Bio-Recognition in Spectroscopy-Based Biosensors for *Heavy Metals-Water and Waterborne Contamination Analysis
Abstract
:1. Introduction
2. Biosensing Methods
2.1. Luminescence
2.1.1. Fluorescence
2.1.2. Electrochemiluminescence
2.2. Colorimetric Method
2.3. Evanescent Wave
2.4. Surface-Enhanced Raman Spectroscopy
2.5. Förster Resonance Energy Transfer
2.6. Surface Plasmon Resonance
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Odobašić, A.; Šestan, I.; Sabina Begić, S. Biosensors for Determination of Heavy Metals in Waters. In Environmental Biosensors; IntechOpen: London, UK, 2019. [Google Scholar] [Green Version]
- Thévenot, D.R.; Buck, R.P.; Cammann, K.; Durst, R.A.; Toth, K.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification (Technical Report). Pure Appl. Chem. 1999, 71, 2333–2348. [Google Scholar] [CrossRef]
- Kang, H.; Lin, L.; Rong, M.; Chen, X. A cross-reactive sensor array for the fluorescence qualitative analysis of heavy metal ions. Talanta 2014, 129, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Zhao, T.; Wang, S.; Hou, X. Semiconductor quantum dots-based metal ion probes. Nanoscale 2014, 6, 43–64. [Google Scholar] [CrossRef] [PubMed]
- Duffus, J.H. “Heavy metals”—A meaningless term? (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 793–807. [Google Scholar] [CrossRef]
- Kanellis, V.G. Sensitivity limits of biosensors used for the detection of metals in drinking water. Biophys. Rev. 2018, 10, 1415–1426. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ma, W.; Xu, L.; Chen, W.; Zhu, Y.; Xu, C.; Kotov, N.A. Nanoparticle-based environmental sensors. Mater. Sci. Eng. R 2010, 70, 265–274. [Google Scholar] [CrossRef]
- Aragay, G.; Josefina Pons, J.; Merkoc, A. Recent Trends in Macro-, Micro-, and Nanomaterial-Based Tools and Strategies for Heavy-Metal Detection. Chem. Rev. 2011, 111, 3433–3458. [Google Scholar] [CrossRef] [PubMed]
- Malitesta, C.; Di Masi, S.; Mazzotta, E. From electrochemical biosensors to biomimetic sensors based on molecularly imprinted polymers in environmental determination of heavy metals. Front. Chem. 2017, 5, 47. [Google Scholar] [CrossRef]
- Catia Algieri, C.; Drioli, E.; Guzzo, L.; Donato, L. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes. Sensors 2014, 14, 13863–13912. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Saran, R.; Liu, J. Metal Sensing by DNA. Chem. Rev. 2017, 117, 8272–8325. [Google Scholar] [CrossRef] [Green Version]
- Olaoye, O.O.; Manderville, R.A. Aptamer Utility in Sensor Platforms for the Detection of Toxins and Heavy Metals. J. Toxins 2017, 4, 12–23. [Google Scholar]
- Zhang, J.; Sun, X.; Wu, J. Heavy Metal Ion Detection Platforms Based on a Glutathione Probe: A Mini Review. Appl. Sci. 2019, 9, 489. [Google Scholar] [CrossRef]
- Upadhyay, L.S.B.; Nishant Verma, N. Enzyme Inhibition Based Biosensors: A Review. Anal. Lett. 2013, 46, 225–241. [Google Scholar] [CrossRef]
- Gutiérrez, J.C.; Amaro, F.; Martín-González, A. Heavy metal whole-cell biosensors using eukaryotic microorganisms: An updated critical review. Front. Microbiol. 2015, 6, 48. [Google Scholar] [PubMed]
- Martins, T.D.; Ribeiro, A.C.C.; de Camargo, H.S.; da Costa Filho, P.A.; Cavalcante, H.P.M.; Dias, L.D. New Insights on Optical Biosensors: Techniques, Construction and Application. In State of the Art in Biosensors—General Aspects; Rinken, T., Ed.; IntechOpen: London, UK, 2013. [Google Scholar] [Green Version]
- Cobbett, C.; Goldsbrough, P. Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis. Annu. Rev. Plant Biol. 2002, 53, 159–182. [Google Scholar] [CrossRef] [PubMed]
- Gordon, W.I.; Swee, N.T.; Stillman, M.J. A Simple Metallothionein-Based Biosensor for Enhanced Detection of Arsenic and Mercury. Biosensors 2017, 7, 14. [Google Scholar] [Green Version]
- Mattiasson, B.; Danielsson, B.; Hermansson, C.; Mosbach, K. Enzyme thermistor analysis of heavy metal ions with use of Immobilized urease. FEBS Lett. 1978, 85, 203–206. [Google Scholar] [CrossRef]
- Othman, A.; Karimi, A.; Andreescu, S. Functional nanostructures for enzyme based biosensors: Properties, fabrication and applications. J. Mater. Chem. B 2016, 4, 7178–7203. [Google Scholar] [CrossRef]
- Reardan, D.T.; Meares, C.F.; Goodwin, D.A.; McTigue, M.; David, G.S.; Stone, M.R.; Leung, J.P.; Bartholomew, R.M.; Frincke, J.M. Antibodies against metal chelates. Nature 1985, 316, 265–268. [Google Scholar] [CrossRef]
- Delehanty, J.B.; Jones, R.M.; Bishop, T.C.; Blake, D.A. Identification of important residues in metal-chelate recognition by monoclonal antibodies. Biochemistry 2003, 42, 14173–14183. [Google Scholar] [CrossRef]
