Is the Antimicrobial Activity of Hydrolates Lower than That of Essential Oils?
Abstract
:1. Introduction
2. Results
2.1. GC-MS and Gravimetric Analyses
2.2. Broth Microdilution Susceptibility Test
2.3. Comparison Between EOs and Hys
3. Discussion
4. Materials and Methods
4.1. Clinical Strains
4.2. Essential Oils and Related Hydrolates
4.3. Gas Chromatography Mass Spectrometry Analysis
4.4. Gravimetric Analysis
4.5. Broth Microdilution Susceptibility Test
4.6. Comparison Between EO and Hy
4.7. Data Management
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Millikan, L.E. Complementary medicine in dermatology. Clin. Dermatol. 2002, 20, 602–605. [Google Scholar] [CrossRef]
- Halcón, L.; Milkus, K. Staphylococcus aureus and wounds: A review of tea tree oil as a promising antimicrobial. Am. J. Infect. Control 2004, 32, 402–408. [Google Scholar] [CrossRef]
- Kozics, K.; Bučková, M.; Puškárová, A.; Kalászová, V.; Cabicarová, T.; Pangallo, D. The Effect of Ten Essential Oils on Several Cutaneous Drug-Resistant Microorganisms and Their Cyto/Genotoxic and Antioxidant Properties. Molecules 2019, 24, 4570. [Google Scholar] [CrossRef] [Green Version]
- European Pharmacopeia, 6th ed.; European Directorate for the Quality of Medicines and Healthcare, Supplement 5.8; Council of Europe: Strasbourg, France, 2007.
- AA. VV. French Pharmacopeia; Lyon, France. 2012. Available online: https://ansm.sante.fr/Mediatheque/Publications/Pharmacopee-francaise-Plan-Preambule-index (accessed on 17 January 2021).
- D’Amato, S.; Serio, A.; Chaves Lopez, C.; Paparella, A. Hydrosols: Biological activity and potential as antimicrobials for food applications. Food Control 2018, 86, 126–137. [Google Scholar] [CrossRef]
- Zárybnický, T.; Boušová, I.; Ambrož, M.; Skálová, L. Hepatotoxicity of monoterpenes and sesquiterpenes. Arch. Toxicol. 2018, 92, 1–13. [Google Scholar] [CrossRef]
- Herman, A.; Herman, A.P. Essential oils and their constituents as skin penetration enhancer for transdermal drug delivery: A review. J. Pharm. Pharmacol. 2015, 67, 473–485. [Google Scholar] [CrossRef]
- Sainz, P.; Andrés, M.F.; Martínez-Díaz, R.A.; Bailén, M.; Navarro-Rocha, J.; Díaz, C.E.; González-Coloma, A. Chemical composition and biological activities of Artemisia pedemontana subsp. assoana essential oils and hydrolate. Biomolecules 2019, 9, 558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, G.; Li, J.; Zheng, T.; Yao, J.; Chen, J.; Duan, L. Comparative Chemical Profiles of Essential Oils and Hydrolate Extracts from Fresh Flowers of Eight Paeonia suffruticosa Andr. Cultivars from Central China. Molecules 2018, 23, 3268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wajs-Bonikowska, A.; Sienkiewicz, M.; Stobiecka, A.; Maciąg, A.; Szoka, Ł.; Karna, E. Chemical Composition and Biological Activity of Abies alba and A. koreana Seed and Cone Essential Oils and Characterization of Their Seed Hydrolates. Chem. Biodivers. 2015, 12, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Carlini, E.A.; De Oliveira, A.B.; De Oliveira, G.G. Psychopharmacological effects of the essential oil fraction and of the hydrolate obtained from the seeds of Licaria puchury-major. J. Ethnopharmacol. 1983, 8, 225–236. [Google Scholar] [CrossRef]
- Guesmi, F.; Tyagi, A.K.; Prasad, S.; Landoulsi, A. Terpenes from essential oils and hydrolate of Teucrium alopecurus triggered apoptotic events dependent on caspases activation and PARP cleavage in human colon cancer cells through decreased protein expressions. Oncotarget 2018, 9, 32305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, A.F.U.; Melo, V.M.M.; Craveiro, A.A.; Machado, M.I.L.; Bantim, M.B.; Rabelo, E.F. Larvicidal activity of the essential oil from Lippia sidoides cham. against Aedes aegypti linn. Mem. Inst. Oswaldo Cruz 2003, 98, 569–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrés, M.F.; González-Coloma, A.; Muñoz, R.; De la Peña, F.; Julio, L.F.; Burillo, J. Nematicidal potential of hydrolates from the semi industrial vapor-pressure extraction of Spanish aromatic plants. Environ. Sci. Pollut. Res. 2018, 25, 29834–29840. [Google Scholar] [CrossRef] [PubMed]
- Di Vito, M.; Bellardi, M.G.; Mondello, F.; Modesto, M.; Michelozzi, M.; Bugli, F.; Sanguinetti, M.; Sclocchi, M.C.; Sebastiani, M.L.; Biffi, S.; et al. Monarda citriodora hydrolate vs essential oil comparison in several anti-microbial applications. Ind. Crops Prod. 2019, 128, 206–212. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Antimicrobial Resistance: Global Report on Surveillance. Available online: https://apps.who.int/iris/bitstream/handle/10665/112642/9789241564748_eng.pdf;jsessionid=2EF9B2B5D4C9757B7C4A3433C8413F7B?sequence=1 (accessed on 18 January 2021).
