Beta-Lactams Dosing in Critically Ill Patients with Gram-Negative Bacterial Infections: A PK/PD Approach
Abstract
:1. Introduction
2. Literature Review
2.1. Penicillins
2.2. Cephalosporins
2.3. Carbapenems
2.4. Monobactam
3. Stability
4. Safety and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bassetti, M.; Poulakou, G.; Ruppé, E.; Bouza, E.; Van Hal, S.J.; Brink, A.J. Antimicrobial resistance in the next 30 years, humankind, bugs and drugs: A visionary approach. Intensiv. Care Med. 2017, 43, 1464–1475. [Google Scholar] [CrossRef]
- Morris, S.; Cerceo, E. Trends, epidemiology, and management of multi-drug resistant gram-negative bacterial infections in the hospitalized setting. Antibiotics 2020, 9, 196. [Google Scholar] [CrossRef] [Green Version]
- Zimmerman, J.; Kramer, A.; Knaus, W. Changes in hospital mortality for United States intensive care unit admissions from 1988 to 2012. Crit. Care 2013, 17, R81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zilberberg, M.D.; Shorr, A.F.; Micek, S.T.; Vazquez-Guillamet, C.; Kollef, M.H. Multi-drug resistance, inappropriate initial antibiotic therapy and mortality in Gram-negative severe sepsis and septic shock: A retrospective cohort study. Crit. Care 2014, 18, 1–3. [Google Scholar] [CrossRef]
- Vardakas, K.Z.; Rafailidis, P.I.; Konstantelias, A.A.; Falagas, M.E. Predictors of mortality in patients with infections due to multi-drug resistant Gram negative bacteria: The study, the patient, the bug or the drug? J. Infect. 2013, 66, 401–414. [Google Scholar] [CrossRef] [PubMed]
- De Rosa, M.; Verdino, A.; Soriente, A.; Marabotti, A. The odd couple(s): An overview of beta-lactam antibiotics bearing more than one pharmacophoric group. Int. J. Mol. Sci. 2021, 22, 617. [Google Scholar] [CrossRef] [PubMed]
- Bycroft, B.W.; Shute, R.E. The molecular basis for the mode of action of beta-lactam antibiotics and mechanisms of resistance. Pharm. Res. 1985, 2, 3–14. [Google Scholar] [CrossRef]
- Tang, S.S.; Apisarnthanarak, A.; Hsu, L.Y. Mechanisms of β-lactam antimicrobial resistance and epidemiology of major commu-nity-and healthcare-associated multidrug-resistant bacteria. Adv. Drug Deliv. Rev. 2014, 30, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.; Cotta, M.O.; Roberts, J.A. Pharmacokinetics/pharmacodynamics of β-lactams and therapeutic drug monitoring: From theory to practical issues in the intensive care unit. Semin. Respir. Crit. Care Med. 2019, 40, 476–487. [Google Scholar] [CrossRef]
- Smith, B.S.; Yogaratnam, D.; Levasseur-Franklin, K.E.; Forni, A.; Fong, J. Introduction to drug pharmacokinetics in the critically III patient. Chest 2012, 141, 1327–1336. [Google Scholar] [CrossRef]
- Abdul-Aziz, M.-H.; The Infection Section of European Society of Intensive Care Medicine (ESICM); Alffenaar, J.-W.C.; Bassetti, M.; Bracht, H.; Dimopoulos, G.; Marriott, D.; Neely, M.N.; Paiva, J.-A.; Pea, F.; et al. Antimicrobial therapeutic drug monitoring in critically ill adult patients: A position paper. Intensiv. Care Med. 2020, 46, 1127–1153. [Google Scholar] [CrossRef]
- McKinnon, P.S.; Paladino, J.A.; Schentag, J.J. Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T > MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int. J. Antimicrob. Agents 2008, 31, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Tam, V.H.; McKinnon, P.S.; Akins, R.L.; Rybak, M.J.; Drusano, G.L. Pharmacodynamics of cefepime in patients with Gram-negative infections. J. Antimicrob. Chemother. 2002, 50, 425–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhodes, N.J.; Kuti, J.L.; Nicolau, D.P.; Van Wart, S.; Nicasio, A.M.; Liu, J.; Lee, B.J.; Neely, M.N.; Scheetz, M.H. Defining clinical exposures of cefepime for gram-negative bloodstream infections that are associated with improved survival. Antimicrob. Agents Chemother. 2016, 60, 1401–1410. [Google Scholar] [CrossRef] [Green Version]