- Blake, D.A.; Blake, R.C., II; Abboud, E.R.; Li, X.; Yu, H.; Kriegel, A.M.; Khosraviani, M.; Darwish, I.A. Antibodies to Heavy Metals: Isolation, Characterization, and Incorporation into Microplate-Based Assays and Immunosensors. In Immunoassay and Other Bioanalytical Techniques, 1st ed.; van Emon, J.M., Ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 93–111. [Google Scholar]
- Blake, D.A.; Jones, R.M.; Blake, R.C., II; Pavlov, A.R.; Darwish, I.A.; Yu, H. Antibody-based sensors for heavy metal ions. Biosens. Bioelectron. 2001, 16, 799–809. [Google Scholar] [CrossRef]
- Liu, J.; Cao, Z.; Lu, Y. Functional Nucleic Acid Sensors. Chem. Rev. 2009, 109, 1948–1998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhan, S.; Wu, Y.; Wang, L.; Zhan, X.; Zhou, P. A mini-review on functional nucleic acids-based heavy metal ion detection. Biosens. Bioelectron. 2016, 86, 353–368. [Google Scholar] [CrossRef] [PubMed]
- Iliuk, A.B.; Hu, L.; Tao, W.A. Aptamer in Bioanalytical Applications. Anal. Chem. 2011, 83, 4440–4452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yüce, M.; Ullah, N.; Budak, H. Trends in aptamer selection methods and applications. Analyst 2015, 140, 5379–5399. [Google Scholar] [CrossRef] [PubMed]
- Mascini, M.; Palchetti, I.; Tombelli, S. Nucleic Acid and Peptide Aptamers: Fundamentals and Bioanalytical Aspects. Angew. Chem. Int. Ed. 2012, 51, 1316–1332. [Google Scholar] [CrossRef] [PubMed]
- Song, K.-M.; Lee, S.; Ban, C. Aptamers and Their Biological Applications. Sensors 2012, 12, 612–631. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Ou, X.; Cheng, Y.; Zhai, T.; Liu, B.; Lou, X.; Xia, F. Coordination-induced structural changes of DNA-based optical and electrochemical sensors for metal ions detection. Dalton Trans. 2019, 48, 5879–5891. [Google Scholar] [CrossRef]
- Miyake, Y.; Togashi, H.; Tashiro, M.; Yamaguchi, H.; Oda, S.; Kudo, M.; Tanaka, Y.; Kondo, Y.; Sawa, R.; Fujimoto, T.; et al. MercuryII-Mediated Formation of Thymine-HgII-Thymine Base Pairs in DNA Duplexes. J. Am. Chem. Soc. 2006, 128, 2172–2173. [Google Scholar] [CrossRef]
- Ono, A.; Cao, S.; Togashi, H.; Tashiro, M.; Fujimoto, T.; Machinami, T.; Oda, S.; Miyake, Y.; Okamoto, I.; Tanaka, Y. Specific interactions between silver(I) ions and cytosine–cytosine pairs in DNA duplexes. Chem. Commun. 2008, 39, 4825–4827. [Google Scholar] [CrossRef]
- Gellert, M.; Lipsett, M.N.; Davies, D.R. Helix formation by guanylic acid. Proc. Natl. Acad. Sci. USA 1962, 48, 2013–2018. [Google Scholar] [CrossRef]
- Mehta, J.; Bhardwaj, S.K.; Bhardwaj, N.; Paul, A.K.; Kumar, P.; Kim, K.H.; Deep, A. Progress in the biosensing techniques for trace-level heavy metals. Biotechnol. Adv. 2016, 34, 47–60. [Google Scholar] [CrossRef]
- Omary, M.A.; Patterson, H.H. Luminescence, Theory. In Encyclopedia of Spectroscopy and Spectrometry, 2nd ed.; Lindon, J.C., Tranter, G.E., Koppenaal, D.W., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 1372–1391. [Google Scholar]
- Kulmala, S.; Suomi, J. Current status of modern analytical luminescence methods. Anal. Chim. Acta 2003, 500, 21–69. [Google Scholar] [CrossRef]
- Qi, Y.; Xiu, F.-R.; Yu, G.; Huang, L.; Li, B. Simple and rapid chemiluminescence aptasensor for Hg2+ in contaminated samples: A new signal amplification mechanism. Biosens. Bioelectron. 2017, 87, 439–446. [Google Scholar] [CrossRef]
- Zhang, X.; li, Y.; Su, H.; Zhang, S. Highly sensitive and selective detection of Hg2+ using mismatched DNA and a molecular light switch complex in aqueous solution. Biosens. Bioelectron. 2010, 25, 1338–1343. [Google Scholar] [CrossRef]
- Mishra, R.K.; Rhouati, A.; Bueno, D.; Anwar, M.W.; Shahid, S.A.; Sharma, V.; Marty, J.L.; Hayat, A. Design of portable luminescence bio-tool for on-site analysis of heavy metals in water samples. Int. J. Environ. Anal. Chem. 2018, 98, 1081–1094. [Google Scholar] [CrossRef]
- Deshpande, K.; Mishra, R.K.; Bhand, S. A High Sensitivity Micro Format Chemiluminescence Enzyme Inhibition Assay for Determination of Hg(II). Sensors 2010, 10, 6377–6394. [Google Scholar] [CrossRef]
- Sailor, M.J. Porous Silicon in Practice: Preparation, Characterization and Applications; Wiley-VCH: Weinheim, Germany, 2012; pp. 1–38. [Google Scholar]
- Salcedo, W.J.; Fernandez, F.J.R.; Rubim, J.C. Photoluminescence quenching effect on porous silicon films for gas sensors application. Spectrochim. Acta 2004, 60, 1065–1070. [Google Scholar] [CrossRef]