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential Oils as Antimicrobial Agents—Myth or Real Alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef] [Green Version]
- Kalemba, D.; Kunicka, A. Antibacterial and Antifungal Properties of Essential Oils. Curr. Med. Chem. 2003, 10, 813–829. [Google Scholar] [CrossRef] [PubMed]
- Bucková, M.; Puškárová, A.; Kalászová, V.; Kisová, Z.; Pangallo, D. Essential oils against multidrug resistant gram-negative bacteria. Biologia 2019, 73, 803–808. [Google Scholar] [CrossRef]
- Mayaud, L.; Carricajo, A.; Zhiri, A.; Aubert, G. Comparison of bacteriostatic and bactericidal activity of 13 essential oils against strains with varying sensitivity to antibiotics. Lett. Appl. Microbiol. 2008, 47, 167–173. [Google Scholar] [CrossRef]
- Entela Haloc, I.; Toska, V.; Baldisserotto, A.; Goci, E.; Vertuani, S.; Manfredini, S. Evaluation of antifungal activity of Satureja Montana essential oil before and after inclusion in beta-cyclodextrine. Int. J. Pharm. Pharm. Sci. 2014, 6, 187–191. [Google Scholar]
- Vitanza, L.; Maccelli, A.; Marazzato, M.; Scazzocchio, F.; Comanducci, A.; Fornarini, S.; Crestoni, M.E.; Filippi, A.; Fraschetti, C.; Rinaldi, F.; et al. Satureja montana L. essential oil and its antimicrobial activity alone or in combination with gentamicin. Microb. Pathog. 2019, 126, 323–331. [Google Scholar] [CrossRef]
- Karakaya, S.; El, S.N.; Karagözlü, N.; Sahin, S. Antioxidant and antimicrobial activities of essential oils obtained from oregano (Origanum vulgare ssp. hirtum) by using different extraction methods. J. Med. Food 2011, 14, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Grondona, E.; Gatti, G.; López, A.G.; Sánchez, L.R.; Rivero, V.; Pessah, O.; Zunino, M.P.; Ponce, A.A. Bio-efficacy of the essential oil of oregano (Origanum vulgare Lamiaceae. Ssp. Hirtum). Plant Foods Hum. Nutr. 2014, 69, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Bajalan, I.; Rouzbahani, R.; Pirbalouti, A.G.; Maggi, F. Chemical Composition and Antibacterial Activity of Iranian Lavandula × hybrida. Chem. Biodivers. 2017, 14, e1700064. [Google Scholar] [CrossRef] [PubMed]
- Tardugno, R.; Serio, A.; Pellati, F.; D’Amato, S.; Chaves López, C.; Bellardi, M.G.; Di Vito, M.; Savini, V.; Paparella, A.; Benvenuti, S. Lavandula × intermedia and Lavandula angustifolia essential oils: Phytochemical composition and antimicrobial activity against foodborne pathogens. Nat. Prod. Res. 2019, 33, 3330–3335. [Google Scholar] [CrossRef]
- D’Auria, F.D.; Tecca, M.; Strippoli, V.; Salvatore, G.; Battinelli, L.; Mazzanti, G. Antifungal activity of Lavandula angustifolia essential oil against Candida albicans yeast and mycelial form. Med. Mycol. 2005, 43, 391–396. [Google Scholar] [CrossRef] [Green Version]
- Cardia, G.F.E.; Silva-Filho, S.E.; Silva, E.L.; Uchida, N.S.; Cavalcante, H.A.O.; Cassarotti, L.L.; Salvadego, V.E.C.; Spironello, R.A.; Bersani-Amado, C.A.; Cuman, R.K.N. Effect of Lavender (Lavandula angustifolia) Essential Oil on Acute Inflammatory Response. Evid. Based Complement. Alternat. Med. 2018, 2018, 1413940. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Recalde, M.; Ruiz Arias, I.E.; Hermida, É.B. Could essential oils enhance biopolymers performance for wound healing? A systematic review. Phytomedicine 2018, 38, 57–65. [Google Scholar] [CrossRef]
