Essential Oils as Antimicrobials in Crop Protection
Abstract
:1. Introduction to Essential Oils
2. Essential Oils as Antibacterial and Antifungal Compounds
2.1. Antibacterial Activity
2.2. Antifungal Activity
3. Advantages and Drawbacks of Essential Oils Based Biopesticide for Crop Protection Control
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turek, C.; Stintzing, F.C. Stability of Essential Oils: A Review. Comp. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- ISO 9235. Aromatic Natural Raw Materials—Vocabulary; International Organization for Standardization: Geneva, Switzerland, 2013. [Google Scholar]
- Espitia-Yanes, C.R. Evaluación de la Actividad Repelente e Insecticida de Aceites Esenciales Extraídos de Plantas Aromáticas (Cymbopogon Citratus y Tagetes Lucida) Utilizados Contra Tribolium Castaneum Herbst. (Coleoptera: Tenebrionidae). Master’s Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2011. [Google Scholar]
- Sharifi-Rad, J.; Sureda, A.; Tenore, G.C.; Daglia, M.; Sharifi-Rad, M.; Valussi, M.; Tundis, R.; Sharifi-Rad, M.; Loizzo, M.R.; Ademiluyi, A.O.; et al. Biological activities of essential oils: From plant chemoecology to traditional healing systems. Molecules 2017, 22, 70. [Google Scholar] [CrossRef] [PubMed]
- Dijilani, A.; Dicko, A. The therapeutic benefits of essential oils. In Nutrition, Well-Being and Health; Bouayed, J., Bohn, T., Eds.; IntechOpen: London, UK, 2012. [Google Scholar]
- De Colmenares, N.G.; Dellacassa, E.; Hasegawa, M.; Montes Guyot, M.A.; de Díaz, A.M.P.; Ringuelet, J.A.; Stashenko, E.E.; Tillet, S.; Virrueta, A.V. Los aceites esenciales. In Los Recursos Vegetales Aromáticos en Latinoamérica. Su Aprovechamiento Industrial Para la Producción de Aromas y Sabores; Bandoni, A.L., Ed.; CYTED: Buenos Aires, Argentina, 2003. [Google Scholar]
- Aramrueang, N.; Asavasanti, S.; Khanunthong, A. Leafy Vegetables. In Integrated Processing Technologies for Food and Agricultural By-Products; Pan, Z., Zhang, R., Zicari, S., Eds.; Academic Press: Cambridge MA, USA, 2019. [Google Scholar] [CrossRef]
- Manousi, N.; Sarakatsianos, I.; Samanidou, V. Extraction techniques of phenolic compounds and other bioactive compounds from medicinal and aromatic plants. In Engineering Tools in the Beverage Industry. Volume 3: The Science of Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Woodhead Publishing: Cambridge, MA, USA, 2019. [Google Scholar] [CrossRef]
- Stratakos, A.C.; Koidis, A. Methods for Extracting Essential Oils. In Essential Oils in Food Preservation, Flavor and Safety; Preedy, V., Ed.; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar] [CrossRef]
- Aziz, Z.A.A.; Ahmad, A.; Setapar, S.H.M.; Karakucuk, A.; Azim, M.M.; Lokhat, D.; Rafatullah, M.; Ganash, M.; Kamal, M.A.; Ashraf, G.M. Essential oils: Extraction techniques, pharmaceutical and therapeutic potential—A review. Curr. Drug Metab. 2018, 19, 1100–1110. [Google Scholar] [CrossRef] [PubMed]
- Martínez, A. Aceites Esenciales; Universidad de Antioquia: Medellín, Colombia, 2003. [Google Scholar]
