated body temperature independently contributes to increased length of stay in neurologic intensive care unit patients. Crit. Care Med. 2004, 32, 1489–1495. [Google Scholar] [CrossRef] [PubMed]
- Kilpatrick, M.M.; Lowry, D.W.; Firlik, A.D.; Yonas, H.; Marion, D.W. Hyperthermia in the neurosurgical intensive care unit. Neurosurgery 2000, 47, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.G.; Boles, J.A.; Wagner, A.K. Chronic Inflammation after Severe Traumatic Brain Injury: Characterization and Associations with Outcome at 6 and 12 Months Postinjury. J. Head Trauma Rehabil. 2015, 30, 369–381. [Google Scholar] [CrossRef] [Green Version]
- Ramlackhansingh, A.F.; Brooks, D.J.; Greenwood, R.J.; Bose, S.K.; Turkheimer, F.E.; Kinnunen, K.M.; Gentleman, S.; Heckemann, R.A.; Gunanayagam, K.; Gelosa, G.; et al. Inflammation after trauma: Microglial activation and traumatic brain injury. Ann. Neurol. 2011, 70, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Johnson, V.E.; Stewart, J.E.; Begbie, F.D.; Trojanowski, J.Q.; Smith, D.H.; Stewart, W. Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain 2013, 136, 28–42. [Google Scholar] [CrossRef] [Green Version]
- Harris, L.; Munakomi, S. Ventriculitis. StatPearls 2021, 1–8. Available online: https://www.ncbi.nlm.nih.gov/books/NBK544332/ (accessed on 4 August 2021).
- Rogers, T.; Sok, K.; Erickson, T.; Aguilera, E.; Wootton, S.H.; Murray, K.O.; Hasbun, R. Impact of antibiotic therapy in the microbiological yield of healthcare-associated ventriculitis and meningitis. Open Forum Infect. Dis. 2019, 6, ofz050. [Google Scholar] [CrossRef] [PubMed]
- Beer, R.; Pfausler, B.; Schmutzhard, E. Management of nosocomial external ventricular drain-related ventriculomeningitis. Neurocrit. Care 2009, 10, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Pfausler, B.; Beer, R.; Engelhardt, K.; Kemmler, G.; Mohsenipour, I.; Schmutzhard, E. Cell index—A new parameter for the early diagnosis of ventriculostomy (external ventricular drainage)—Related ventriculitis in patients with intraventricular hemorrhage? Acta Neurochir. 2004, 146, 477–481. [Google Scholar] [CrossRef]
- Thurnher, M.; Sundgren, P. Intracranial Infection and Inflammation. In Diseases of the Brain, Head and Neck, Spine 2020–2023: Diagnostic Imaging; Springer: New York, NY, USA, 2020; Chapter 6. [Google Scholar]
- Stevens, J.P.; Kachniarz, B.; Wright, S.B.; Gillis, J.; Talmor, D.; Clardy, P.; Howell, M.D. When policy gets it right: Variability in U.S. Hospitals’ diagnosis of ventilator-associated pneumonia. Crit. Care Med. 2014, 42, 497–503. [Google Scholar] [CrossRef]
- Rhee, C.; Kadri, S.S.; Danner, R.L.; Suffredini, A.F.; Massaro, A.F.; Kitch, B.T.; Lee, G.; Klompas, M. Diagnosing sepsis is subjective and highly variable: A survey of intensivists using case vignettes. Crit. Care 2016, 20, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denny, K.J.; De Waele, J.; Laupland, K.B.; Harris, P.N.A.; Lipman, J. When not to start antibiotics: Avoiding antibiotic overuse in the intensive care unit. Clin. Microbiol. Infect. 2020, 26, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Arulkumaran, N.; Routledge, M.; Schlebusch, S.; Lipman, J.; Conway Morris, A. Antimicrobial-Associated harm in critical care: A narrative review. Intensive Care Med. 2020, 46, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Grille, P.; Verga, F.; Biestro, A. Diagnosis of ventriculostomy-related infection: Is cerebrospinal fluid lactate measurement a useful tool? J. Clin. Neurosci. 2017, 45, 243–247. [Google Scholar] [CrossRef]
- Sakushima, K.; Hayashino, Y.; Kawaguchi, T.; Jackson, J.L.; Fukuhara, S. Diagnostic accuracy of cerebrospinal fluid lactate for differentiating bacterial meningitis from aseptic meningitis: A meta-analysis. J. Infect. 2011, 62, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Hill, E.; Bleck, T.P.; Singh, K.; Ouyang, B.; Busl, K.M. CSF lactate alone is not a reliable indicator of bacterial ventriculitis in patients with ventriculostomies. Clin. Neurol. Neurosurg. 2017, 157, 95–98. [Google Scholar] [CrossRef]