- Kasper, S. An orally administered lavandula oil preparation (Silexan) for anxiety disorder and related conditions: An evidence based review. Int. J. Psychiatry Clin. Pract. 2013, 17 (Suppl. 1), 15–22. [Google Scholar] [CrossRef]
- Li, H.; Yang, T.; Li, F.-Y.; Yao, Y.; Sun, Z.-M. Antibacterial activity and mechanism of action of Monarda punctata essential oil and its main components against common bacterial pathogens in respiratory tract. Int. J. Clin. Exp. Pathol. 2014, 7, 7389–7398. [Google Scholar]
- Ricci, D.; Epifano, F.; Fraternale, D. The Essential Oil of Monarda didyma L. (Lamiaceae) Exerts Phytotoxic Activity in vitro against Various Weed Seed. Molecules 2017, 22, 222. [Google Scholar] [CrossRef] [Green Version]
- Mattarelli, P.; Epifano, F.; Minardi, P.; Di Vito, M.; Modesto, M.; Barbanti, L.; Bellardi, M.G. Chemical Composition and Antimicrobial Activity of Essential Oils from Aerial Parts of Monarda didyma and Monarda fistulosa Cultivated in Italy. J. Essent. Oil Bearing Plants 2017. [Google Scholar] [CrossRef]
- Pereira, I.; Severino, P.; Santos, A.C.; Silva, A.M.; Souto, E.B. Linalool bioactive properties and potential applicability in drug delivery systems. Colloids Surf. B. Biointerfaces 2018, 171, 566–578. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Mishra, A.P.; Shukla, I.; Sharifi-Rad, M.; Contreras, M.D.M.; Segura-Carretero, A.; Fathi, H.; Nasrabadi, N.N.; Kobarfard, F.; Sharifi-Rad, J. Thymol, thyme, and other plant sources: Health and potential uses. Phytother. Res. 2018, 32, 1688–1706. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, M.; Varoni, E.M.; Iriti, M.; Martorell, M.; Setzer, W.N.; Del Mar Contreras, M.; Salehi, B.; Soltani-Nejad, A.; Rajabi, S.; Tajbakhsh, M.; et al. Carvacrol and human health: A comprehensive review. Phytother. Res. 2018, 32, 1675–1687. [Google Scholar] [CrossRef] [PubMed]
- Malone, M.; Bjarnsholt, T.; McBain, A.J.; James, G.A.; Stoodley, P.; Leaper, D.; Tachi, M.; Schultz, G.; Swanson, T.; Wolcott, R.D. The prevalence of biofilms in chronic wounds: A systematic review and meta-analysis of published data. J. Wound Care 2017, 26, 20–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vázquez-Sánchez, D.; Galvão, J.A.; Mazine, M.R.; Gloria, E.M.; Oetterer, M. Control of Staphylococcus aureus biofilms by the application of single and combined treatments based in plant essential oils. Int. J. Food Microbiol. 2018, 286, 128–138. [Google Scholar] [CrossRef]
- Van de Vel, E.; Sampers, I.; Raes, K. A review on influencing factors on the minimum inhibitory concentration of essential oils. Crit. Rev. Food Sci. Nutr. 2019, 59, 357–378. [Google Scholar] [CrossRef]
- Anonymous Hydrosols Market. Research Report-Global Forecast. Till 2024; Market Research Future®. 2020. Available online: https://www.marketresearchfuture.com/reports/hydrosols-market-4789 (accessed on 18 January 2021).