- Aitken, S.L.; Altshuler, J.; Guervil, D.J.; Hirsch, E.B.; Ostrosky-Zeichner, L.J.; Ericsson, C.D.; Tam, V.H. Cefepime free minimum concen-tration to minimum inhibitor concentration (fCmin/MIC) ratio predicts clinical failure in patients with Gram-negative bacterial pneumonia. Int. J. Antimicrob. Agents 2015, 45, 541–544. [Google Scholar] [CrossRef]
- Al-Shaer, M.H.; Rubido, E.; Cherabuddi, K.; Venugopalan, V.; Klinker, K.; Peloquin, C. Early therapeutic monitoring of β-lactams and associated therapy outcomes in critically ill patients. J. Antimicrob. Chemother. 2020, 75, 3644–3651. [Google Scholar] [CrossRef]
- Tam, V.H.; Schilling, A.N.; Neshat, S.; Poole, K.; Melnick, D.A.; Coyle, E.A. Optimization of meropenem minimum concentration/MIC ratio to suppress in vitro resistance of pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2005, 49, 4920–4927. [Google Scholar] [CrossRef] [Green Version]
- Sumi, C.D.; Heffernan, A.J.; Naicker, S.; Islam, K.; Cottrell, K.; Wallis, S.C.; Lipman, J.; Harris, P.N.A.; Sime, F.B.; Roberts, J.A. Pharmaco-dynamic evaluation of intermittent versus extended and continuous infusions of piperacillin/tazobactam in a hollow-fibre in-fection model against Klebsiella pneumoniae. J. Antimicrob. Chemother. 2020, 75, 2633–2640. [Google Scholar] [CrossRef]
- Yadav, R.; Bergen, P.J.; Rogers, K.E.; Kirkpatrick, C.M.; Wallis, S.C.; Huang, Y.; Bulitta, J.B.; Paterson, D.L.; Lipman, J.; Nation, R.L.; et al. Meropenem-tobramycin combination regimens combat carabapenem-resistant Pseudomonas aeruginosa in the hollow-fiber infection model simulating augmented renal clearance in critically ill patients. Antimicrob. Agents Chemother. 2019, 64, e01679–e01719. [Google Scholar] [CrossRef]
- Udy, A.; Lipman, J.; Jarrett, P.; Klein, K.; Wallis, S.C.; Patel, K.; Kirkpatrick, C.M.; Kruger, P.S.; Paterson, D.L.; Roberts, M.S.; et al. Are standard doses of piperacillin sufficient for critically ill patients with augmented creatinine clearance? Crit. Care 2015, 19, 28. [Google Scholar] [CrossRef] [Green Version]
- Abdul-Aziz, M.H.; Lipman, J.; Akova, M.; Bassetti, M.; De Waele, J.J.; Dimopoulos, G.; Dulhunty, J.; Kaukonen, K.-M.; Koulenti, D.; Martin, C.; et al. Is prolonged infusion of piperacillin/tazobactam and meropenem in critically ill patients associated with improved pharmacokinetic/pharmacodynamic and patient outcomes? An observation from the defining antibiotic levels in Intensive care unit patients (DALI) cohort. J. Antimicrob. Chemother. 2015, 71, 196–207. [Google Scholar] [CrossRef] [Green Version]
- Carlier, M.; Carrette, S.; Roberts, J.A.; Stove, V.; Verstraete, A.; Hoste, E.; Depuydt, P.; Decruyenaere, J.; Lipman, J.; Wallis, S.C.; et al. Meropenem and piperacillin/tazobactam prescribing in critically ill patients: Does augmented renal clearance affect pharma-cokinetic/pharmacodynamic target attainment when extended infusions are used? Crit. Care 2013, 17, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Roberts, J.; Kirkpatrick, C.; Roberts, M.; Dalley, A.; Lipman, J. First-dose and steady-state population pharmacokinetics and pharmacodynamics of piperacillin by continuous or intermittent dosing in critically ill patients with sepsis. Int. J. Antimicrob. Agents 2010, 35, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Brink-Hansen, K.; Juul, R.V.; Storgaard, M.; Thomsen, M.K.; Hardlei, T.F.; Brock, B.; Kreilgaard, M.; Gjedsted, J. Population pharma-cokinetics of piperacillin in the early phase of septic shock: Does standard dosing result in therapeutic plasma concentrations? Antimicrob. Agents Chemother. 2015, 59, 7018–7026. [Google Scholar] [CrossRef] [Green Version]
- Sukarnjanaset, W.; Jaruratanasirikul, S.; Wattanavijitkul, T. Population pharmacokinetics and pharmacodynamics of piperacillin in critically ill patients during the early phase of sepsis. J. Pharmacokinet. Pharmacodyn. 2019, 46, 251–261. [Google Scholar] [CrossRef]