- Andrés, M.F.; González-Coloma, A.; Sanz, J.; Burillo, J.; Sainz, P. Nematicidal activity of essential oils: A review. Phytochem. Rev. 2012, 11, 371–390. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, P.; Lima, A.S.; Vieira, P.; Dias, L.S.; Barroso, J.G.; Pedro, L.G.; Figueiredo, A.C.; Mota, M. Nematicidal activity of essential oils and volatiles derived from Portuguese aromatic flora against the pinewood nematode, Bursaphelenchus xylophilus. J. Nematol. 2010, 42, 8–16. [Google Scholar]
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential oils as antimicrobial agents—myth or real alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef] [Green Version]
- Lang, G.; Buchbauer, G. A review on recent research results (2008–2010) on essential oils as antimicrobials and antifungals. A review. Flavour Fragr. J. 2012, 27, 13–39. [Google Scholar] [CrossRef]
- Yang, Y.; Isman, M.B.; Tak, J.H. Insecticidal activity of 28 essential oils and a commercial product containing cinnamomum cassia bark essential oil against sitophilus zeamais Motschulsky. Insects 2020, 11, 474. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; Coppola, R.; De Feo, V. Essential oils and antifungal activity. Pharmaceuticals 2017, 10, 86. [Google Scholar] [CrossRef] [Green Version]
- Batish, D.R.; Singh, H.P.; Kohli, R.K.; Kaur, S. Eucalyptus essential oil as a natural pesticide. For. Ecol. Manag. 2008, 256, 2166–2174. [Google Scholar] [CrossRef]
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant activity of essential oils. J. Agric. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef] [PubMed]
- Blowman, K.; Magalhães, M.; Lemos, M.F.L.; Cabral, C.; Pires, I.M. Anticancer Properties of Essential Oils and Other Natural Products. Evid.-Based Complement. Altern. Med. 2018, 2018, 3149362. [Google Scholar] [CrossRef] [PubMed]
- Adorjan, B.; Buchbauer, G. Biological properties of essential oils: An updated review. Flavour Fragr. J. 2010, 25, 407–426. [Google Scholar] [CrossRef]
- Pauli, A.; Schilcher, H. Specific Selection of Essential Oil Compounds for Treatment of Children’s Infection Diseases. Pharmaceuticals 2004, 1, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Gañán, N.A. Extracción y fraccionamiento de biocidas de origen natural mediante el uso de fluidos supercríticos. Ph.D. Thesis, Universidad Nacional del Sur, Bahía Blanca, Argentina, 2014. [Google Scholar]
- Moos, G.P.; Smith, P.A.S.; Tavernier, D. Glossary of class names of organic compounds and reactivity intermediates based on structure. Pure Appl. Chem. 1995, 67, 1307–1375. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, S. Overview of medicinally important diterpenoids derived from plastids. Mini Rev. Med. Chem. 2017, 17, 988–1001. [Google Scholar] [CrossRef]
- Koul, O.; Walia, S.; Dhaliwal, G.S. Essential oils as green pesticides: Potential and constraints. Biopest. Int. 2008, 4, 63–84. [Google Scholar]
- Montoya-Cadavid, G.D.J. Generalidades. In Aceites Esenciales: Una Alternativa de Diversificación Para el Eje Cafetero; Montoya-Cadavid, G.D.J., Ed.; Universidad Nacional de Colombia: Bogotá, Colombia, 2010. [Google Scholar]
- Riley, M.B.; Williamson, M.R.; Maloy, O. Plant disease diagnosis. Plant Health Inst. Index 2002. [Google Scholar] [CrossRef]
- Buttimer, C.; McAuliffe, O.; Colin Hill, R.P.R.; O’Mahony, J.; Coffey, A. Bacteriophages and Bacterial Plant Diseases. Front. Microbiol. 2017, 8, 34. [Google Scholar] [CrossRef] [Green Version]