- Channel (Store-Based and Non-Store-Based), and Region (North America, Europe, Asia-Pacific, and Rest of the World)—Forecast till Hydrosols Market Global Research Report Information by Source (Rose, Roman Chamomile, Neroli, Lavender, and Others), Category (Organic and Conventional), Distribution 2024, Maharashtra, India. Maharashtra, India. 2020. Available online: https://www.marketresearchfuture.com/reports/hydrosols-market-4789 (accessed on 17 January 2021).
- Kilic, A.; Hafizoglu, H.; Kollmannsberger, H.; Nitz, S. Volatile Constituents and Key Odorants in Leaves, Buds, Flowers, and Fruits of Laurus nobilis L. J. Agric. Food Chem. 2004, 52, 1601–1606. [Google Scholar] [CrossRef]
- Takaku, S.; Haber, W.A.; Setzer, W.N. Leaf essential oil composition of 10 species of Ocotea (Lauraceae) from Monteverde, Costa Rica. Biochem. Syst. Ecol. 2007, 35, 525–532. [Google Scholar] [CrossRef]
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention Indices for Frequently Reported Compounds of Plant Essential Oils. J. Phys. Chem. Ref. Data 2011, 40. [Google Scholar] [CrossRef] [Green Version]
- Dötterl, S.; Wolfe, L.M.; Jürgens, A. Qualitative and quantitative analyses of flower scent in Silene latifolia. Phytochemistry 2005, 66, 203–213. [Google Scholar] [CrossRef] [PubMed]
Average (% n = 3) | ||||||||
---|---|---|---|---|---|---|---|---|
Components | E-RI | L-RI | L. angustifolia | L. intermedia | O. hirtum | S. montana | M. didyma | M. fistulosa |
2,3-Dimethyl-3-buten-2-ol | 741 | 746 | - | - | - | 0.05 | - | - |
Thujene | 923 | 928 | 0.11 | 0.08 | 1.30 | 1.11 | 1.81 | 3.48 |
α-Pinene | 931 | 936 | 0.29 | 0.63 | 0.76 | 0.76 | 0.57 | 0.79 |
Camphene | 945 | 950 | 0.10 | 0.33 | 0.07 | 0.22 | 0.23 | 0.15 |
Sabinene | 967 | 973 | 0.06 | 0.13 | - | 0.07 | 1.12 | 0.28 |
1-Octen-3-ol | 974 | 980 | 0.08 | 0.08 | 0.10 | 0.47 | 4.50 | 4.08 |
3-Octanone | 979 | 985 | 0.27 | - | - | - | 0.20 | 0.13 |
β-Pinene | 972 | 978 | 0.14 | 0.51 | 0.09 | 0.11 | 0.27 | 0.26 |
Myrcene | 983 | 989 | 3.56 | 1.39 | 1.12 | 0.95 | 2.28 | 3.62 |
α-Phellandrene | 998 | 1004 | 0.10 | 0.04 | 0.23 | 0.21 | 0.40 | 0.66 |
Hexyl acetate | 1004 | 1010 | - | 0.03 | - | - | - | - |
3-Carene | 1005 | 1011 | 0.15 | 0.09 | 0.06 | 0.06 | 0.20 | 0.32 |
α-Terpinene | 1011 | 1017 | 0.07 | 0.05 | 3.04 | 1.98 | 3.69 | 5.69 |
p-Cymene | 1018 | 1024 | 0.13 | 0.05 | 18.83 | 9.82 | 8.08 | 13.85 |
Limonene | 1024 | 1030 | 1.53 | - | 0.39 | 0.66 | 0.88 | 1.06 |
1,8-Cineole | 1026 | 1032 | 1.54 | 9.20 | 0.04 | 0.20 | 1.36 | - |
(Z)-β-Ocimene | 1031 | 1038 | 5.44 | 0.60 | 1.29 | 0.04 | - | - |
(E)-β-Ocimene | 1041 | 1048 | 3.13 | 0.63 | 0.22 | 0.02 | - | - |
γ-Terpinene | 1053 | 1060 | 0.19 | 0.12 | 23.81 | 13.44 | 13.07 | 16.85 |
cis- Linalool oxide (f) | 1069 | 1075 | 0.13 | 0.06 | - | - | - | - |
Terpinolene | 1080 | 1087 | 0.26 | 0.29 | 0.12 | 0.05 | 0.22 | 0.21 |
β−Linalool | 1092 | 1099 | 28.36 | 27.99 | 0.40 | 0.48 | 8.71 | 1.24 |
No Match | 1197 | 1203 | 0.04 | - | - | - | - | - |
1-Octen-3-ol, acetate | 1103 | 1110 | 0.61 | 0.09 | - | - | - | - |
Neo-allo-ocimene | 1122 | 1130 | 3.28 | - | - | - | - | - |
Camphor | 1136 | 1143 | 0.25 | 7.27 | - | - | - | - |
n-Hexyl isobutyrate | 1144 | 1151 | - | 0.05 | - | - | - | - |
Borneol | 1159 | 1167 | 0.77 | 3.40 | 0.05 | 0.50 | 0.56 | 0.24 |
Lavandulol | 1161 | 1168 | 0.14 | - | - | - | - | - |
p-Cymen-8-ol | 1176 | 1184 | - | - | - | 0.01 | - | - |