- Dhaese, S.A.; Roberts, J.A.; Carlier, M.; Verstraete, A.G.; Stove, V.; De Waele, J.J. Population pharmacokinetics of continuous infusion of piperacillin in critically ill patients. Int. J. Antimicrob. Agents 2018, 51, 594–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalaria, S.N.; Gopalakrishnan, M.; Heil, E.L. A population pharmacokinetics and pharmacodynamic approach to optimize tazo-bactam activity in critically ill patients. Antimicrob. Agents Chemother. 2020, 64, e02093–e02119. [Google Scholar] [CrossRef]
- Boselli, E.; Breilh, D.; Rimmelé, T.; Guillaume, C.; Xuereb, F.; Saux, M.-C.; Bouvet, L.; Chassard, D.; Allaouchiche, B. Alveolar concentrations of piperacillin/tazobactam administered in continuous infusion to patients with ventilator-associated pneumonia. Crit. Care Med. 2008, 36, 1500–1506. [Google Scholar] [CrossRef]
- Lipman, J.; Wallis, S.; Rickard, C. Low plasma cefepime levels in critically ill septic patients: Pharmacokinetic modeling indicates improved troughs with revised dosing. Antimicrob. Agents Chemother. 1999, 43, 2559–2561. [Google Scholar] [CrossRef] [Green Version]
- Tam, V.H.; Louie, A.; Lomaestro, B.M.; Drusano, G.L. Integration of population pharmacokinetics, a pharmacodynamic target, and microbiologic surveillance data to generate a rational empiric dosing strategy for cefepime against Pseudomonas aeruginosa. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2003, 23, 291–295. [Google Scholar] [CrossRef]
- Roos, J.F.; Bulitta, J.; Lipman, J.; Kirkpatrick, C. Pharmacokinetic-pharmacodynamic rationale for cefepime dosing regimens in intensive care units. J. Antimicrob. Chemother. 2006, 58, 987–993. [Google Scholar] [CrossRef] [PubMed]
- Nicasio, A.M.; Ariano, R.; Zelenitsky, S.; Kim, A.; Crandon, J.L.; Kuti, J.L.; Nicolau, D.P. Population pharmacokinetics of high-dose, prolonged-infusion cefepime in adult critically ill patients with ventilator-associated pneumonia. Antimicrob. Agents Chemother. 2009, 53, 1476–1481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Shaer, M.H.; Neely, M.N.; Liu, J.; Cherabuddi, K.; Venugopalan, V.; Rhodes, N.J.; Klinker, K.; Scheetz, M.H.; Peloquin, C.A. Population pharmacokinetics and target attainment of cefepime in critically ill patients and guidance for initial dosing. Antimicrob. Agents Chemother. 2020, 64. [Google Scholar] [CrossRef]
- Huang, H.; Huang, S.; Zhu, P.; Xi, X. Continuous versus intermittent infusion of cefepime in neurosurgical patients with post-operative intracranial infections. Int. J. Antimicrob. Agents 2014, 43, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Kassel, L.E.; Van Matre, E.T.; Foster, C.J.; Fish, D.N.; Mueller, S.W.; Sherman, D.S.; Wempe, M.F.; MacLaren, R.; Neumann, R.T.; Kiser, T.H. A randomized pharmacokinetic and pharmacodynamic evaluation of every 8-h and 12-h dosing strategies of vancomycin and cefepime in neurocritically ill patients. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2018, 38, 921–934. [Google Scholar] [CrossRef]
- Boselli, E.; Breilh, D.; Duflo, F.; Saux, M.C.; Debon, R.; Chassard, D.; Allaouchiche, B. Steady-state plasma and intrapulmonary con-centrations of cefepime administered in continuous infusion in critically ill patients with severe nosocomial pneumonia. Crit. Care Med. 2003, 31, 2102–2106. [Google Scholar] [CrossRef]
- Klekner, A.; Bagyi, K.; Bognar, L.; Gaspar, A.; Andrasi, M.; Szabo, J. Effectiveness of cephalosporins in the sputum of patients with nosocomial bronchopneumonia. J. Clin. Microbiol. 2006, 44, 3418–3421. [Google Scholar] [CrossRef] [Green Version]
- Georges, B.; Conil, J.-M.; Seguin, T.; Ruiz, S.; Minville, V.; Cougot, P.; Decun, J.-F.; Gonzalez, H.; Houin, G.; Fourcade, O.; et al. Population pharmacokinetics of ceftazidime in intensive care unit patients: Influence of glomerular filtration rate, mechanical ventilation, and reason for admission. Antimicrob. Agents Chemother. 2009, 53, 4483–4489. [Google Scholar] [CrossRef] [Green Version]