- Horst, R.K. Bacteria. In Westcott’s Plant Disease Handbook, 8th ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Sobiczewski, P. Bacterial diseases of plants: Epidemiology, diagnostics and control. Zemdirb.-Agric. 2008, 95, 151–157. [Google Scholar]
- Pandey, A.K.; Singh, P.; Palni, U.T.; Tripathi, N.N. In-vitro antibacterial activities of the essential oils of aromatic plants against Erwinia herbicola (Lohnis) and Pseudomonas putida (Kris Hamilton). J. Serb. Chem. Soc. 2012, 77, 313–323. [Google Scholar] [CrossRef]
- De Carvalho, C.C.C.R.; Caramujo, M.J. Ancient Procedures for the High-Tech World: Health Benefits and Antimicrobial Compounds from the Mediterranean Empires. Open Biotechnol. J. 2008, 2, 235–246. [Google Scholar] [CrossRef]
- Thacker, J.R.M. A brief history of arthropod pest control. In An Introduction to Arthropod Pest Control; Thacker, J.R.M., Ed.; Cambridge University Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Edris, A.E. Pharmaceutical and Therapeutic Potentials of Essential Oils and Their Individual Volatile Constituents: A Review. Phytother. Res. 2007, 21, 308–323. [Google Scholar] [CrossRef] [PubMed]
- Chapman, A.C. LVII—Essential oil of hops. J. Chem. Soc. Trans. 1903, 83, 505–513. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, C.; Evans, A.C. The uses of spices as preservatives. J. Ind. Eng. Chem. 1911, 3, 835–838. [Google Scholar] [CrossRef] [Green Version]
- Aljaafari, M.; Alhosani, M.S.; Abushelaibi, A.; Lia, K.S.; Lim, S.H.E. Essential oils: Partnering with antibiotics. In Essential Oils—Oils of Nature; El-Shemy, H., Ed.; IntechOpen: London, UK, 2020. [Google Scholar]
- Yap, P.S.X.; Yiap, B.C.; Ping, H.C.; Lim, S.H.E. Essential Oils, A New Horizon in Combating Bacterial Antibiotic Resistance. Open Microbiol. J. 2014, 8, 6–14. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Knobloch, K.; Pauli, A.; Iberl, B.; Weigand, H.; Weis, N. Antibacterial and antifungal properties of essential oil components. J. Essent. Oil Res. 1989, 1, 119–128. [Google Scholar] [CrossRef]
- Raveau, R.; Fontaine, J.; Sahraoui, L.H. Essential Oils as Potential Alternative Biocontrol Products against Plant Pathogens and Weeds: A Review. Foods 2020, 9, 365. [Google Scholar] [CrossRef] [Green Version]
- Santiago, M.B.; Moraes, T.D.S.; Massuco, J.E.; Silva, L.O.; Lucarini, R.; da Silva, D.F.; Vieira, T.M.; Crotti, A.E.M.; Martins, C.H.G. In vitro evaluation of essential oils for potential antibacterial effects against Xylella fastidiosa. J. Phytopathol. 2018, 166, 790–798. [Google Scholar] [CrossRef]
- Arici, S.E.; Sanli, A. Effect of some essential oils against Rhizoctonia solani and Streptomycetes scabies on potato plants in field conditions. Ann. Res. Rev. Biol. 2014, 4, 2027–2036. [Google Scholar] [CrossRef]
- Iacobellis, N.S.; Lo Cantore, P.; Capasso, F.; Senatore, F. Antibacterial activity of Cuminum cyminum L. and Carum carvi L. essential oils. J. Agric. Food Chem. 2005, 53, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Choi, O.; Cho, S.K.; Kim, J. Biological evaluation of 32 different essential oils against Acidovorax citrulli, with a focus on Cinnamomum verum essential oil. Afr. J. Biotechnol. 2016, 15, 68–76. [Google Scholar] [CrossRef]