Cryptone | 1181 | 1189 | 0.11 | - | - | - | - | - |
α-Terpineol | 1182 | 1190 | 0.31 | 0.50 | 0.06 | 0.06 | 0.94 | 0.23 |
n-Hexyl n-butyrate | 1184 | 1192 | 0.23 | - | - | - | - | - |
cis-Sabinene hydrate | 1212 | 1219 | 0.10 | 0.10 | - | 0.07 | - | - |
Isobornyl formate | 1231 | 1239 | 0.03 | - | - | - | - | - |
Thymol methyl ether | 1226 | 1234 | - | - | 5.37 | - | 4.47 | 0.40 |
Pulegone | 1226 | 1234 | - | - | 4.05 | - | - | - |
Hexyl 3-methylbutyrate | 1236 | 1244 | - | 0.07 | - | - | - | - |
Carvacrol methyl ether | 1235 | 1243 | - | - | - | - | 7.36 | 6.74 |
Tymoquinone | 1244 | 1252 | - | - | - | 0.03 | - | - |
Geraniol | 1247 | 1255 | - | - | - | - | - | 0.47 |
Linalyl acetate | 1247 | 1255 | 33.35 | 36.47 | - | - | - | - |
Bornyl acetate | 1275 | 1284 | 0.07 | - | - | - | - | - |
Lavandulol acetate | 1281 | 1289 | 1.28 | 2.31 | - | - | - | - |
Thymol | 1282 | 1290 | - | - | 36.30 | 1.21 | 15.40 | 1.87 |
Carvacrol | 1292 | 1300 | - | - | 0.13 | 63.16 | 20.59 | 35.18 |
L-Terpinen-4-ol | 1295 | 1302 | 5.50 | 2.93 | 0.27 | 0.29 | - | - |
δ-Elemene | 1328 | 1337 | - | 0.06 | - | 0.06 | - | - |
Neryl acetate | 1354 | 1362 | 0.46 | 0.16 | - | - | - | - |
Carvacrol acetate | 1364 | 1373 | - | - | - | 0.13 | - | - |
β-Copaene | 1367 | 1376 | 0.04 | - | - | 0.04 | - | - |
α-Copaene | 1367 | 1376 | - | - | - | 0.05 | - | - |
Geranyl acetate | 1371 | 1380 | 0.78 | 0.30 | - | - | - | - |
β-Bourbonene | 1375 | 1384 | - | - | 0.09 | 0.04 | - | - |
β-Elemene | 1381 | 1390 | - | - | - | 0.01 | - | - |
Humulene | 1397 | 1407 | 0.07 | 0.03 | - | 0.03 | 0.03 | 0.06 |
β-Caryophillene | 1411 | 1420 | 5.75 | 1.71 | 0.67 | 1.53 | 1.00 | 1.20 |
cis-α-Bergamotene | 1425 | 1430 | 0.22 | 0.09 | - | - | - | - |
trans-α-Bergamotene | 1425 | 1434 | 0.05 | 0.05 | - | - | - | - |
γ-Elemene | 1426 | 1436 | - | - | - | 0.09 | - | - |
(Z)-β-Farnesene | 1436 | 1446 | 0.21 | 0.45 | - | - | - | - |
(E)-β-Farnesene | 1446 | 1456 | 0.07 | - | - | - | - | - |
Geranyl propionate | 1467 | 1477 | - | 0.24 | - | - | - | - |
γ-Muurolene | 1466 | 1476 | - | 0.04 | 0.07 | - | - | - |
Germacrene D | 1471 | 1481 | 0.21 | 0.28 | - | 0.28 | - | - |
Zingiberene | 1485 | 1495 | - | 0.03 | - | - | - | - |
β-Bisabolene | 1498 | 1508 | - | - | 0.41 | 0.88 | - | - |
γ-Cadinene | 1503 | 1513 | - | 0.30 | 0.15 | 0.02 | - | - |
δ-Cadinene | 1513 | 1523 | 0.04 | - | 0.23 | 0.07 | - | - |
β-Sesquiphellandrene | 1513 | 1524 | - | 0.07 | - | - | - | - |
Caryophyllene oxide | 1570 | 1581 | 0.08 | - | - | 0.07 | - | - |
Cadinol T | 1629 | 1640 | - | 0.14 | - | - | - | - |
α-Bisabolol | 1671 | 1683 | - | 0.14 | - | - | - | - |
Average (%) | ||||||||
---|---|---|---|---|---|---|---|---|
Components | E-RI | L-RI | L. angustifolia | L. intermedia | O. hirtum | S. montana | M. didyma | M. fistulosa |
3-Methyl-4-penten-1-ol | 781 | 786 | - | 0.11 | - | - | - | - |
3-Hexen-1-ol | 852 | 857 | 0.10 | - | - | - | 0.03 | 0.16 |
5,5-Dimethyl-2(5H)-furanone | 946 | 952 | 0.52 | - | - | - | - | - |
1-Octen-3-ol | 976 | 980 | - | 0.19 | - | - | 6.64 | 5.59 |
3-Octanone | 979 | 985 | - | - | - | - | 0.05 | 0.04 |
1,8-Cineole | 1026 | 1032 | 0.90 | 19.08 | - | - | 0.33 | - |
cis-Linalool oxide(f) | 1069 | 1075 | 0.78 | 0.76 | - | - | - | - |