- Liu, Z.H.; Tu, P.H.; Chen, N.Y.; Yip, P.K.; Bowes, A.L.; Lee, C.C.; Chan, S.H.; Kung, C.C.; Wang, A.Y.C.; Wu, C.T.; et al. Raised proinflammatory cytokine production within cerebrospinal fluid precedes fever onset in patients with neurosurgery-associated bacterial meningitis. Crit. Care Med. 2015, 43, 2416–2428. [Google Scholar] [CrossRef]
- Tang, R.B.; Lee, B.H.; Chung, R.L.; Chen, S.J.; Wong, T.T. Interleukin-1β and tumor necrosis factor-α in cerebrospinal fluid of children with bacterial meningitis. Child’s Nerv. Syst. 2001, 17, 453–456. [Google Scholar] [CrossRef] [PubMed]
- García-Hernández, P.; Prieto, B.; Martínez-Morillo, E.; Rodríguez, V.; Álvarez, F.V. Interleukin-6 in cerebrospinal fluid as a biomarker of acute meningitis. Ann. Clin. Biochem. 2016, 53, 155–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenski, M.; Huge, V.; Briegel, J.; Tonn, J.-C.; Schichor, C.; Thon, N. Interleukin 6 in the Cerebrospinal Fluid as a Biomarker for Onset of Vasospasm and Ventriculitis after Severe Subarachnoid Hemorrhage. World Neurosurg. 2017, 99, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Kuzhiumparambil, U.; Bandodkar, S.; Dale, R.C.; Fu, S. Cerebrospinal fluid metabolomics: Detection of neuroinflammation in human central nervous system disease. Clin. Transl. Immunol. 2021, 10, e1318. [Google Scholar] [CrossRef] [PubMed]
- Al-Mekhlafi, A.; Sühs, K.W.; Schuchardt, S.; Kuhn, M.; Müller-Vahl, K.; Trebst, C.; Skripuletz, T.; Klawonn, F.; Stangel, M.; Pessler, F. Elevated free phosphatidylcholine levels in cerebrospinal fluid distinguish bacterial from viral cns infections. Cells 2021, 10, 1115. [Google Scholar] [CrossRef]
- De Araujo, L.S.; Pessler, K.; Sühs, K.W.; Novoselova, N.; Klawonn, F.; Kuhn, M.; Kaever, V.; Müller-Vahl, K.; Trebst, C.; Skripuletz, T.; et al. Phosphatidylcholine PC ae C44:6 in cerebrospinal fluid is a sensitive biomarker for bacterial meningitis. J. Transl. Med. 2020, 18, 9. [Google Scholar] [CrossRef] [Green Version]
- Singhal, N.; Kumar, M.; Kanaujia, P.K.; Virdi, J.S. MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front. Microbiol. 2015, 6, 791. [Google Scholar] [CrossRef] [Green Version]
- Bishop, B.; Geffen, Y.; Plaut, A.; Kassis, O.; Bitterman, R.; Paul, M.; Neuberger, A. The use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for rapid bacterial identification in patients with smear-positive bacterial meningitis. Clin. Microbiol. Infect. 2018, 24, 171–174. [Google Scholar] [CrossRef] [Green Version]
- Torres, I.; Giménez, E.; Vinuesa, V.; Pascual, T.; Moya, J.M.; Alberola, J.; Martínez-Sapiña, A.; Navarro, D. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) proteomic profiling of cerebrospinal fluid in the diagnosis of enteroviral meningitis: A proof-of-principle study. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 2331–2339. [Google Scholar] [CrossRef]
- Gu, W.; Deng, X.; Lee, M.; Sucu, Y.D.; Arevalo, S.; Stryke, D.; Federman, S.; Gopez, A.; Reyes, K.; Zorn, K.; et al. Rapid pathogen detection by metagenomic next-generation sequencing of infected body fluids. Nat. Med. 2021, 27, 115–124. [Google Scholar] [CrossRef]
- Roe, D.; Karandikar, B.; Bonn-Savage, N.; Gibbins, B.; Roullet, J.B. Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J. Antimicrob. Chemother. 2008, 61, 869–876. [Google Scholar] [CrossRef] [PubMed]
- Root, B.K.; Barrena, B.G.; Mackenzie, T.A.; Bauer, D.F. Antibiotic Impregnated External Ventricular Drains: Meta and Cost Analysis. World Neurosurg. 2016, 86, 306–315. [Google Scholar] [CrossRef]
- Wang, X.; Dong, Y.; Qi, X.Q.; Li, Y.M.; Huang, C.G.; Hou, L.J. Clinical review: Efficacy of antimicrobial-impregnated catheters in external ventricular drainage—A systematic review and meta-analysis. Crit. Care 2013, 17, 6–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nilsson, A.; Uvelius, E.; Cederberg, D.; Kronvall, E. Silver-Coated Ventriculostomy Catheters Do Not Reduce Rates of Clinically Diagnosed Ventriculitis. World Neurosurg. 2018, 117, e411–e416. [Google Scholar] [CrossRef] [PubMed]