- Syshchyk, O.; Skryshevsky, V.A.; Soldatkin, O.O.; Soldatkin, A.P. Enzyme biosensor systems based on porous silicon photoluminescence for detection of glucose, urea and heavy metals. Biosens. Bioelectron. 2015, 66, 89–94. [Google Scholar] [CrossRef]
- Lukyanenko, K.A.; Denisov, I.A.; Sorokin, V.V.; Yakimov, A.S.; Esimbekova, E.N.; Belobrov, P.I. Handheld Enzymatic Luminescent Biosensor for Rapid Detection of Heavy Metals in Water Samples. Chemosensors 2019, 7, 16. [Google Scholar] [CrossRef]
- Strianese, M.; Staiano, M.; Ruggiero, G.; Labella, T.; Pellecchia, C.; D’Auria, S. Fluorescence-Based Biosensors. In Spectroscopic Methods of Analysis. Methods in Molecular Biology (Methods and Protocols); Bujalowski, W., Ed.; Humana Press: Totowa, NJ, USA, 2012; Volume 875, pp. 193–216. [Google Scholar]
- Tsai, H.C.; Doong, R.A. Simultaneous determination of pH, urea, acetylcholine and heavy metals using array-based enzymatic optical biosensor. Biosens. Bioelectron. 2005, 20, 1796–1804. [Google Scholar] [CrossRef]
- Guo, C.; Wang, J.; Cheng, J.; Zhifei, Z. Determination of trace copper ions with ultrahigh sensitivity and selectivity utilizing CdTe quantum dots coupled with enzyme inhibition. Biosens. Bioelectron. 2012, 36, 69–74. [Google Scholar] [CrossRef]
- Song, T.; Zhu, X.; Zhou, S.; Yang, G.; Gan, W.; Yuan, Q. DNA derived fluorescent bio-dots for sensitive detection of mercury and silver ions in aqueous solution. Appl. Surf. Sci. 2015, 347, 505–513. [Google Scholar] [CrossRef]
- Guo, H.; Li, J.; Li, Y.; Wu, D.; Ma, H.; Wei, Q.; Du, B.; Guo, H.; Li, J.; Li, Y.; et al. A turn-on fluorescent sensor for Hg2+ detection based on graphene oxide and DNA aptamers. New J. Chem. 2018, 42, 11147–11152. [Google Scholar] [CrossRef]
- Du, J.; Liu, M.; Lou, X.; Zhao, T.; Wang, Y.; Xue, Z.; Zhao, J.; Xu, Y. Highly Sensitive and Selective Chip-Based Fluorescent Sensor for Mercuric Ion: Development and Comparison of Turn-On and Turn-Off Systems. Anal. Chem. 2012, 84, 8060–8066. [Google Scholar] [CrossRef]
- Sun, C.; Sun, R.; Chen, Y.; Tong, Y.; Zhu, J.; Bai, H.; Zhang, S.; Zheng, H.; Ye, H. Utilization of aptamer-functionalized magnetic beads for highly accurate fluorescent detection of mercury (II) in environment and food. Sens. Actuators B 2018, 255, 775–780. [Google Scholar] [CrossRef]
- Zuo, P.; Yin, B.C.; Ye, B.C. DNAzyme-based microarray for highly sensitive determination of metal ions. Biosens. Bioelectron. 2009, 25, 935–939. [Google Scholar] [CrossRef]
- Liu, M.; Lou, X.; Du, J.; Guan, M.; Wang, J.; Ding, X.; Zhao, J. DNAzyme-based fluorescent microarray for highly selective and sensitive detection of lead(II). Analyst 2012, 137, 70–72. [Google Scholar] [CrossRef]
- Liang, H.; Xie, S.; Cui, L.; Wub, C.; Zhang, X. Designing a biostable L-DNAzyme for lead(II) ion detection in practical samples. Anal. Methods 2016, 8, 7260–7264. [Google Scholar] [CrossRef]
- Li, T.; Shi, L.; Wang, E.; Dong, S. Multifunctional G-Quadruplex Aptamers and Their Application to Protein Detection. Chem. Eur. J. 2009, 15, 3347–3350. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, C.; Yang, F.; Yang, X. Real-Time Study of Interactions between Cytosine–Cytosine Pairs in DNA Oligonucleotides and Silver Ions Using Dual Polarization Interferometry. Anal. Chem. 2014, 86, 3849–3855. [Google Scholar] [CrossRef]
- Urata, H.; Yamaguchi, E.; Nakamura, Y.; Wada, S.-I. Pyrimidine–pyrimidine base pairs stabilized by silver(I) ions. Chem. Commun. 2011, 47, 941–943. [Google Scholar] [CrossRef]
- Freeman, R.; Finder, T.; Willner, I. Multiplexed analysis of Hg2+ and Ag+ ions by nucleic acid functionalized CdSe/ZnS quantum dots and their use for logic gate operations. Angew. Chem. Int. Ed. 2009, 48, 7818–7821. [Google Scholar] [CrossRef]
- Wen, Y.Q.; Xing, F.F.; He, S.J.; Song, S.P.; Wang, L.H.; Long, Y.T.; Li, D.; Fan, C.H. A graphene-based fluorescent nanoprobe for silver(I) ions detection by using graphene oxide and a silver-specific oligonucleotide. Chem. Commun. 2010, 46, 2596–2598. [Google Scholar] [CrossRef]
- Su, Y.-T.; Lan, G.-Y.; Chen, W.-Y.; Chang, H.-T. Detection of Copper Ions Through Recovery of the Fluorescence of DNA-Templated Copper/Silver Nanoclusters in the Presence of Mercaptopropionic Acid. Anal. Chem. 2010, 82, 8566–8572. [Google Scholar] [CrossRef]
- Richards, C.I.; Choi, S.; Hsiang, J.-C.; Antoku, Y.; Vosch, T.; Bongiorno, A.; Tzeng, Y.-L.; Dickson, R.M. Oligonucleotide-Stabilized Ag Nanocluster Fluorophores. J. Am. Chem. Soc. 2008, 130, 5038–5039. [Google Scholar] [CrossRef] [Green Version]