- Georges, B.; Conil, J.-M.; Ruiz, S.; Seguin, T.; Cougot, P.; Fourcade, O.; Houin, G.; Saivin, S. Ceftazidime dosage regimen in intensive care unit patients: From a population pharmacokinetic approach to clinical practice via Monte Carlo simulations. Br. J. Clin. Pharmacol. 2012, 73, 588–596. [Google Scholar] [CrossRef] [Green Version]
- Aubert, G.; Carricajo, A.; Coudrot, M.; Guyomarc’h, S.; Auboyer, C.; Zeni, F. Prospective determination of serum ceftazidime con-centrations in intensive care units. Ther. Drug Monit. 2010, 32, 517–519. [Google Scholar] [CrossRef] [PubMed]
- Stein, G.E.; Smith, C.L.; Scharmen, A.; Kidd, J.M.; Cooper, C.; Kuti, J.; Mitra, S.; Nicolau, D.P.; Havlichek, D.H. Pharmacokinetic and pharmacodynamic analysis of ceftazidime/avibactam in critically Ill patients. Surg. Infect. 2019, 20, 55–61. [Google Scholar] [CrossRef]
- Das, S.; Li, J.; Riccobene, T.; Carrothers, T.J.; Newell, P.; Melnick, D.; Critchley, I.A.; Stone, G.G.; Nichols, W.W. Dose selection and validation for ceftazidime-avibactam in adults with complicated intra-abdominal infections, complicated urinary tract infections, and nosocomial pneumonia. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buijk, S.L.C.E.; Gyssens, I.C.; Mouton, J.W.; Van Vliet, A.; Verbrugh, H.A.; Bruining, H.A. Pharmacokinetics of ceftazidime in serum and peritoneal exudate during continuous versus intermittent administration to patients with severe intra-abdominal infections. J. Antimicrob. Chemother. 2002, 49, 121–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boselli, E.; Breilh, D.; Rimmelé, T.; Poupelin, J.-C.; Saux, M.-C.; Chassard, D.; Allaouchiche, B. Plasma and lung concentrations of ceftazidime administered in continuous infusion to critically ill patients with severe nosocomial pneumonia. Intensiv. Care Med. 2004, 30, 989–991. [Google Scholar] [CrossRef]
- Cousson, J.; Floch, T.; Guillard, T.; Vernet, V.; Raclot, P.; Wolak-Thierry, A.; Jolly, D. Lung concentrations of ceftazidime administered by continuous versus intermittent infusion in patients with ventilator-associated pneumonia. Antimicrob. Agents Chemother. 2015, 59, 1905–1909. [Google Scholar] [CrossRef] [Green Version]
- Leegwater, E.; Kraaijenbrink, B.V.C.; Moes, D.J.A.R.; Purmer, I.M.; Wilms, E.B. Population pharmacokinetics of ceftriaxone administered as continuous or intermittent infusion in critically ill patients. J. Antimicrob. Chemother. 2020, 75, 1554–1558. [Google Scholar] [CrossRef]
- Bos, J.C.; Prins, J.M.; Mistício, M.C.; Nunguiane, G.; Lang, C.N.; Beirão, J.C.; Mathôt, R.A.; van Hest, R.M. Pharmacokinetics and phar-macodynamic target attainment of ceftriaxone in adult severely ill sub-Saharan African patients: A population pharmacokinetic modelling study. J. Antimicrob. Chemother. 2018, 73, 1620–1709. [Google Scholar] [CrossRef] [Green Version]
- Ollivier, J.; Carrié, C.; D’Houdain, N.; Djabarouti, S.; Petit, L.; Xuereb, F.; Legeron, R.; Biais, M.; Breilh, D. Are standard dosing regimens of ceftriaxone adapted for critically ill patients with augmented creatinine clearance? Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef] [Green Version]
- Grégoire, M.; Dailly, E.; Le Turnier, P.; Garot, D.; Guimard, T.; Bernard, L.; Tattevin, P.; Vandamme, Y.-M.; Hoff, J.; Lemaitre, F.; et al. High-dose ceftriaxone for bacterial meningitis and optimization of administration scheme based on nomogram. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef] [Green Version]
- Le Turnier, P.; Grégoire, M.; Garot, D.; Guimard, T.; Duval, X.; Bernard, L.; Boutoille, D.; Dailly, É.; Navas, D.; Asseray, N. CSF concen-tration of ceftriaxone following high-dose administration: Pharmacological data from two French cohorts. J. Antimicrob. Chemother. 2019, 74, 1753–1755. [Google Scholar] [CrossRef] [PubMed]
- Sime, F.B.; Lassig-Smith, M.; Starr, T.; Stuart, J.; Pandey, S.; Parker, S.L.; Wallis, S.C.; Lipman, J.; Roberts, J.A. Population pharmacokinetics of unbound ceftolozane and tazobactam in critically ill patients without renal dysfunction. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef] [Green Version]