trans-Linalool oxide(f) | 1077 | 1083 | 2.40 | - | - | - | - | - |
β-Linalool | 1092 | 1099 | 42.15 | 34.17 | - | - | 6.94 | 0.63 |
Camphor | 1136 | 1143 | 0.32 | 22.12 | - | - | - | - |
Eucarvone | 1142 | 1150 | 0.15 | - | - | - | - | - |
Sabina ketone | 1148 | 1156 | 0.14 | - | - | - | - | - |
Isopulegol | 1152 | 1159 | 1.42 | - | - | - | - | - |
Borneol | 1159 | 1166 | 2.50 | 3.17 | - | - | 0.77 | 0.22 |
α-Terpineol | 1182 | 1190 | 19.01 | 5.20 | - | - | 1.56 | 0.30 |
Verbenone | 1198 | 1206 | - | - | - | 0.05 | - | - |
Not identified | 1209 | 1215 | 0.42 | 0.15 | - | - | - | - |
Cumin aldehyde | 1230 | 1238 | 0.07 | - | - | - | - | - |
6,7-Dihydro-7-hydroxylinalool | 1229 | 1237 | 3.58 | 1.17 | - | - | - | - |
2-Hydroxycineol | 1239 | 1247 | - | 0.26 | - | - | - | - |
Geraniol | 1247 | 1255 | 0.77 | 0.07 | - | - | - | 0.61 |
Thymol | 1282 | 1290 | - | - | 100 | 13.88 | 34.03 | 6.66 |
Cumin alcohol | 1282 | 1290 | 0.18 | - | - | - | - | - |
Not identified | 1287 | n.d. | 0.52 | - | - | - | - | - |
Carvacrol | 1292 | 1300 | - | - | - | 85.79 | 48.44 | 84.68 |
L-Terpinen-4-ol | 1295 | 1302 | 20.23 | 7.63 | - | - | 1.22 | 1.11 |
Not identified | 1406 | n.d. | - | 1.16 | - | - | - | - |
Not identified | 1493 | n.d. | 2.99 | - | - | - | - | - |
Cadinol T | 1629 | 1640 | - | 0.63 | - | - | - | - |
α-Cadinol | 1641 | 1652 | - | 0.16 | - | - | - | - |
α-Bisabolol | 1671 | 1682 | - | 0.77 | - | - | - | - |
Palmitic acid, ethyl ester | 1981 | 1993 | 0.10 | 0.79 | - | 0.06 | - | - |
Stearic acid, ethyl ester | 2183 | 2196 | 0.05 | 0.65 | - | - | - | - |
Squalene | 2776 | 2790 | 0.03 | 1.44 | - | 0.21 | - | - |
Gravimetric analysis a | 0.09 | 0.05 | 0.04 | 0.06 | 0.03 | 0.04 |
EOs (% v/v) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Clinical Strains | LA | LI | OH | SM | MD | MF | |||||||
D | Bacteria | MIC | MLC | MIC | MLC | MIC | MLC | MIC | MLC | MIC | MLC | MIC | MLC |
0.1SA(R) | S. aureus MRSA | >2 | >2 | 2 | >2 | ≤0.06 | <0.06 | ≤0.06 | ≤0.06 | 1 | 2 | 0.5 | 1 |
0.2SP | S. pyogenes | >2 | >2 | 1 | 2 | 0.125 | 0.125 | 0.125 | 0.125 | 0.25 | 0.5 | 2 | 2 |
0.3EF(R) | E. faecalis VRE | >2 | >2 | 2 | 2 | 0.125 | 0.125 | 0.125 | 0.125 | 0.25 | 0.5 | 2 | 2 |
0.4EF | E. faecium | >2 | >2 | 2 | 2 | 0.125 | 0.125 | 0.125 | 0.125 | 0.5 | 0.5 | 2 | 1 |
0.5SA | S. aureus MSSA | >2 | >2 | 2 | >2 | 0.125 | 0.25 | 0.125 | 0.125 | 0.5 | 1 | 2 | 2 |
0.6EF | E. faecalis | >2 | >2 | 2 | 2 | ≤0.06 | 0.25 | ≤0.06 | 0.125 | 0.25 | >2 | 2 | 2 |
Yeasts | MIC | MLC | MIC | MLC | MIC | MLC | MIC | MLC | MIC | MLC | MIC | MLC | |
3.1CA | C. albicans | >2 | >2 | 2 | >2 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 1 | 2 |
0.1CP (R) | C. parapsilosis | >2 | >2 | 2 | >2 | 0.25 | 0.5 | 0.25 | 0.25 | 0.5 | 0.5 | 1 | 2 |
0.2CG (R) | C. glabrata | >2 | >2 | 2 | >2 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 1 | 2 |
0.3CT (R) | C. tropicalis | >2 | >2 | 2 | >2 | 0.25 | 0.5 | 0.25 | 0.25 | 0.25 | 0.5 | 1 | 2 |
Dermatophytes | MIC | MLC | MIC | MLC | MIC | MLC | MIC | MLC | MIC | MLC | MIC | MLC | |
0.1TS | T. soudanense | 2 | 2 | 1 | 2 | 1 | 1 | 0.125 | 0.125 | 0.5 | 0.5 | 0.5 | 0.5 |
0.2TS | T. tonsurans | 1 | >2 | 1 | 2 | 0.5 | 0.5 | 0.125 | 0.125 | 0.25 | 0.5 | 0.25 | 0.25 |