- Saran, R.; Liu, J. A Silver DNAzyme. Anal. Chem. 2016, 88, 4014–4020. [Google Scholar] [CrossRef]
- Zhan, S.; Wu, Y.; Luo, Y.; Liu, L.; He, L.; Xing, H.; Zhou, P. Label-free fluorescent sensor for lead ion detection based on lead(II)-stabilized G-quadruplex formation. Anal. Biochem. 2014, 462, 19–25. [Google Scholar] [CrossRef]
- Lu, Y.; Li, X.; Wang, G.; Wen Tang, W. A highly sensitive and selective optical sensor for Pb2+ by using conjugated polymers and label-free oligonucleotides. Biosens. Bioelectron. 2013, 39, 231–235. [Google Scholar] [CrossRef]
- Zhu, Y.-F.; Wang, Y.-S.; Zhou, B.; Yu, J.-H.; Peng, L.-L.; Huang, Y.-Q.; Li, X.-J.; Chen, S.-H.; Tang, X.; Wang, X.-F. A multifunctional fluorescent aptamer probe for highly sensitive and selective detection of cadmium (II). Anal. Bioanal. Chem. 2017, 409, 4951–4958. [Google Scholar] [CrossRef]
- Zhu, Q.; Liua, L.; Xinga, Y.; Zhou, X. Duplex functional G-quadruplex/NMM fluorescent probe for label-free detection of lead(II) and mercury(II) ions. J. Hazard. Mater. 2018, 355, 50–55. [Google Scholar] [CrossRef]
- Zhang, B.; Wei, C. Highly sensitive and selective detection of Pb2+ using a turn-on fluorescent aptamer DNA silver nanoclusters sensor. Talanta 2018, 182, 125–130. [Google Scholar] [CrossRef]
- Yin, B.; Ma, J.; Le, H.-N.; Wang, S.; Xu, Z.; Ye, B. A new mode to light up an adjacent DNA-scaffolded silver probe pair and its application for specific DNA detection. Chem. Commun. 2014, 50, 15991–15994. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, H.; Wang, J.; Xu, L.; Chen, H.; Pei, R. Selection and characterization of DNA aptamers for the development of light-up biosensor to detect Cd(II). Talanta 2016, 154, 498–503. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.; Gao, T.; Zhang, T.; Xu, L.; Wang, B.; Wang, J.; Pei, R. Selection of DNA aptamers for the development of light-up biosensor to detect Pb(II). Sens. Actuators B 2018, 254, 214–222. [Google Scholar] [CrossRef]
- Luan, Y.; Lu, A.; Chen, J.; Fu, H.; Xu, L. A label-Free Aptamer-Based Fluorescent Assay for Cadmium Detection. Appl. Sci. 2016, 6, 432. [Google Scholar] [CrossRef]
- Zhou, B.; Yang, X.-Y.; Wang, Y.-S.; Yi, J.-C.; Zeng, Z.; Zhang, H.; Chen, Y.-T.; Hua, X.-J.; Suo, Q.-L. Label-free fluorescent aptasensor of Cd2+ detection based on the conformational switching of aptamer probe and SYBR green I. Microchem. J. 2019, 144, 377–382. [Google Scholar] [CrossRef]
- Huang, Y.; Yan, J.; Fang, Z.; Zhang, C.; Bai, W.; Yan, M.; Zhu, C.; Gao, C.; Chen, A. Highly sensitive and selective optical detection of Pb2+ using a label-free fluorescent aptasensor. RSC Adv. 2016, 6, 9030. [Google Scholar]
- Pan, J.; Li, Q.; Zhou, D.; Chen, J. Ultrasensitive aptamer biosensor for arsenic (III) detection based on labelfree triple-helix molecular switch and fluorescence sensing platform. Talanta 2018, 189, 370–376. [Google Scholar] [CrossRef]
- Park, M.; Ha, H.D.; Kim, Y.T.; Jung, J.H.; Kim, S.-H.; Kim, D.H.; Seo, T.S. Combination of a Sample Pretreatment Microfluidic Device with a Photoluminescent Graphene Oxide Quantum Dot Sensor for Trace Lead Detection. Anal. Chem. 2015, 87, 10969–10975. [Google Scholar] [CrossRef]
- Miao, W. Electrogenerated Chemiluminescence and Its Biorelated Applications. Chem. Rev. 2008, 108, 2506–2553. [Google Scholar] [CrossRef]
- Richter, M.M. Electrochemiluminescence (ECL). Chem. Rev. 2004, 104, 3003–3036. [Google Scholar] [CrossRef]
- Hu, L.; Xu, G. Applications and trends in electrochemiluminescence. Chem. Soc. Rev. 2010, 39, 3275–3304. [Google Scholar] [CrossRef]
- Tang, C.-X.; Zhao, Y.; He, X.-W.; Yin, X.-B. A ‘turn-on’ electrochemiluminescent biosensor for detecting Hg2+ at femtomole level based on the intercalation of Ru(phen)32+ into ds-DNA. Chem. Commun. 2010, 46, 9022–9024. [Google Scholar] [CrossRef]
- Huang, R.-F.; Liu, H.-X.; Gai, Q.-Q.; Liu, G.-J.; Wei, Z. A facile and sensitive electrochemiluminescence biosensor for Hg2+ analysis based on a dual-function oligonucleotide probe. Biosens. Bioelectron. 2015, 71, 194–199. [Google Scholar] [CrossRef]
- Zhou, X.; Su, Q.; Xing, D. An electrochemiluminescent assay for high sensitive detection of mercury (II) based on isothermal rolling circular amplification. Anal. Chim. Acta 2012, 713, 45–49. [Google Scholar] [CrossRef]
- Li, M.; Kong, Q.; Bian, Z.; Ma, C.; Ge, S.; Zhang, Y.; Yu, J.; Yan, M. Ultrasensitive detection of lead ion sensor based on gold nanoden-drites modified electrode and electrochemiluminescent quenching of quantum dots by electrocatalytic silver/zinc oxide coupled structures. Biosens. Bioelectron. 2015, 65, 176–182. [Google Scholar] [CrossRef]