- Tu, Q.B.; Wang, P.Y.; Sheng, S.; Xu, Y.; Wang, J.Z.; You, S.; Zhu, A.H.; Wang, J.; Wu, F.A. Microencapsulation and Antimicrobial Activity of Plant Essential Oil Against Ralstonia solanacearum. Waste Biomass Valoriz. 2020, 11, 5273–5282. [Google Scholar] [CrossRef]
- Paret, M.L.; Cabos, R.; Kratky, B.A.; Alvarez, A.M. Effect of plant essential oils on Ralstonia solanacearum race 4 and bacterial wilt of edible ginger. Plant. Dis. 2010, 94, 521–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Najar, B.; Pistelli, L.; Mancini, S.; Fratini, F. Chemical composition and in vitro antibacterial activity of essential oils from different species of Juniperus (section Juniperus). Flavour Fragr. J. 2020, 35, 623–638. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Behiry, S.I.; Younes, H.A.; Ashmawy, N.A.; Salem, M.Z.M.; Márquez-Molina, O.; Barbabosa-Pilego, A. Antibacterial activity of three essential oils and some monoterpenes against Ralstonia solanacearum phylotype II isolated from potato. Microb. Pathogen. 2019, 135, 103604. [Google Scholar] [CrossRef]
- Kokoskova, B.; Pouvova, D.; Pavela, R. Effectiveness of plant essential oils against Erwinia amylovora, Pseudomonas syringae pv. syringae and associated saprophytic bacteria on/in host plants. J. Plant. Pathol. 2011, 93, 133–139. [Google Scholar] [CrossRef]
- Githaiga, B.M.; Gathuru, E.M.; Waithaka, P.N.; Kiarie, L.W. Determination of antibacterial activity of essential oils from mint (Mentha spicata) leaves on selected pathogenic bacteria. J. Drugs Pharmac. Sci. 2018, 2, 8–14. [Google Scholar] [CrossRef]
- Daferera, D.J.; Ziogas, B.N.; Polissiou, M.G. The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. michiganensis. Crop. Prot. 2003, 22, 39–44. [Google Scholar] [CrossRef]
- Mengulluoglu, M.; Soylu, S. Antibacterial activities of essential oils extracted from medicinal plants against seed-borne bacterial disease agent. Acidovorax avenae subsp citrulli. Res. Crops 2012, 13, 641–646. [Google Scholar]
- Mihajilov-Krstev, T.; Radnović, D.; Kitić, D. Antimicrobial activity of Satureja L. essential oils against phytopathogenic bacteria Erwinia amylovora. Biol. Nyssana 2010, 1, 95–98. [Google Scholar]
- Karami-Osboo, R.; Khodaverdi, M.; Ali-Akbari, F. Antibacterial Effect of Effective Compounds of Satureja hortensis and Thymus vulgaris Essential Oils against Erwinia amylovora. J. Agric. Sci. Tech. 2010, 12, 35–45. [Google Scholar]
- Jafarpour, M.; Golparvar, A.R.; Lotfi, A. Antibacterial activity of essential oils from Thymus vulgaris, Trachyspermum ammi and Mentha aquatica against Erwinia carotovora in vitro. J. Herb. Drug 2013, 4, 115–118. [Google Scholar]
- Arraiza, M.P.; Gonzalez-Coloma, A.; Andres, M.F.; Berrocal-Lobo, M.; Dominguez-Nuñez, J.A.; Da Costa, A.C., Jr.; Navarro-Rocha, J.; Calderon-Guerrero, C. Antifungal Effect of Essential Oils. In Potential of Essential Oils; El-Shemy, H., Ed.; IntechOpen: Londos, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Isman, M.B.; Machial, C.M. Pesticides based on plant essential oils: From traditional practice to commercialization. In Advances in Phytomedicine—Naturally Occurring Bioactive Compounds, Volume 3; Rai, M., Carpinella, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 3, pp. 29–44. [Google Scholar] [CrossRef]