- Mallucci, C.L.; Jenkinson, M.D.; Conroy, E.J.; Hartley, J.C.; Brown, M.; Dalton, J.; Kearns, T.; Moitt, T.; Griffiths, M.J.; Culeddu, G.; et al. Antibiotic or silver versus standard ventriculoperitoneal shunts (BASICS): A multicentre, single-blinded, randomised trial and economic evaluation. Lancet 2019, 394, 1530–1539. [Google Scholar] [CrossRef] [Green Version]
- Marra, A.; Ely, E.W.; Pandharipande, P.P. The ABCDEF Bundle in Critical Care. Crit Care Clin. 2017, 33, 225–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walek, K.W.; Leary, O.P.; Sastry, R.; Asaad, W.F.; Walsh, J.M.; Mermel, L. Decreasing External Ventricular Drain Infection Rates in the Neurocritical Care Unit: 12-Year Longitudinal Experience at a Single Institution. World Neurosurg. 2021, 150, e89–e101. [Google Scholar] [CrossRef] [PubMed]
- Champey, J.; Mourey, C.; Francony, G.; Pavese, P.; Gay, E.; Gergele, L.; Manet, R.; Velly, L.; Bruder, N.; Payen, J.F. Strategies to reduce external ventricular drain–related infections: A multicenter retrospective study. J. Neurosurg. 2019, 1306, 2034–2039. [Google Scholar] [CrossRef] [Green Version]
- Whyte, C.; Alhasani, H.; Caplan, R.; Tully, A.P. Impact of an external ventricular drain bundle and limited duration antibiotic prophylaxis on drain-related infections and antibiotic resistance. Clin. Neurol. Neurosurg. 2020, 190, 105641. [Google Scholar] [CrossRef]
- Talibi, S.S.; Silva, A.H.D.; Afshari, F.T.; Hodson, J.; Roberts, S.A.G.; Oppenheim, B.; Flint, G.; Chelvarajah, R. The implementation of an external ventricular drain care bundle to reduce infection rates. Br. J. Neurosurg. 2020, 34, 181–186. [Google Scholar] [CrossRef]
- Serlin, Y.; Shelef, I.; Knyazer, B.; Friedman, A. Anatomy and physiology of the blood-brain barrier. Semin. Cell Dev. Biol. 2015, 38, 2–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daneman, R.; Prat, A. The blood brain barrier. Cold Spring Harb. Perspect. Biol. 2015, 7, a020412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumta, N.; Roberts, J.A.; Lipman, J.; Cotta, M.O. Antibiotic Distribution into Cerebrospinal Fluid: Can Dosing Safely Account for Drug and Disease Factors in the Treatment of Ventriculostomy-Associated Infections? Clin. Pharmacokinet. 2018, 57, 439–454. [Google Scholar] [CrossRef]
- Kumta, N.; Roberts, J.A.; Lipman, J.; Wong, W.T.; Joynt, G.M.; Cotta, M.O. A systematic review of studies reporting antibiotic pharmacokinetic data in the cerebrospinal fluid of critically ill patients with uninflamed meninges. Antimicrob. Agents Chemother. 2021, 65, e01998-20. [Google Scholar] [CrossRef]
- Rebuck, J.A.; Murry, K.R.; Rhoney, D.H.; Michael, D.B.; Coplin, W.M. Infection related to intracranial pressure monitors in adults: Analysis of risk factors and antibiotic prophylaxis. J. Neurol. Neurosurg. Psychiatry 2000, 69, 381–384. [Google Scholar] [CrossRef] [Green Version]
- Alleyne, C.H.J.; Hassan, M.; Zabramski, J.M. The efficacy and cost of prophylactic and perioprocedural antibiotics in patients with external ventricular drains. Neurosurgery 2000, 47, 1124–1129. [Google Scholar] [CrossRef]
- Dellit, T.H.; Chan, J.D.; Fulton, C.; Pergamit, R.F.; McNamara, E.A.; Kim, L.J.; Ellenbogen, R.G.; Lynch, J.B. Reduction in Clostridium difficile infections among neurosurgical patients associated with discontinuation of antimicrobial prophylaxis for the duration of external ventricular drain placement. Infect. Control Hosp. Epidemiol. 2014, 35, 589–590. [Google Scholar] [CrossRef] [PubMed]
- May, A.K.; Fleming, S.B.; Carpenter, R.O.; Diaz, J.J.; Guillamondegui, O.D.; Deppen, S.A.; Miller, R.S.; Talbot, T.R.; Morris, J.A. Influence of broad-spectrum antibiotic prophylaxis on intracranial pressure monitor infections and subsequent infectious complications in head-injured patients. Surg. Infect. 2006, 7, 409–417. [Google Scholar] [CrossRef]
- Poon, W.S.; Ng, S.; Wai, S. CSF antibiotic prophylaxis for neurosurgical patients with ventriculostomy: A randomised study. Acta Neurochir. Suppl. 1998, 71, 146–148. [Google Scholar] [CrossRef]