- Lu, L.; Guo, L.; Li, J.; Kang, T.; Cheng, S. Electrochemiluminescent detection of Pb2+ by graphene/gold nanoparticles and CdSe quantum dots. Appl. Surf. Sci. 2016, 388, 431–436. [Google Scholar] [CrossRef]
- Du, X.-L.; Kang, T.-F.; Lu, L.-P.; Cheng, S.-Y. An electrochemiluminescence sensor based on CdSe@CdS functionalized MoS2 and hemin/G-quadruplex-based DNAzyme biocatalytic precipitation for sensitive detection of Pb(II). Anal. Methods 2018, 10, 51–58. [Google Scholar] [CrossRef]
- Zhang, M.; Ge, L.; Ge, S.; Yan, M.; Yu, J.; Huang, J.; Liu, S. Three-dimensional paper-based electrochemiluminescence device for simultaneous detection of Pb2+ and Hg2+ based on potential-control-technique. Biosens. Bioelectron. 2013, 41, 544–550. [Google Scholar] [CrossRef]
- VS, A.P.; Joseph, P.; SCG, K.D.; Lakshmanan, S.; Kinoshita, T.; Muthusamy, S. Colorimetric sensor for rapid detection of various analytes. Mater. Sci. Eng. C 2017, 78, 1231–1245. [Google Scholar]
- Hoang, M.; Huang, P.-J.J.; Liu, J. G-Quadruplex DNA for Fluorescent and Colorimetric Detection of Thallium(I). ACS Sens. 2016, 1, 137–143. [Google Scholar] [CrossRef]
- Zhu, Y.; Cai, Y.; Zhu, Y.; Zheng, L.; Ding, J.; Quan, Y.; Wang, L.; Qi, B. Highly sensitive colorimetric sensor for Hg2+ detection based on cationic polymer/DNA interaction. Biosens. Bioelectron. 2015, 69, 174–178. [Google Scholar] [CrossRef]
- Tan, L.; Chen, Z.; Zhao, Y.; Wei, X.; Li, Y.; Zhang, C.; Wei, X.; Hu, X. Dual channel sensor for detection and discrimination of heavy metal ions based on colorimetric and fluorescence response of the AuNPs-DNA conjugates. Biosens. Bioelectron. 2016, 85, 414–421. [Google Scholar] [CrossRef]
- Hossain, S.M.Z.; Brennan, J.D. β-Galactosidase-Based Colorimetric Paper Sensor for Determination of Heavy Metals. Anal. Chem. 2011, 83, 8772–8778. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Li, L.; Kong, Q.; Zhang, L.; Ge, S.; Yu, J. Colorimetric and Electrochemiluminescence Dual-Mode Sensing of Lead Ion Based on Integrated Lab-on-Paper Device. ACS Appl. Mater. Interfaces 2018, 10, 3431–3440. [Google Scholar] [CrossRef]
- Kaur, G.; Verma, N. Colorimetric determination of Cu2+ ions in water and milk by apo-tyrosinase disc. Sens. Actuators B 2018, 263, 524–532. [Google Scholar] [CrossRef]
- Guo, Z.; Duan, J.; Yang, F.; Li, M.; Hao, T.; Wang, S.; Wei, D. A test strip platform based on DNA-functionalized gold nanoparticles for on-site detection of mercury (II) ions. Talanta 2012, 93, 49–54. [Google Scholar] [CrossRef]
- Duan, J.; Guo, Z.Y. Development of a test strip based on DNA-functionalized gold nanoparticles for rapid detection of mercury (II) ions. Chin. Chem. Lett. 2012, 23, 225–228. [Google Scholar] [CrossRef]
- Chen, G.-H.; Chen, W.-Y.; Yen, Y.-C.; Wang, C.-W.; Chang, H.-T.; Chen, C.-F. Detection of Mercury(II) Ions Using Colorimetric Gold Nanoparticles on Paper-Based Analytical Devices. Anal. Chem. 2014, 86, 6843–6849. [Google Scholar] [CrossRef]
- Torabi, S.-F.; Lu, Y. Small-molecule diagnostics based on functional DNA nanotechnology: A dipstick test for Mercury. Faraday Discuss. 2011, 149, 125–135. [Google Scholar] [CrossRef]
- He, Y.; Zhang, X.; Zeng, K.; Zhang, S.; Baloda, M.; Gurung, A.S.; Liu, G. Visual detection of Hg2+ in aqueous solution using gold nanoparticles and thymine-rich hairpin DNA probes. Biosens. Bioelectron. 2011, 26, 4464–4470. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, S.; Wen, J. Disposable Strip Biosensor for Visual Detection of Hg2+ Based on Hg2+-Triggered Toehold Binding and Exonuclease III-Assisted Signal Amplification. Anal. Chem. 2014, 86, 3108–3114. [Google Scholar] [CrossRef]
- Fang, Z.; Huang, J.; Lie, P.; Xiao, Z.; Ouyang, C.; Wu, Q.; Wu, Y.; Liu, G.; Zeng, L. Lateral flow nucleic acid biosensor for Cu2+ detection in aqueous solution with high sensitivity and selectivity. Chem. Commun. 2010, 46, 9043–9045. [Google Scholar] [CrossRef]
- Leung, A.; Shankar, P.M.; Mutharasan, R. A review of fiber-optic biosensors. Sens. Actuators B 2007, 125, 688–703. [Google Scholar] [CrossRef]
- Taitt, C.R.; Anderson, G.P.; Ligler, F.S. Evanescent wave fluorescence biosensors. Biosens. Bioelectron. 2005, 20, 2470–2487. [Google Scholar] [CrossRef]
- Yildirim, N.; Long, F.; He, M.; Gao, C.; Shi, H.-C.; Gu, A.Z. A portable DNAzyme-based optical biosensor for highly sensitive and selective detection of lead (II) in water sample. Talanta 2014, 129, 617–622. [Google Scholar] [CrossRef]