- Pilmis, B.; ATB PK/PD Study Group; Petitjean, G.; Lesprit, P.; Lafaurie, M.; El Helali, N.; Le Monnier, A. Continuous infusion of ceftolozane/tazobactam is associated with a higher probability of target attainment in patients infected with Pseudomonas aeruginosa. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1457–1461. [Google Scholar] [CrossRef] [PubMed]
- Sime, F.B.; Lassig-Smith, M.; Starr, T.; Stuart, J.; Pandey, S.; Parker, S.L.; Wallis, S.C.; Lipman, J.; Roberts, J.A. Cerebrospinal fluid penetration of ceftolozane-tazobactam in critically ill patients with an indwelling external ventricular drain. Antimicrob. Agents Chemother. 2020, 65. [Google Scholar] [CrossRef] [PubMed]
- Caro, L.; Nicolau, D.P.; De Waele, J.J.; Kuti, J.L.; Larson, K.B.; Gadzicki, E.; Yu, B.; Zeng, Z.; Adedoyin, A.; Rhee, E.G. Lung penetration, bronchopulmonary pharmacokinetic/pharmacodynamic profile and safety of 3 g of ceftolozane/tazobactam administered to ventilated, critically ill patients with pneumonia. J. Antimicrob. Chemother. 2020, 75, 1546–1553. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Jen, S.P.; Altshuler, D.; Papadopoulos, J.; Pham, V.P.; Dubrovskaya, Y. Evaluation of meropenem extended versus in-termittent infusion dosing protocol in critically ill patients. J. Intensive Care Med. 2020, 35, 763–771. [Google Scholar] [CrossRef]
- Vourli, S.; Tsala, M.; Kotsakis, S.; Daikos, G.L.; Tzouvelekis, L.; Miriagou, V.; Zerva, L.; Meletiadis, J. Comparison of short versus pro-longed infusion of standard dose of meropenem against carbapenemase-producing Klebsiella pneumoniae isolates in different patient groups: A pharmacokinetic–pharmacodynamic approach. J. Pharm. Sci. 2016, 105, 1513–1518. [Google Scholar] [CrossRef] [Green Version]
- Roberts, J.; Kirkpatrick, C.; Roberts, M.; Robertson, T.; Dalley, A.; Lipman, J. Meropenem dosing in critically ill patients with sepsis and without renal dysfunction: Intermittent bolus versus continuous administration? Monte Carlo dosing simulations and subcutaneous tissue distribution. J. Antimicrob. Chemother. 2009, 64, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Minichmayr, I.K.; Roberts, J.A.; Frey, O.R.; Roehr, A.C.; Kloft, C.; Brinkmann, A. Development of a dosing nomogram for continu-ous-infusion meropenem in critically ill patients based on a validated population pharmacokinetic model. J. Antimicrob. Chemother. 2018, 73, 1330–1339. [Google Scholar] [CrossRef]
- Benítez-Cano, A.; Luque, S.; Sorlí, L.; Carazo, J.; Ramos, I.; Campillo, N.; Curull, V.; Sánchez-Font, A.; Vilaplana, C.; Horcajada, J.P.; et al. Intrapulmonary concentrations of meropenem administered by continuous infusion in critically ill patients with nosocomial pneumonia: A randomized pharmacokinetic trial. Crit. Care 2020, 24, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Couffignal, C.; Pajot, O.; Laouenan, C.; Burdet, C.; Foucrier, A.; Wolff, M.; Armand-Lefevre, L.; Mentré, F.; Massias, L. Population pharmacokinetics of imipenem in critically ill patients with suspected ventilator-associated pneumonia and evaluation of dosage regimens. Br. J. Clin. Pharmacol. 2014, 78, 1022–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Zhang, D.; Lian, W.; Wang, X.; Du, W.; Zhang, Z.; Guo, D.; Zhang, X.; Zhan, Q.; Li, P. Imipenem population pharmacokinetics: Therapeutic drug monitoring data collected in critically ill patients with or without extracorporeal membrane oxygenation. Antimicrob. Agents Chemother. 2020, 64. [Google Scholar] [CrossRef]