- Tomazoni, E.Z.; Pauletti, G.F.; da Silva Ribeiro, R.T.; Moura, S.; Schwambach, J. In vitro and in vivo activity of essential oils extracted from Eucalyptus staigeriana, Eucalyptus globulus and Cinnamomum camphora against Alternaria solani Sorauer causing early blight in tomato. Sci. Hort. 2017, 223, 72–77. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, T.; Guo, Z.; Zhang, L.; Mao, L.; Zhang, Y.; Jiang, H. Fumigation and contact activities of 18 plant essential oils on Villosiclava virens, the pathogenic fungus of rice false smut. Sci. Rep. 2019, 9, 7330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalagatur, N.K.; Nirmal Ghosh, O.S.; Sundararaj, N.; Mudili, V. Antifungal activity of chitosan nanoparticles encapsulated with Cymbopogon martinii essential oil on plant pathogenic fungi Fusarium graminearum. Front. Pharmacol. 2018, 9, 610. [Google Scholar] [CrossRef] [Green Version]
- Tzortzakis, N.G.; Economakis, C.D. Antifungal activity of lemongrass (Cympopogon citratus L.) essential oil against key postharvest pathogens. Innov. Food Sci. Emerg. Technol. 2007, 8, 253–258. [Google Scholar] [CrossRef]
- Gakuubi, M.M.; Maina, A.W.; Wagacha, J.M. Antifungal Activity of Essential Oil of Eucalyptus camaldulensis Dehnh. against Selected Fusarium spp. Int. J. Microbiol. 2017, 2017, 8761610. [Google Scholar] [CrossRef] [Green Version]
- Muchembled, J.; Deweer, C.; Sahmer, K.; Halama, P. Antifungal activity of essential oils on two Venturia inaequalis strains with different sensitivities to tebuconazole. Environ. Sci. Pollut. Res. 2018, 25, 29921–29928. [Google Scholar] [CrossRef]
- Santana, O.; Cabrera, R.; Gonzalez-Coloma, A.; Sanchez-Vioque, R.; De los Mozos-Pascual, M.; Rodriguez-Conde, M.F.; Laserna-Ruiz, I.; Usano-Alemany, J.; Herraiz, D. Perfil químico y biológico de aceites esenciales de plantas aromáticas de interés agro-industrial en Castilla-La Mancha (España). Grasas Aceites 2012, 63, 214–222. [Google Scholar] [CrossRef] [Green Version]
- Tomazoni, E.Z.; Pansera, M.R.; Pauletti, G.F.; Moura, S.; Ribeiro, R.T.S.; Schwambach, J. In vitro antifungal activity of four chemotypes of Lippia alba (Verbenaceae) essential oils against Alternaria solani (Pleosporeaceae) isolates. Ann. Braz. Acad. Sci. 2016, 88, 999–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terzi, V.; Morcia, C.; Faccioli, P.; Vale, G.; Tacconi, G.; Malnati, M. In vitro antifungal activity of the tea tree (Melaleuca alternifolia) essential oil and its major components against plant pathogens. Lett. Appl. Microbiol. 2007, 44, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Duarte, Y.; Pino, O.; Infante, D.; Sánchez, Y.; Travieso, M.D.C.; Martínez, B. Efecto in vitro de aceites esenciales sobre Alternaria solani Sorauer. Rev. Prot. Veg. 2013, 28, 54–59. [Google Scholar]
- Scalvenzi, L.; Yaguache-Camacho, B.; Cabrera-Martínez, P.; Guerrini, A. Actividad antifúngica in vitro de aceites esenciales de Ocotea quixos (Lam.) Kosterm. y Piper aduncum L. Bioagro 2016, 28, 39–46. [Google Scholar]
- Zabka, M.; Pavela, R.; Slezakova, L. Antifungal effect of Pimenta dioica essential oil against dangerous pathogenic and toxinogenic fungi. Ind. Crops Prod. 2009, 30, 250–253. [Google Scholar] [CrossRef]