- Wang, R.; Zhou, X.; Shi, H. Triple functional DNA–protein conjugates: Signal probes for Pb2+ using evanescent wave-induced emission. Biosens. Bioelectron. 2015, 74, 78–84. [Google Scholar] [CrossRef]
- Wang, R.; Zhou, X.; Shi, H.; Luo, Y. T–T mismatch-driven biosensor using triple functional DNA-protein conjugates for facile detection of Hg2+. Biosens. Bioelectron. 2016, 78, 418–422. [Google Scholar] [CrossRef]
- Long, F.; Gao, C.; Shi, H.C.; He, M.; Zhu, A.N.; Klibanov, A.M.; Gu, A.Z. Reusable evanescent wave DNA biosensor for rapid, highly sensitive, and selective detection of mercury ions. Biosens. Bioelectron. 2011, 26, 4018–4023. [Google Scholar] [CrossRef]
- Long, F.; Zhu, A.; Shi, H.; Wang, H.; Liu, J. Rapid on-site/in-situ detection of heavy metal ions in environmental water using a structure-switching DNA optical biosensor. Sci. Rep. 2013, 3, 2308. [Google Scholar] [CrossRef]
- Long, F.; Zhu, A.; Wang, H. Optofluidics-based DNA structure-competitive aptasensor for rapid on-site detection of lead(II) in an aquatic environment. Anal. Chim. Acta 2014, 849, 43–49. [Google Scholar] [CrossRef]
- Han, S.; Zhou, X.; Tang, Y.; He, M.; Zhang, X.; Shi, H.; Xiang, Y. Practical, highly sensitive, and regenerable evanescent-wave biosensor for detection of Hg2+ and Pb2+ in water. Biosens. Bioelectron. 2016, 80, 265–272. [Google Scholar] [CrossRef]
- Sharma, B.; Frontiera, R.R.; Henry, A.-I.; Ringe, E.; Van Duyne, R.P. SERS: Materials, applications, and the future. Mater. Today 2012, 15, 16–25. [Google Scholar] [CrossRef]
- Tian, A.; Liu, Y.; Gao, J. Sensitive SERS detection of lead ions via DNAzyme based quadratic signal amplification. Talanta 2017, 171, 185–189. [Google Scholar] [CrossRef]
- Song, L.; Mao, K.; Zhou, X.; Hu, J. A novel biosensor based on Au@Ag core–shell nanoparticles for SERS detection of arsenic (III). Talanta 2016, 146, 285–290. [Google Scholar] [CrossRef]
- Lu, Y.; Zhong, J.; Yao, G.; Huang, Q. A label-free SERS approach to quantitative and selective detection of mercury (II) based on DNA aptamer-modified SiO2@Au core/shell nanoparticles. Sens. Actuators B 2018, 258, 365–372. [Google Scholar] [CrossRef]
- Zhang, L.; Chang, H.; Hirata, A.; Wu, H.; Xue, Q.-K.; Chen, M. Nanoporous Gold Based Optical Sensor for Sub-ppt Detection of Mercury Ions. ACS Nano 2013, 7, 4595–4600. [Google Scholar] [CrossRef]
- Ma, W.; Sun, M.; Xu, L.; Wang, L.; Kuang, H.; Xu, C. A SERS active gold nanostar dimer for mercury ion detection. Chem. Commun. 2013, 49, 4989–4991. [Google Scholar] [CrossRef]
- Kang, T.; Yoo, S.M.; Yoon, I.; Lee, S.; Choo, J.; Lee, S.Y.; Kim, B. Au Nanowire-on-Film SERRS Sensor for Ultrasensitive Hg2+ Detection. Chem. Eur. J. 2011, 17, 2211–2214. [Google Scholar] [CrossRef]
- Clegg, R.M. Fluorescence resonance energy transfer. Curr. Opin. Biotechnol. 1995, 6, 103–110. [Google Scholar] [CrossRef]
- Massey, M.; Algar, W.R.; Krull, U.J. Fluorescence resonance energy transfer (FRET) for DNA biosensors: FRET pairs and Förster distances for various dye–DNA conjugates. Anal. Chim. Acta 2006, 568, 181–189. [Google Scholar] [CrossRef]
- Wang, G.; Lu, Y.; Yan, C.; Lu, Y. DNA-functionalization gold nanoparticles based fluorescence sensor for sensitive detection of Hg2+ in aqueous solution. Sens. Actuators B 2015, 211, 1–6. [Google Scholar] [CrossRef]
- Chu-mong, K.; Thammakhet, C.; Thavarungkul, P.; Kanatharana, P.; Buranachai, C. A FRET based aptasensor coupled with non-enzymatic signal amplification for mercury (II) ion detection. Talanta 2016, 155, 305–313. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Liu, C.-Y.; Tsai, D.-Y.; Yeh, Y.-C. A portable fluorescence resonance energy transfer biosensor for rapid detection of silver ions. Sens. Actuators B 2018, 259, 784–788. [Google Scholar] [CrossRef]
- Hao, C.; Xua, L.; Xing, C.; Kuang, H.; Wang, L.; Xu, C. Oligonucleotide-based fluorogenic sensor for simultaneous detection of heavy metal ions. Biosens. Bioelectron. 2012, 36, 174–178. [Google Scholar] [CrossRef]
- Xia, J.; Lin, M.; Zuo, X.; Su, S.; Wang, L.; Huang, W.; Fan, C.; Huang, Q. Metal Ion-Mediated Assembly of DNA Nanostructures for Cascade Fluorescence Resonance Energy Transfer-Based Fingerprint Analysis. Anal. Chem. 2014, 86, 7084–7087. [Google Scholar] [CrossRef]
- Wijaya, E.; Lenaerts, C.; Maricot, S.; Hastanin, J.; Habraken, S.; Vilcot, J.-P. Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies. Curr. Opin. Solid State Mater. Sci. 2011, 15, 208–224. [Google Scholar] [CrossRef]
- Asal, M.; Ozen, O.; Sahinler, M.; Polatoglu, I. Recent developments in enzyme, DNA and immuno-based biosensors. Sensors 2018, 18, 1924. [Google Scholar] [CrossRef]