- Jaruratanasirikul, S.; Boonpeng, A.; Nawakitrangsan, M.; Samaeng, M. NONMEM population pharmacokinetics and Monte Carlo dosing simulations of imipenem in critically ill patients with life-threatening severe infections during support with or without extracorporeal membrane oxygenation in an intensive care unit. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2021. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.A.; Lipman, J. Optimal doripenem dosing simulations in critically ill nosocomial pneumonia patients with obesity, augmented renal clearance, and decreased bacterial susceptibility. Crit. Care Med. 2013, 41, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Jaruratanasirikul, S.; Wongpoowarak, W.; Kositpantawong, N.; Aeinlang, N.; Jullangkoon, M. Pharmacodynamics of doripenem in critically ill patients with ventilator-associated Gram-negative bacilli pneumonia. Int. J. Antimicrob. Agents 2012, 40, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Oesterreicher, Z.; Minichmayr, I.; Sauermann, R.; Marhofer, D.; Lackner, E.; Jäger, W.; Maier-Salamon, A.; Schwameis, R.; Kloft, C.; Zeitlinger, M. Pharmacokinetics of doripenem in plasma and epithelial lining fluid (ELF): Comparison of two dosage regimens. Eur. J. Clin. Pharmacol. 2017, 73, 1609–1613. [Google Scholar] [CrossRef] [Green Version]
- Boselli, E.; Breilh, D.; Saux, M.-C.; Gordien, J.-B.; Allaouchiche, B. Pharmacokinetics and lung concentrations of ertapenem in patients with ventilator-associated pneumonia. Intensiv. Care Med. 2006, 32, 2059–2062. [Google Scholar] [CrossRef]
- Burkhardt, O.; Kumar, V.; Katterwe, D.; Majcher-Peszynska, J.; Drewelow, B.; Derendorf, H.; Welte, T. Ertapenem in critically ill patients with early-onset ventilator-associated pneumonia: Pharmacokinetics with special consideration of free-drug concen-tration. J. Antimicrob. Chemother. 2007, 59, 277–284. [Google Scholar] [CrossRef]
- Liebchen, U.; Kratzer, A.; Wicha, S.G.; Kees, F.; Kloft, C.; Kees, M.G. Unbound fraction of ertapenem in intensive care unit patients. J. Antimicrob. Chemother. 2014, 69, 3108–3111. [Google Scholar] [CrossRef] [Green Version]
- Marshall, S.; Hujer, A.M.; Rojas, L.J.; Papp-Wallace, K.M.; Humphries, R.M.; Spellberg, B.; Hujer, K.M.; Marshall, E.K.; Rudin, S.D.; Perez, F.; et al. Can ceftazidime-avibactam and aztreonam overcome β-lactam resistance conferred by metallo-β-lactamases in Enterobacteriaceae? Antimicrob. Agents Chemother. 2017, 61, e02243–e02316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boucher, B.A. Role of aztreonam in the treatment of nosocomial pneumonia in the critically ill surgical patient. Am. J. Surg. 2000, 179, 45–50. [Google Scholar] [CrossRef]
- Gross, A.E.; Xu, H.; Zhou, D.; Al-Huniti, N. Simplified aztreonam dosing in patients with end-stage renal disease: Results of a Monte Carlo simulation. Antimicrob. Agents Chemother. 2018, 62, e01066-18. [Google Scholar] [CrossRef] [Green Version]
- Cornwell, I.I.I.E.E.; Belzberg, H.; Berne, T.V.; Gill, M.A.; Theodorou, D.; Kern, J.W.; Yu, W.; Asensio, J.; Demetriades, D. Pharmacokinetics of aztreonam in critically ill surgical patients. Am. J. Health-Syst. Pharm. 1997, 54, 537–540. [Google Scholar] [CrossRef]
- McKindley, D.S.; Boucher, B.; Hess, M.M.; Croce, M.; Fabian, T.C. Pharmacokinetics of aztreonam and imipenem in critically ill patients with pneumonia. Pharmacother. J. Hum. Pharmacol. Drug Ther. 1996, 16, 924–931. [Google Scholar]
- Falcone, M.; Menichetti, F.; Cattaneo, D.; Tiseo, G.; Baldelli, S.; Galfo, V.; Leonildi, A.; Tagliaferri, E.; Di Paolo, A.; Pai, M.P. Pragmatic options for dose optimization of ceftazidime/avibactam with aztreonam in complex patients. J. Antimicrob. Chemother. 2020, 76, 1025–1031. [Google Scholar] [CrossRef] [PubMed]
- Prescott, W.A.; Gentile, A.E.; Nagel, J.L.; Pettit, R.S. Continuous-infusion antipseudomonal beta-lactam therapy in patients with cystic fibrosis. J. Formul. Manag. 2011, 36, 723–763. [Google Scholar]
- Grupper, M.; Kuti, J.L.; Nicolau, D.P. Continuous and prolonged intravenous β-lactam dosing: Implications for the clinical laboratory. Clin. Microbiol. Rev. 2016, 29, 759–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voumard, R.; Neyghem, N.V.; Cochet, C.; Gardiol, C.; Decosterd, L.; Buclin, T.; de Valliere, S. Antibiotic stability related to temperate variations in elastomeric pumps used for outpatient parenteral antimicrobial therapy (OPAT). J. Antimicrob. Chemother. 2017, 72, 1462–1465. [Google Scholar] [CrossRef] [PubMed]