- Gandarilla-Pacheco, F.L.; Torres-Caraballo, S.; de Luna-Santillana, E.J.; Quintero-Zapata, I.; Arroyo-Gonzalez, N. Efecto inhibitorio de aceites esenciales en el crecimiento micelial de Penicillium digitatum (pers.) sacc. aislado de naranja dulce (Citrus sinensis osbeck). Agrociencia 2020, 54, 209–225. [Google Scholar]
- Villaverde, J.J.; Sevilla-Morán, B.; Sandín-España, B.; López-Goti, C.; Alonso-Prados, J.L. Biopesticides in the framework of the European Pesticide Regulation (EC) No. 1107/2009. Pest Manag. Sci. 2014, 70, 2–5. [Google Scholar] [CrossRef]
- Philogène, B.J.R.; Regnault-Roger, C.; Vincent, C. Productos fitosanitarios insecticidas de origen vegetal: Promesas de ayer y hoy. In Biopesticidas de Origen Vegetal; Mundi-Prensa, E., Regnault-Roger, C., Philogène, B.J.R., Vincent, C., Eds.; Ediciones Paraninfo S.A.: Madrid, Spain, 2004. [Google Scholar]
- Singh, O.; Rathore, H.S.; Nollet, L.M.L. Biochemical pesticides. In Biopesticides Handbook; Nollet, L.M.L., Rathore, H.S., Eds.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Pavela, R.; Benelli, G. Essential Oils as Ecofriendly Biopesticides? Challenges and Constraints. Trends Plant Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef]
- Chandler, D. AMBER: Background on Biopesticides. In Agriculture and Horticulture Development Board Research Project CP158; AMBER—Application and Management of Biopesticides for Efficacy & Reliability: Warwick, UK, 2017; Available online: https://warwick.ac.uk/fac/sci/lifesci/wcc/research/biopesticides/amberproject/amberdetails/amber_background_on_biopesticides.pdf (accessed on 31 December 2020).
- Isman, M.B. Problemas y perspectivas de comercialización de los insecticidas de origen vegetal. In Biopesticidas de Origen Vegetal; Mundi-Prensa, E., Regnault-Roger, C., Philogène, B.J.R., Vincent, C., Eds.; Ediciones Paraninfo S.A.: Madrid, Spain, 2004. [Google Scholar]
- Glare, T.R. Types of biopesticides. In Biopesticides Handbook; Nollet, L.M.L., Rathore, H.S., Eds.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
Plant | |||
---|---|---|---|
Common Name | Scientific Name | Organism to Fight against | Ref. |
Sandalwood | Amyris balsamifera | Xylella fastidiosa | [43] |
Dill | Anethum graveolens | Streptomycetes scabies | [44] |
Caraway | Carum carvi L. | Agrobacterium tumefaciens | [45] |
Bacillus megaterium | |||
Clavibacter michiganensis subsp. michiganensis | |||
Clavibacter michiganensis subsp. sepedonicus | |||
Curtobacterium flaccumfaciens pv. betae | |||
Curtobacterium flaccumfaciens pv. flaccumfaciens | |||
Erwinia carotovora subsp. atroseptica | |||
Ralstonia solanacearum | |||
Xanthomonas campestris pv. campestris | |||
Xanthomonas campestris pv. phaseoli | |||
Xanthomonas campestris pv. phaseoli var. fuscans | |||
Xanthomonas campestris pv. vesicatoria | |||
Cinnamon | Cinnamomum verum | Acidovorax citrulli | [46] |
Ralstonia solanacearum | [47] | ||
Cumin | Cuminum cyminum L. | Agrobacterium tumefaciens | [45] |
Clavibacter michiganensis subsp. michiganensis | |||
Clavibacter michiganensis subsp. sepedonicus | |||
Curtobacterium flaccumfaciens pv. betae | |||
Curtobacterium flaccumfaciens pv. flaccumfaciens | |||
Erwinia carotovora subsp. atroseptica | |||
Ralstonia solanacearum | |||
Rhodococcus fascians | |||