- Wang, R.; Wang, W.; Ren, H.; Chae, J. Detection of copper ions in drinking water using the competitive adsorption of proteins. Biosens. Bioelectron. 2014, 57, 179–185. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, L.; Zhou, B.; Liu, W.; Ge, J.; Wu, J.; Wang, Y.; Wang, P. Ultrasensitive and selective gold film-based detection of mercury (II) in tap water using a laser scanning confocal imaging-surface plasmon resonance system in real time. Biosens. Bioelectron. 2013, 47, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, M.; Siddiki, M.S.R.; Ueda, S.; Maeda, I. Mercury (II) sensor based on monitoring dissociation rate of the trans-acting factor MerR from cis-element by surface plasmon resonance. Biosens. Bioelectron. 2015, 67, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Clark, L.C.; Lyons, C. Electrode systems for continuous monitoring cardiovascular surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. [Google Scholar] [CrossRef] [PubMed]
Transduction Method | Analyte | Receptor | LOD | Linear Range | Real Sample | Reference |
---|---|---|---|---|---|---|
Luminescence | Hg2+ | Enzyme | 1 pg/mL | (5–500) pg/mL | T.W., M.W. | [41] |
Luminescence | Hg2+ | DMB-DNA (T–Hg2+–T) | 16 pM | (6.2 × 10−10–1.2 × 10−8) M (1.2 × 10−8–1.2 × 10−6) M | T.W., S.W. | [38] |
Luminescence | Hg2+ | DMB-DNA (T–Hg2+–T) | 3.5 × 10−10 M | (1.0 × 10−9–1.5 × 10−7) M | S.W. | [39] |
Luminescence | Hg2+ | Enzyme | 1 μg/L | (1–60) μg/L | S.W. | [40] |
Luminescence | Pb2+ | Enzyme | 0.7 μg/L | (0.7–54) μg/L | S.W. | [40] |
Luminescence | Cd2+ | Enzyme | 0.02 μg/L | (0.02–45) μg/L | S.W. | [40] |
Fluorescence | Pb2+ | DMB-DNA (G4) | 0.64 nM | --- | T.W., S.W. | [76] |
Fluorescence | Pb2+ | L-DNAzyme | 3 nM | (5–100) nM | S.W. | [55] |
Fluorescence | Pb2+ | DMB-DNA (G4) | 3.0 nM | (5–50) nM | T.W., S.W. | [68] |
Fluorescence | Pb2+ | DMB-DNA (G4) | 1 ng m/L | 1 ng m/L to over 1 mg m/L | T.W., M.W. | [74] |
Fluorescence | Pb2+ | DMB-DNA (G4) | 5.0 nM | (10–200) nM | S.W. | [67] |
Fluorescence | Pb2+ | DMB-DNA (G4) | 6 nM | (0–120) nM | T.W. | [65] |
Fluorescence | Pb2+ | DNAzyme | --- | S.W. | [53] | |
Fluorescence | Pb2+ | DMB-DNA | 60.7 nM | (100–1000) nM | S.W. | [71] |
Fluorescence | Hg2+ | DMB-DNA (T–Hg2+–T; G4) | 0.17 nM | (0.5–50) nM | T.W. | [50] |
Fluorescence | Hg2+ | DMB-DNA (T–Hg2+–T) | 0.2 nM | (2–160) nM | S.W. | [52] |
Fluorescence | Hg2+ | DMB-DNA (T–Hg2+–T) | 3.6 nM (turn-off) 8.6 nM (turn-on) | (0.01–10) μM --- | M.W., milk. | [51] |
Fluorescence | Hg2+ | Enzyme | <10 nM | --- | T.W., S.W. | [47] |
Fluorescence | Hg2+ | DMB-DNA (G4) | 18.6 nM | (200–1000) nM | S.W. | [67] |
Fluorescence | Hg2+ | DMB-DNA (T–Hg2+–T) | 48 nM | (0–0.5) μM (0.5–6) μM | S.W. | [49] |
Fluorescence | Cd2+ | DMB-DNA | 0.038 ng/mL | (0.10–100) μg/mL | S.W. | [72] |
Fluorescence | Cd2+ | DMB-DNA | 2.15 nM | (7.19–100) nM and 200 nM–5.0 μM | T.W., S.W., U.W. | [66] |
Fluorescence | Cd2+ | DMB-DNA | 0.34 μg/L | (1.12–224.82) μg/L | S.W., T.W., U.W. | [73] |
Fluorescence | Cd2+ | DMB-DNA | 40 nM | (0–1000) nM | S.W. | [70] |
Fluorescence | Cd2+ | Enzyme | 50 µM | --- | T.W., S.W. | [47] |
Fluorescence | Ag+ | RNA-cleaving DNAzyme | 24.9 nM | --- | S.W. | [63] |
Fluorescence | Ag+ | DMB-DNA (C–Ag+–C) | 0.31 μM | (0–10) μM | S.W. | [49] |
Fluorescence | As3+ | DMB-DNA | 5 ng/L | 10 ng/L–10 mg/L | T.W., S.W. | [75] |
Fluorescence | Cu2+ | Enzyme | 0.176 ng/mL | (0–2.4) ng/mL | S.W. | [48] |
Fluorescence | Cu2+ | DNAzyme | 0.6 ppb | --- | S.W. | [53] |
Fluorescence | Cu2+ | Enzyme | --- | --- | T.W., S.W. | [47] |
ECL | Hg2+ | DMB-DNA (T–Hg2+–T) | 5.1 pM | (5.0 × 10−11–1.0 × 10−8) M | T.W., S.W. | [81] |
ECL | Hg2+ | DMB-DNA (T–Hg2+–T) and DNA polymerase | 100 pM | --- | T.W., S.W. | [82] |
ECL | Hg2+ | DMB-DNA (T–Hg2+–T; G4) | 0.2 nM | (5.0 × 10−10–1.0 × 10−6) M | S.W. | [86] |
ECL | Pb2+ | G4 based DNAzyme | 0.98 fM | (1.0 × 10−15–1.0 × 10−11) M | S.W. | [85] |
ECL | Pb2+ | DNAzyme | 9.6 × 10−13 M | (5.0 × 10−12–4.0 × 10−6) M | S.W. | [83] |
ECL | Pb2+ | DMB-DNA (C–Pb2+–C; G4) | 10 pM | (3 × 10−11–1.0 × 10−6) M | S.W. | [86] |
ECL | Pb2+ | DMB-DNA (G4) | 10−10 mol/L | (10−8–10−10) mol/L | S.W. | [84] |
ECL | Pb2+ | DNAzyme; Enzyme | 0.14 nM | (0.5–2000) nM | T.W., S.W. | [92] |
Colorimetry | Pb2+ | DNAzyme | 1.6 nM | (5–2000) nM | T.W., S.W. | [92] |
Colorimetry | Pb2+ | DMB-DNA (G4) | --- | --- | T.W. | [65] |
Colorimetry | Cu2+ | Enzyme | 0.01 μg/L | (0.1–25) μg/L | M.W., milk | [93] |