- Servais, H.; Tulkens, P.M. Stability and compatibility of ceftazidime administered by continuous infusion to intensive care patients. Antimicrob. Agents Chemother. 2001, 45, 2643–2647. [Google Scholar] [CrossRef] [Green Version]
- Jones, B.M.; Huelfer, K.; Bland, C.M. Clinical and safety evaluation of continuously infused ceftolozane/tazobactam in the outpatient setting. Open Forum Infect. Dis. 2020, 7, ofaa014. [Google Scholar] [CrossRef] [Green Version]
- Kuti, J.L.; Nightingale, C.H.; Knauft, R.F.; Nicolau, D.P. Pharmacokinetic properties and stability of continuous-infusion meropenem in adults with cystic fibrosis. Clin. Ther. 2004, 26, 493–501. [Google Scholar] [CrossRef]
- Burgess, D.S.; Summers, K.K.; Hardin, T.C. Pharmacokinetics and pharmacodynamics of aztreonam administered by continuous intravenous infusion. Clin. Ther. 1999, 21, 1882–1889. [Google Scholar] [CrossRef]
- Breilh, D.; Fleureau, C.; Gordien, J.B.; Joanes-Boyau, O.; Texier-Maugein, J.; Rapaport, S.; Boselli, E.; Janvier, G.; Saux, M.C. Pharmaco-kinetics of free ertapenem in critically ill septic patients: Intermittent versus continuous infusion. Minerva Anestesiol. 2011, 77, 1058–1062. [Google Scholar]
- Walker, S.E.; Law, S.; Iazzetta, J. Stability of ertapenem 100 mg/mL in manufacturer’s glass vials or syringes at 4 °C and 23 °C. Can. J. Hosp. Pharm. 2015, 68, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Roger, C.; Louart, B. Beta-lactams toxicity in the intensive care unit: An underestimated collateral damage? Microorganisms 2021, 9, 1505. [Google Scholar] [CrossRef] [PubMed]
- De Sarro, A.; Ammendola, D.; Zappala, M.; Grasso, S.; De Sarro, G.B. Relationship between structure and convulsant properties of some beta-lactam antibiotics following intracerebroventricular microinjection in rates. Antimicrob. Agents Chemother. 1995, 39, 232–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nast, C.C. Medication-induced interstitial nephritis in the 21st century. Adv. Chronic Kidney Dis. 2017, 24, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Garratty, G.; Arndt, P. Drugs that have been shown to cause drug-induced immune hemolytic anemia or positive direct antiglobulin tests: Some interesting findings since 2007. Immunohematology 2014, 30, 66–79. [Google Scholar] [CrossRef]
- Luther, M.; Caffrey, A.; Dosa, D.; Lodise, T.P.; Laplante, K. Vancomycin plus piperacillin/tazobactam and acute kidney injury in adults: A systematic review and meta-analysis. Open Forum Infect. Dis. 2016, 3. [Google Scholar] [CrossRef]
- Blevins, A.M.; Lashinsky, J.N.; McCammon, C.; Kollef, M.; Micek, S.; Juang, P. Incidence of acute kidney injury in critically ill patients receiving vancomycin with concomitant piperacillin-tazobactam, cefepime, or meropenem. Antimicrob. Agents Chemother. 2019, 63, e02658-18. [Google Scholar] [CrossRef] [Green Version]
- Carreno, J.; Smiraglia, T.; Hunter, C.; Tobin, E.; Lomaestro, B. Comparative incidence and excess risk of acute kidney injury in hospitalised patients receivingvancomycin and piperacillin/tazobactam in combination or monotherapy. Int. J. Antimicrob. Agents. 2018, 52, 643–650. [Google Scholar] [CrossRef]
- Roberts, J.A.; Paul, S.K.; Akova, M.; Bassetti, M.; De Waele, J.J.; Dimopoulos, G.; Kaukonen, K.M.; Koulenti, D.; Martin, C.; Montravers, P.; et al. DALI: Defining antibiotic levels in intensive care unit patients: Are current β-lactam antibiotic doses sufficient for critically ill patients? Clin. Infect. Dis. 2014, 58, 1072–1083. [Google Scholar] [CrossRef] [PubMed]