Xanthomonas campestris pv. phaseoli | |||
Xanthomonas campestris pv. phaseoli var. fuscans | |||
Xanthomonas campestris pv. vesicatoria | |||
Palmarosa | Cymbopogon martini | Ralstonia solanacearum Race 4 | [48] |
Lemongrass | Cymbopongo citratus | ||
Common juniper | Juniperus communis | Enterococcus faecalis | [49] |
Listeria monocytogenes | |||
Staphylococcus aureus | |||
Cade juniper | Juniperus oxycedrus | Enterococcus faecalis | |
Listeria monocytogenes | |||
Staphylococcus aureus | |||
Common lantana | Lantana camara | Ralstonia solanacearum phylotype II | [50] |
Lemon blam | Melissa officinalis | Pantoea agglomerans | [51] |
Pseudomonas fluorescens | |||
Pseudomonas syringae pv. syringae | |||
Corn mint | Mentha arvensis | Erwinia amylovora | |
Pantoea agglomerans | |||
Pseudomonas syringae pv. syringae | |||
Peppermint | Mentha piperita | Acidovorax citrulli | [46] |
Mint | Mentha spicata | Bacillus subtilis | [52] |
Erwinia carotovora | |||
Escherichia coli | |||
Klebsiella pneumoniae | |||
Staphylococcus aureus | |||
Xanthomonas campestris | |||
Catnip | Nepeta cataria | Erwinia amylovora | [51] |
Pantoea agglomerans | |||
Sweet basil | Ocimum basilicum | Acidovorax citrulli | [46] |
Origanum compactum | Erwinia amylovora | [51] | |
Pantoea agglomerans | |||
Pantoea dispersa | |||
Pseudomonas fluorescens | |||
Pseudomonas syringae pv. syringae | |||
Dictamnus | Origanum dictamnus | Clavibacter michiganensis subsp. michiganensis | [53] |
Marjoram | Origanum majorana | Clavibacter michiganensis subsp. michiganensis | |
Origanum | Origanum majorana L. | Acidovorax avenae subsp. citrulli | [54] |
Oregano | Origanum onites | Streptomycetes scabies | [44] |
Oregano | Origanum vulgare | Clavibacter michiganensis subsp. michiganensis | [53] |
Erwinia amylovora | [51] | ||
Pantoea agglomerans | |||
Pantoea dispersa | |||
Pseudomonas fluorescens | |||
Pseudomonas syringae pv. syringae | |||
Patchouli | Pogostemon patchouli | Xylella fastidiosa | [43] |
Satureja adamovicii Šilić | Erwinia amylovora | [55] | |
Satureja fukarekii Šilić | |||
Summer savory | Satureja hortensis | [56] | |
Satureja kitaibelii Wierzb. ex Heuff. | [55] | ||
Satureja montana ssp. montana L. | |||
Clove bud | Syzygium aromaticum | Acidovorax citrulli | [46] |
Thyme | Thymbra spicata L. subsp. spicata | Acidovorax avenae subsp. citrulli | [54] |
Thyme | Thymus capitatus | Clavibacter michiganensis subsp. michiganensis | [53] |
Thyme | Thymus serpyllum L. | Acidovorax avenae subsp. citrulli | [54] |
Thyme | Thymus vulgaris | Erwinia amylovora | [51] |
[56] | |||
Pantoea agglomerans | [51] | ||
Pantoea dispersa | |||
Pseudomonas fluorescens | |||
Pseudomonas syringae pv. syringae | |||
Ajowan | Trachyspermum ammi | Erwinia carotovora | [57] |
Plant | |||
---|---|---|---|
Common Name | Scientific Name | Organism to Fight against | Ref. |
Cinnamomum camphora var. Linaloolifera | Alternaria solani | [60] | |
Cinnamon bark oil | Cinnamomum cassia | Villosiclava virens | [61] |
Cinnamon oil | |||
Gingergrass | Cymbopogon martinii | Fusarium graminearum | [62] |
Cymbopogon martinii (chitosan nanoparticles) | |||
Lemongrass | Cympopogon citratus L. | Botrytis cinerea | [63] |
Cladosporium herbarum | |||
Colletotrichum coccodes | |||