0.3TS | T. rubrum | 2 | 2 | 2 | 2 | 1 | 1 | 0.25 | 0.25 | 2 | 2 | 0.5 | 0.5 |
0.4TS | T. violaceum | 0.125 | 0.06 | 0.125 | 0.06 | 0.125 | 0.06 | 0.125 | 0.125 | 0.25 | 0.125 | 0.125 | 0.06 |
0.5TS | M. canis | >0.5 | >2 | 0.25 | 0.25 | 1 | 1 | 0.25 | 0.25 | 2 | 2 | 0.5 | 0.5 |
IR90/LR90 | >2 | >2 | 2 | >2 | 1 | 1 | 0.25 | 0.25 | 1 | 2 | 2 | 2 | |
IR50/LR50 | >2 | >2 | 2 | 2 | 0.25 | 0.25 | 0.125 | 0.125 | 0.25 | 0.5 | 1 | 2 |
Hys (% v/v) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Clinical Strains | LA | LI | OH | SM | MD | MF | |||||||
D | Bacteria | MIC | MLC | MIC | MLC | MIC | MLC | MIC | MLC | MIC | MLC | MIC | MLC |
0.1SA(R) | S. aureus MRSA | >50 | >50 | >50 | >50 | 6.25 | 50 | >50 | >50 | >50 | >50 | >50 | >50 |
0.2SP | S. pyogenes | >50 | >50 | >50 | >50 | 50 | >50 | >50 | >50 | 50 | >50 | >50 | >50 |
0.3EF(R) | E. faecalis VRE | >50 | >50 | >50 | >50 | 50 | >50 | >50 | >50 | 50 | >50 | >50 | >50 |
0.4EF | E. faecium | >50 | >50 | >50 | >50 | 50 | 50 | >50 | >50 | >50 | >50 | >50 | >50 |
0.5SA | S. aureus MSSA | >50 | >50 | >50 | >50 | 50 | >50 | >50 | >50 | 50 | >50 | >50 | >50 |
0.6EF | E. faecalis | >50 | >50 | >50 | >50 | 50 | >50 | >50 | >50 | 50 | >50 | >50 | >50 |
Yeasts | MIC | MLC | MIC | MLC | MIC | MLC | MIC | MLC | MIC | MLC | MIC | MLC | |
3.1CA | C. albicans | >50 | >50 | >50 | >50 | 50 | 50 | 50 | 50 | 50 | 50 | 25 | 50 |
0.1CP (R) | C. parapsilosis | >50 | >50 | >50 | >50 | 50 | >50 | 50 | >50 | 50 | 50 | 25 | 50 |
0.2CG (R) | C. glabrata | >50 | >50 | >50 | >50 | 50 | 50 | 50 | 50 | 50 | >50 | 25 | 50 |
0.2CT (R) | C. tropicalis | >50 | >50 | >50 | >50 | 50 | 50 | 50 | 50 | 50 | 50 | 25 | 50 |
Dermatophytes | MIC | MLC | MIC | MLC | MIC | MLC | MIC | MLC | MIC | MLC | MIC | MLC | |
0.1TS | T. soudanense | 50 | >50 | 50 | >50 | 50 | 50 | 50 | 50 | 25 | 50 | 25 | 50 |
0.2TS | T. tonsurans | 50 | >50 | 50 | >50 | 25 | 50 | 50 | 50 | 25 | 50 | 25 | >50 |
0.3TS | T. rubrum | >50 | >50 | >50 | >50 | 50 | 50 | 50 | 50 | 50 | 50 | 25 | 25 |
0.4TS | T. violaceum | 50 | 50 | 12.5 | 25 | 6.25 | 12.5 | 25 | 25 | 12.5 | 12.5 | ≤6.25 | 6.25 |
0.5TS | M. canis | >50 | >50 | >50 | >50 | 50 | 50 | 50 | 50 | 50 | 50 | 25 | 25 |
IR90/ LR90 | >50 | >50 | >50 | >50 | 50 | >50 | >50 | >50 | >50 | >50 | >50 | >50 | |
IR50/LR50 | >50 | >50 | >50 | >50 | 50 | 50 | 50 | 50 | 50 | 50 | 25 | 50 |
Heading | Total Area | |||
---|---|---|---|---|
O. hirtum | S. montana | M. didyma | M. fistulosa | |
EOTA | 2.23 × 1013 | 7.13 × 1013 | 8.21 × 1011 | 7.53 × 1011 |
HYTA | 2.03 × 1010 | 1.61 × 1011 | 5.03 × 108 | 4.25 × 108 |
CF | 1.13 × 103 | 4.42 × 102 | 1.63 × 103 | 1.77 × 103 |
IR50Hy/CF (% v/v) | 0.044 | 0.113 | 0.031 | 0.014 |
IR50EO (% v/v) | 0.25 | 0.125 | 0.25 | 1 |
IR50EO/(IR50Hy/CF) | 5.68 | 1.11 | 8.33 | 71.43 |
% v/v | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Clinical Strains | OH | SM | MD | MF | |||||||||
D | Bacteria | IC50Hy | IC50Hy/CF | IC50EO | IC50Hy | IC50Hy/CF | IC50EO | IC50Hy | IC50Hy/CF | IC50EO | IC50Hy | IC50Hy/CF | IC50EO |
0.1SA(R) | S. aureus MRSA | 1.94 ± 3.92 | 0.00 ± 0.00 | n.c. | 24.41 ± 2.60 | 0.06 ± 0.00 | n.c. | 52.77 ± 6.36 | 0.03 ± 0.00 | 1.17 ± 0.71 | 119.03 ± 17.50 | 0.06 ± 0.01 | 0.33 ± 0.04 |