- Case, J.; Khan, S.; Khalid, R.; Khan, A. Epidemiology of acute kidney injury in the intensive care unit. Crit. Care Res. Pract. 2013, 2013, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Udy, A.A.; Baptista, J.P.; Lim, N.L.; Joynt, G.M.; Jarrett, P.; Wockner, L.; Boots, R.J.; Lipman, J. Augmented renal clearance in the ICU: Results of a multicenter observational study of renal function in critically ill patients with normal plasma creatinine concen-trations. Crit. Care Med. 2014, 42, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Ostermann, M.; Zarbock, A.; Goldstein, S.; Kashani, K.; Macedo, E.; Murugan, R.; Bell, M.; Forni, L.; Guzzi, L.; Joannidis, M.; et al. Recommendations on acute kidney injury biomarkers from the acute disease quality initiative consensus conference: A consensus statement. JAMA Netw. Open. 2020, 3, e2019209. [Google Scholar] [CrossRef] [PubMed]
- Alobaid, A.S.; Brinkmann, A.; Frey, O.R.; Roehr, A.C.; Luque, S.; Grau, S.; Wong, G.; Abdul-Aziz, M.H.; Roberts, M.S.; Lipman, J.; et al. What is the effect of obesity on piperacillin and meropenem trough concentrations in critically ill patients? J. Antimicrob. Chemother. 2016, 71, 696–702. [Google Scholar] [CrossRef]
- Masich, A.M.; Heavner, M.S.; Gonzales, J.P.; Claeys, K.C. Pharmacokinetic/pharmacodynamic considerations of beta-lactam antibiotics in adult critically ill patients. Curr. Infect. Dis. Rep. 2018, 20, 9. [Google Scholar] [CrossRef] [PubMed]
- Kühn, D.; Metz, C.; Seiler, F.; Wehrfritz, H.; Roth, S.; Alqudrah, M.; Becker, A.; Bracht, H.; Wagenpfeil, S.; Hoffmann, M.; et al. Antibiotic therapeutic drug monitoring in intensive care patients treated with different modalities of extracorporeal membrane oxygenation (ECMO) and renal replacement therapy: A prospective, observational single-center study. Crit. Care 2020, 24, 1–11. [Google Scholar] [CrossRef]
Beta-Lactam | Enterobacterales | Pseudomonas spp. | ||
---|---|---|---|---|
Susceptible≤ | Resistant> | Susceptible≤ | Resistant> | |
Piperacillin/tazobactam | 8 | 8 | 0.001 | 16 |
Cefepime | 1 | 4 | 0.001 | 8 |
Ceftazidime | 1 | 4 | 0.001 | 8 |
Ceftazidime/avibactam | 8 | 8 | 8 | 8 |
Ceftolozane/tazobactam | 2 | 2 | 4 | 4 |
Ceftriaxone | 1 | 2 | - | - |
Meropenem | 2 | 8 | 2 | 8 |
Imipenem/cilastatin | 2 | 4 | 0.001 | 4 |
Doripenem | 1 | 2 | 0.001 | 2 |
Ertapenem | 0.5 | 0.5 | - | - |
Aztreonam | 1 | 4 | 0.001 | 16 |
Beta-Lactam | Regimen |
---|---|
Piperacillin/tazobactam | 16 g/day CI |
Cefepime | 6 g/day CI |
Ceftazidime | 6 g/day CI |
Ceftazidime/avibactam | 2.5 g q8 h (2-h infusion) |
Ceftolozane/tazobactam | 6 g/day CI |
Ceftriaxone | 2 g q12 h or 4 g CI 1 |
Meropenem | 3–6 g/day CI or 2 g q8 h (4-h infusion) |
Imipenem/cilastatin | 1 g q6 h (4-h infusion) |
Doripenem | 1 g q8 h (4-h infusion) |
Ertapenem | 1 g/day q24 h (30-min infusion) 2 |
Aztreonam | 2 g q6 h (2-h infusion) or 2 g load then 8 g/day CI |
Beta-Lactam Continuous Infusion | Stability |
---|---|
Piperacillin/tazobactam | 16 g/day administered over 24 h |
Cefepime | 6 g/day administered over 24 h |
Ceftazidime | 6 g/day administered over 24 h |
Ceftolozane/tazobactam | 6 g/day administered over 24 h |
Meropenem | 1.5–3 g q12 h administered over 12 h (3–6 g/day) |
Aztreonam | 8 g/day administered over 24 h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maguigan, K.L.; Al-Shaer, M.H.; Peloquin, C.A. Beta-Lactams Dosing in Critically Ill Patients with Gram-Negative Bacterial Infections: A PK/PD Approach. Antibiotics 2021, 10, 1154. https://doi.org/10.3390/antibiotics10101154
Maguigan KL, Al-Shaer MH, Peloquin CA. Beta-Lactams Dosing in Critically Ill Patients with Gram-Negative Bacterial Infections: A PK/PD Approach. Antibiotics. 2021; 10(10):1154. https://doi.org/10.3390/antibiotics10101154
Chicago/Turabian StyleMaguigan, Kelly L., Mohammad H. Al-Shaer, and Charles A. Peloquin. 2021. "Beta-Lactams Dosing in Critically Ill Patients with Gram-Negative Bacterial Infections: A PK/PD Approach" Antibiotics 10, no. 10: 1154. https://doi.org/10.3390/antibiotics10101154
APA StyleMaguigan, K. L., Al-Shaer, M. H., & Peloquin, C. A. (2021). Beta-Lactams Dosing in Critically Ill Patients with Gram-Negative Bacterial Infections: A PK/PD Approach. Antibiotics, 10(10), 1154. https://doi.org/10.3390/antibiotics10101154