Colorimetry | Hg2+ | DMB-DNA (T–Hg2+–T); Enzyme | 1 pM | --- | S.W. | [99] |
Colorimetry | Hg2+ | DMB-DNA (T–Hg2+–T); Ab* | 0.1 nM | (0.1–100) nM | S.W. | [98] |
Colorimetry | Hg2+ | DMB-DNA (T–Hg2+–T) | 0.15 nM (UV-vis spectroscopy) 5 nM (naked eye) | (0.25–500) nM (UV-vis spectroscopy) | S.W. | [89] |
Colorimetry | Hg2+ | DMB-DNA (T–Hg2+–T) | 3 nM | --- | S.W. | [94] |
Colorimetry | Hg2+ Ag+ Cu2+ Cd2+ Pb2+ Cr6+ Ni2+ | Enzyme | 0.001 ppm 0.002 ppm 0.020 ppm 0.020 ppm 0.140 ppm 0.150 ppm 0.230 ppm | --- | T.W., S.W. | [91] |
Colorimetry | Hg2+ | DMB-DNA (T–Hg2+–T) | 5.4 nM | (0–1500) nM | S.W. | [97] |
Colorimetry | Hg2+ | DMB-DNA (T–Hg2+–T) | 50 nM | --- | S.W. | [96] |
Colorimetry | Tl+ | DMB-DNA (G4) | 4.6 μM | --- | S.W. | [88] |
Colorimetry | Ag+ Hg2+ Cr3+ Sn4+ Cd2+ Pb2+ Zn2+ Mn2+ | DMB-DNA | ~50 nM | --- | S.W. | [90] |
EW | Pb2+ | DMB-DNA | 0.22 nM | (1.0–300) nM | M.W., T.W. | [108] |
EW | Pb2+ | DNAzyme; Protein | 1 nM | (20–800) nM | T.W., M.W. | [104] |
EW | Pb2+ | DNAzyme | 1.03 nM | --- | T.W. | [103] |
EW | Pb2+ | DNAzyme | 20 nM | --- | E.W. | [109] |
EW | Hg2+ | DMB-DNA (T–Hg2+–T) | 22 pM | 22 pM–10 nM | E.W. | [109] |
EW | Hg2+ | DMB-DNA (T–Hg2+–T); Protein | 1.06 nM | (75–1000) nM | S.W., M.W., T.W. | [105] |
EW | Hg2+ | DMB-DNA (T–Hg2+–T); cDNA | 2.1 nM | --- | M.W., T.W. | [106] |
SERS | As3+ | DMB-DNA | 0.1 ppb | (0.5–10) ppb | S.W. | [112] |
SERS | Pb2+ | DNAzyme | 70 fM | 0.1 pM–0.1 μM | T.W., R.W. | [111] |
SERRS | Hg2+ | DMB-DNA | 1 pM | --- | U.W. | [114] |
SERS | Hg2+ | DMB-DNA (T–Hg2+–T) | 0.8 pg/mL | (0.002–1) ng m/L | T.W. | [115] |
SERS | Hg2+ | DMB-DNA (T–Hg2+–T) | 10 nM | (1 × 10−8–1 × 10−3) M | U.W., S.W. | [113] |
FRET | Hg2+ | DMB-DNA (T–Hg2+–T) | 1.8 nM | --- | T.W., L.W. | [122] |
FRET | Hg2+ | DMB-DNA (T–Hg2+–T) | (7.03 ± 0.18) nM | (10.0–200.0) nM | S.W. | [120] |
FRET | Hg2+ | DMB-DNA (T–Hg2+–T) | 8 nM | (20–90) nM | T.W. | [119] |
FRET | Ag+ | DMB-DNA (C–Ag+–C) | 2.5 nM | --- | T.W., S.W. | [122] |
FRET | Ag+ | Protein | --- | --- | T.W., S.W. | [121] |
FRET | Tl+ | DMB-DNA (G4) | 59 μM | --- | S.W. | [88] |
LSCI-SPR | Hg2+ | DMB-DNA (T–Hg2+–T) | 0.01 ng/mL | (0.01–100) ng/mL | T.W. | [127] |
SPR | Hg2+ | DMB-DNA | 5 μg/L | (101–104) μg/L | M.W. | [128] |
SPR | Cu2+ | Protein | ~0.1 mg/L | --- | T.W., M.W. | [126] |
Analyte | Transduction Method | LOD | Reference |
---|---|---|---|
Pb2+ | ECL | 0.98 fM | [85] |
Hg2+ | SERRS | 1 pM | [114] |
Hg2+ | Colorimetry | 1 pM | [99] |
Cd2+ | Luminescence | 0.02 μg/L | [40] |
As3+ | Fluorescence | 5 ng/L | [75] |
Cu2+ | Colorimetry | 0.01 μg/L | [93] |
Ag+ | FRET | 2.5 nM | [122] |
Transduction Method | Analyte | Signaling Strategy | LOD | Reference |
---|---|---|---|---|
Luminescence | Hg2+ | Enzyme | 1 pg/mL | [41] |
Fluorescence | Pb2+ | G4 aptamer–GOQD | 0.64 nM | [76] |
Fluorescence | Hg2+ | AO–DNA Aptamer (T–Hg2+–T; G4) | 0.17 nM | [50] |
Fluorescence | Cd2+ | Aptamer/cDNA | 0.038 ng/mL | [72] |
Fluorescence | Cu2+ | Alcohol Oxidase inhibition | 0.176 ng/mL | [48] |
ECL | Pb2+ | Hemin/G4-based DNAzyme | 0.98 fM | [85] |
ECL | Hg2+ | Hg2+-specific AuNP–ssDNA/cDNA | 5.1 pM | [81] |
Colorimetric | Hg2+ | Hairpin DNA(T–Hg2+–T)/Exonuclease III | 1 pM | [99] |
Colorimetric | Pb2+ | DNAzyme/GO–PdAu–(GOx)–ssDNA | 1.6 nM | [92] |
EW | Pb2+ | Cy5.5–G4 aptamer | 0.22 nM | [108] |
EW | Hg2+ | Quencher T-rich DNA/ Cy3–cDNA/ssDNA probe (T–Hg2+–T) | 22 pM | [109] |
SERRS | Hg2+ | Cy5–Aptamer–NPG (T–Hg2+–T) | 1 pM | [114] |
FRET | Hg2+ | TAMRA–ssDNA/QD–ssDNA (T–Hg2+–T) | 1.8 nM | [122] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aloisi, A.; Della Torre, A.; De Benedetto, A.; Rinaldi, R. Bio-Recognition in Spectroscopy-Based Biosensors for *Heavy Metals-Water and Waterborne Contamination Analysis. Biosensors 2019, 9, 96. https://doi.org/10.3390/bios9030096
Aloisi A, Della Torre A, De Benedetto A, Rinaldi R. Bio-Recognition in Spectroscopy-Based Biosensors for *Heavy Metals-Water and Waterborne Contamination Analysis. Biosensors. 2019; 9(3):96. https://doi.org/10.3390/bios9030096
Chicago/Turabian StyleAloisi, Alessandra, Antonio Della Torre, Angelantonio De Benedetto, and Rosaria Rinaldi. 2019. "Bio-Recognition in Spectroscopy-Based Biosensors for *Heavy Metals-Water and Waterborne Contamination Analysis" Biosensors 9, no. 3: 96. https://doi.org/10.3390/bios9030096
APA StyleAloisi, A., Della Torre, A., De Benedetto, A., & Rinaldi, R. (2019). Bio-Recognition in Spectroscopy-Based Biosensors for *Heavy Metals-Water and Waterborne Contamination Analysis. Biosensors, 9(3), 96. https://doi.org/10.3390/bios9030096