0.2SP | S. pyogenes | 31.23 ± 20.32 | 0.03 ± 0.02 | 0.14 ± 0.02 | 33.10 ± 1.80 | 0.07 ± 0.00 | 0.30 ± 0.17 | 28.87 ± 2.78 | 0.02 ± 0.00 | 0.36 ± 0.05 | 102.82 ± 54.31 | 0.06 ± 0.03 | 0.84 ± 0.01 |
0.3EF(R) | E. faecalis VRE | 25.05 ± 9.28 | 0.02 ± 0.00 | 0.01 ± 0.02 | 38.27 ± 20.00 | 0.09 ± 0.04 | 0.10 ± 0.01 | 22.82 ± 0.22 | 0.01±0.00 | 0.18 ± 0.02 | 59.76 ± 10.71 | 0.03 ± 0.01 | 0.88 ± 0.01 |
0.4EF | E. faecium | 21.67 ± 0.77 | 0.02 ± 0.00 | 0.04 ± 0.03 | 28.66 ± 3.12 | 0.07 ± 0.00 | 0.07 ± 0.01 | 35.28 ± 10.40 | 0.02±0.01 | 0.41 ± 0.04 | 40.88 ± 20.10 | 0.02 ± 0.01 | 0.41 ± 0.03 |
0.5SA | S. aureus MSSA | 24.95 ± 10.50 | 0.02 ± 0.00 | 0.12 ± 0.02 | 29.78 ± 6.84 | 0.07 ± 0.01 | 0.10 ± 0.02 | 18.79 ± 0.26 | 0.01±0.00 | 0.45 ± 0.00 | 32.16 ± 14.41 | 0.02 ± 0.01 | 0.58 ± 0.03 |
0.6EF | E. faecalis | 29.74 ± 3.98 | 0.03 ± 0.00 | n.c. | 68.10 ± 22.00 | 0.15 ± 0.05 | n.c. | 17.35 ± 0.01 | 0.01±0.00 | 0.21 ± 0.01 | 22.38 ± 7.69 | 0.01 ± 0.00 | 0.79 ± 0.03 |
Yeast | IC50Hy | IC50Hy/CF | IC50EO | IC50Hy | IC50Hy/CF | IC50EO | IC50Hy | IC50Hy/CF | IC50EO | IC50Hy | IC50Hy/CF | IC50EO | |
3.1CA | C. albicans | 11.60 ± 0.32 | 0.01 ± 0.00 | 0.15 ± 0.04 | 25.29 ± 4.57 | 0.06 ± 0.01 | 0.19 ± 0.01 | 27.57 ± 17.16 | 0.02 ± 0.01 | 0.01 ± 0.05 | 11.29 ± 5.04 | 0.01 ± 0.00 | 0.49 ± 0.04 |
0.1CP (R) | C. parapsilosis | 20.75 ± 3.63 | 0.02 ± 0.00 | 0.16 ± 0.04 | 26.08 ± 1.86 | 0.06 ± 0.00 | 0.15 ± 0.01 | 20.78 ± 1.10 | 0.01 ± 0.00 | 0.13 ± 0.07 | 13.70 ± 0.24 | 0.01 ± 0.00 | 0.53 ± 0.04 |
0.2CG (R) | C. glabrata | 27.53 ± 1.36 | 0.02 ± 0.00 | 0.22 ± 0.00 | 27.59 ± 0.92 | 0.06 ± 0.00 | 0.19 ± 0.01 | 28.92 ± 1.31 | 0.02 ± 0.00 | 0.29 ± 0.00 | 16.41 ± 0.03 | 0.01 ± 0.00 | 0.62 ± 0.11 |
0.3CT (R) | C. tropicalis | 28.79 ± 2.24 | 0.03 ± 0.00 | 0.11 ± 0.03 | 24.33 ± 0.72 | 0.05 ± 0.01 | 0.18 ± 0.12 | 27.86 ± 3.87 | 0.02 ± 0.00 | 0.16 ± 0.01 | 15.14 ± 1.10 | 0.01 ± 0.00 | 0.38 ± 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Vito, M.; Smolka, A.; Proto, M.R.; Barbanti, L.; Gelmini, F.; Napoli, E.; Bellardi, M.G.; Mattarelli, P.; Beretta, G.; Sanguinetti, M.; et al. Is the Antimicrobial Activity of Hydrolates Lower than That of Essential Oils? Antibiotics 2021, 10, 88. https://doi.org/10.3390/antibiotics10010088
Di Vito M, Smolka A, Proto MR, Barbanti L, Gelmini F, Napoli E, Bellardi MG, Mattarelli P, Beretta G, Sanguinetti M, et al. Is the Antimicrobial Activity of Hydrolates Lower than That of Essential Oils? Antibiotics. 2021; 10(1):88. https://doi.org/10.3390/antibiotics10010088
Chicago/Turabian StyleDi Vito, Maura, Antonina Smolka, Maria Rita Proto, Lorenzo Barbanti, Fabrizio Gelmini, Edoardo Napoli, Maria Grazia Bellardi, Paola Mattarelli, Giangiacomo Beretta, Maurizio Sanguinetti, and et al. 2021. "Is the Antimicrobial Activity of Hydrolates Lower than That of Essential Oils?" Antibiotics 10, no. 1: 88. https://doi.org/10.3390/antibiotics10010088
APA StyleDi Vito, M., Smolka, A., Proto, M. R., Barbanti, L., Gelmini, F., Napoli, E., Bellardi, M. G., Mattarelli, P., Beretta, G., Sanguinetti, M., & Bugli, F. (2021). Is the Antimicrobial Activity of Hydrolates Lower than That of Essential Oils? Antibiotics, 10(1), 88. https://doi.org/10.3390/antibiotics10010088