Rhizopus stolonifer | |||
River red gum | Eucalyptus camaldulensis Dehnh. | Fusarium oxysporum | [64] |
Fusarium proliferatum | |||
Fusarium solani | |||
Fusarium subglutinans | |||
Fusarium verticillioides | |||
Eucalyptus | Eucalyptus citriodora | Venturia inaequalis | [65] |
Southern blue gum | Eucalyptus globulus | Alternaria solani | [60] |
Lemon-scented ironbark | Eucalyptus staigeriana | ||
Espliego | Lavandula latifolia Medik. | Fusarium moniliforme | [66] |
Fusarium oxysporum | |||
Fusarium solani | |||
Lavandín | Lavandula x intermedia Emeric ex Loisel. | Fusarium moniliforme | |
Fusarium oxysporum | |||
Fusarium solani | |||
Prontoalivio | Lippia alba (Mill.) N.E. Brown (Chemotype Caxias do Sul) | Alternaria solani (Pleosporeaceae) | [67] |
Lippia alba (Mill.) N.E. Brown (Chemotype Pelotas) | |||
Lippia alba (Mill.) N.E. Brown (Chemotype Santa Vitória do Palmar) | |||
Lippia alba (Mill.) N.E. Brown (Chemotype Teutônia) | |||
Tea tree | Melaleuca alternifolia | Blumeria graminis | [68] |
Fusarium culmorum | |||
Fusarium graminearum | |||
Pyrenophora graminea | |||
White basil | Ocimum basilicum L. | Alternaria solani Sorauer | [69] |
Genovese basil | Ocimum basilicum L. var. Genovese | ||
Ocotea quixos (Lam.) Kosterm | Aspergillus oryzae | [70] | |
Cladosporium cladosporioides | |||
Fusarium solani | |||
Moniliophthora roreri | |||
Phytophthora sp. | |||
Rhizopus stolonifer | |||
Dictamnus | Origanum dictamnus | Botrytis cinerea | [53] |
Fusarium solani var. coeruleum | |||
Marjoram | Origanum majorana | Botrytis cinerea | |
Fusarium solani var. coeruleum | |||
Oregano | Origanum vulgare | Botrytis cinerea | |
Fusarium solani var. coeruleum | |||
Jamaica pepper | Pimenta dioica (L.) Merr. | Aspergillus flavus | [71] |
Aspergillus fumigatus | |||
Fusarium oxysporum | |||
Fusarium verticillioides | |||
Penicillium brevicompactum | |||
Penicillium expansum | |||
Anise | Pimpinella anisum L. | Alternaria solani Sorauer | [69] |
Spiked pepper | Piper aduncum L. | Fusarium solani | [70] |
Phytophthora sp. | |||
Caisimón de anís | Piper auritum Kunth | Alternaria solani Sorauer | [69] |
Clove | Syzygium aromaticum | Penicillium digitatum Sacc. | [72] |
Venturia inaequalis | [65] | ||
Thyme | Thymus capitatus | Botrytis cinerea | [53] |
Fusarium solani var. coeruleum | |||
Thymus vulgaris L. | Fusarium moniliforme | [66] | |
Fusarium oxysporum | |||
Fusarium solani |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso-Gato, M.; Astray, G.; Mejuto, J.C.; Simal-Gandara, J. Essential Oils as Antimicrobials in Crop Protection. Antibiotics 2021, 10, 34. https://doi.org/10.3390/antibiotics10010034
Alonso-Gato M, Astray G, Mejuto JC, Simal-Gandara J. Essential Oils as Antimicrobials in Crop Protection. Antibiotics. 2021; 10(1):34. https://doi.org/10.3390/antibiotics10010034
Chicago/Turabian StyleAlonso-Gato, María, Gonzalo Astray, Juan C. Mejuto, and Jesus Simal-Gandara. 2021. "Essential Oils as Antimicrobials in Crop Protection" Antibiotics 10, no. 1: 34. https://doi.org/10.3390/antibiotics10010034
APA StyleAlonso-Gato, M., Astray, G., Mejuto, J. C., & Simal-Gandara, J. (2021). Essential Oils as Antimicrobials in Crop Protection. Antibiotics, 10(1), 34. https://doi.org/10.3390/antibiotics10010034