- Chauv, S.; Fontaine, G.V.; Hoang, Q.P.; McKinney, C.B.; Baldwin, M.; Buckel, W.R.; Collingridge, D.S.; Majercik, S.; Wohlt, P.D. Risk of Resistant Organisms and Clostridium difficile with Prolonged Systemic Antibiotic Prophylaxis for Central Nervous System Devices. Neurocrit. Care 2016, 25, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, M.; Alsaleh, H.; Baradwan, A.; Alfawares, R.; Alobaid, A.; Rasheed, A.; Soliman, I. Intraventricular Tigecycline as a Last Resort Therapy in a Patient with Difficult-to-Treat Healthcare-Associated Acinetobacter baumannii Ventriculitis: A Case Report. SN Compr. Clin. Med. 2020, 2, 1683–1687. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Deng, X.; Wang, Z.; Wang, L.; Wang, K.; Gao, L. Treatment of severe ventriculitis caused by extensively drug-resistant Acinetobacter baumannii by intraventricular lavage and administration of colistin. Infect. Drug Resist. 2019, 12, 241–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfausler, B.; Spiss, H.; Beer, R.; Kampfl, A.; Engelhardt, K.; Schober, M.; Schmutzhard, E. Treatment of staphylococcal ventriculitis associated with external cerebrospinal fluid drains: A prospective randomized trial of intravenous compared with intraventricular vancomycin therapy. J. Neurosurg. 2003, 98, 1040–1044. [Google Scholar] [CrossRef] [Green Version]
Study/Guidelines | Definition |
---|---|
Center for Diseases Control [5] | Must meet at least one of the following criteria: 1. Patient has organism(s) identified from cerebrospinal fluid (CSF) by a culture or non-culture-based microbiologic testing method, which is performed for purposes of clinical diagnosis or treatment, for example, not active surveillance culture/testing (ASC/AST). OR 2. Patient has at least two of the following:
|
Gozal et al. [6] | Positive CSF culture in patient with EVD in situ and at least one of the following:
|
Jamjoom et al. [7] | Positive CSF culture and/or gram stain OR Clinical suspicion of ventriculitis due to the presence of any of the following:
|
Citerio et al. [8] | Presence of all of the following:
|
Mounier et al. [9] | Positive CSF culture associated with CNS-targeted antibiotic treatment |
Key Messages |
---|
Multiple definitions for ventriculitis are in use broadly divided into those that require positive bacterial culture and those that do not |
Ventriculitis incidence ranges from ~4 to 17 per 1000 catheter days depending on definition |
Most cases of ventriculitis are seeded from site of EVD insertion along the tract |
Ventriculitis is associated with long-term neurological dysfunction in up to 60% of survivors and significantly increased healthcare costs |
Fever, neurological signs, tachycardia, tachypnoea, acute phase reactants, CSF pleocytosis, and reduced glucose concentration are common to infection and inflammation, thus differentiating ventriculitis from an inflammatory state is typically challenging |
Apart from positive culture, cell index, CSF lactate, CSF cytokine levels, and rapid diagnostic tests such as MALDI-TOF may have a role in differentiating infection from inflammation, but more research is required |
Preventative strategies such as antibiotic-impregnated catheters, EVD bundles, and periprocedural antibiotic prophylaxis should be employed |
Antibiotic therapy for ventriculitis should take into account the blood-brain barrier and adequate dosing administered to achieve therapeutic CSF concentrations |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramanan, M.; Shorr, A.; Lipman, J. Ventriculitis: Infection or Inflammation. Antibiotics 2021, 10, 1246. https://doi.org/10.3390/antibiotics10101246
Ramanan M, Shorr A, Lipman J. Ventriculitis: Infection or Inflammation. Antibiotics. 2021; 10(10):1246. https://doi.org/10.3390/antibiotics10101246
Chicago/Turabian StyleRamanan, Mahesh, Andrew Shorr, and Jeffrey Lipman. 2021. "Ventriculitis: Infection or Inflammation" Antibiotics 10, no. 10: 1246. https://doi.org/10.3390/antibiotics10101246
APA StyleRamanan, M., Shorr, A., & Lipman, J. (2021). Ventriculitis: Infection or Inflammation. Antibiotics, 10(10), 1246. https://doi.org/10.3390/antibiotics10101246