Immobilized Luminescent Bacteria for the Detection of Mycotoxins under Discrete and Flow-Through Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Culture and Growth Conditions
2.3. Luminescence Measurements
2.4. Hydrolysis of Zearalenone Under the Action of the Enzyme His6-OPH
2.5. Evaluation of Zearalenone Hydrolysis by the Enzyme-Linked Immunosorbent Assay (ELISA) Test Kit
3. Results
3.1. The Use of a Biosensitive Element for the Determination of Mycotoxins in Aqueous Solutions
3.2. Biosensitive Element in Assessment of Toxicity of the Reaction Medium Obtained after Hydrolysis of Zearalenone by His6-OPH
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Conflicts of Interest
References
- Peltomaa, R.; Benito-Peña, E.; Moreno-Bondi, M.C. Bioinspired Recognition Elements for Mycotoxin Sensors. Anal. Bioanal. Chem. 2018, 410, 747–771. [Google Scholar] [CrossRef]
- Yin, S.; Liu, X.; Fan, L.; Hu, H. Mechanisms of Cell Death Induction by Food-Borne Mycotoxins. Crit. Rev. Food Sci. Nutr. 2018, 58, 1406–1417. [Google Scholar] [CrossRef]
- Lumsangkul, C.; Chiang, H.I.; Lo, N.W.; Fan, Y.K.; Ju, J.C. Developmental Toxicity of Mycotoxin Fumonisin B1 in Animal Embryogenesis: An Overview. Toxins 2019, 11, 114. [Google Scholar] [CrossRef]
- Viegas, S.; Assunção, R.; Martins, C.; Nunes, C.; Osteresch, B.; Twarużek, M.; Kosicki, R.; Grajewski, J.; Ribeiro, E.; Viegas, C. Occupational Exposure to Mycotoxins in Swine Production: Environmental and Biological Monitoring Approaches. Toxins 2019, 11, 78. [Google Scholar] [CrossRef]
- Evtugyn, G.; Hianik, T. Electrochemical Immuno—and Aptasensors for Mycotoxin Determination. Chemosensors 2019, 7, 10. [Google Scholar] [CrossRef]
- Lattanzio, V.M.; Von Holst, C.; Lippolis, V.; De Girolamo, A.; Logrieco, A.F.; Mol, H.G.; Pascale, M. Evaluation of Mycotoxin Screening Tests in a Verification Study Involving First Time Users. Toxins 2019, 11, 129. [Google Scholar] [CrossRef]
- Wang, H.; Mao, J.; Zhang, Z.; Zhang, Q.; Zhang, L.; Li, P. Photocatalytic Degradation of Deoxynivalenol over Dendritic-Like α-Fe2O3 under Visible Light Irradiation. Toxins 2019, 11, 105. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Chang, J.; Wang, P.; Liu, C.; Yin, Q.; Song, A.; Gao, T.; Dang, X.; Lu, F. Effect of Compound Probiotics and Mycotoxin Degradation Enzymes on Alleviating Cytotoxicity of Swine Jejunal Epithelial Cells Induced by Aflatoxin B1 and Zearalenone. Toxins 2019, 11, 12. [Google Scholar] [CrossRef] [PubMed]
- Quiles, J.M.; Nazareth, T.D.M.; Luz, C.; Luciano, F.B.; Mañes, J.; Meca, G. Development of an Antifungal and Antimycotoxigenic Device Containing Allyl Isothiocyanate for Silo Fumigation. Toxins 2019, 11, 137. [Google Scholar] [CrossRef]
- Michelini, E.; Cevenini, L.; Calabretta, M.M.; Spinozzi, S.; Camborata, C.; Roda, A. Field-Deployable Whole-Cell Bioluminescent Biosensors: So Near and yet so far. Anal. Bioanal. Chem. 2013, 405, 6155–6163. [Google Scholar] [CrossRef]
- Roggo, C.; Van Der Meer, J.R. Miniaturized and Integrated Whole Cell Living Bacterial Sensors in Field Applicable Autonomous Devices. Curr. Opin. Biotechnol. 2017, 45, 24–33. [Google Scholar] [CrossRef]
- Briscoe, S.F.; Cai, J.; DuBow, M.S. Luminescent Bacterial Biosensors for the Rapid Detection of Toxicants. In Book Microscale testing in aquatic toxicology; Wells, P.G., Lee, K., Blaise, C., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 161–170. [Google Scholar]
- Efremenko, E.N.; Maslova, O.V.; Kholstov, A.V.; Senko, O.V.; Ismailov, A.D. Biosensitive Element in the form of Immobilized Luminescent Photobacteria for Detecting Ecotoxicants in Aqueous Flow-Through Systems. Luminescence 2016, 31, 1283–1289. [Google Scholar] [CrossRef] [PubMed]
- Efremenko, E.N.; Senko, O.V.; Aleskerova, L.E.; Alenina, K.A.; Mazhul, M.M.; Ismailov, A.D. Biosensors Based on the Luminous Bacteria Photobaterium Phosphoreum Immobilized in Polyvinyl Alcohol Cryogel for the Monitoring of Ecotoxicants. Appl. Biochem. Microbiol. 2014, 50, 477–482. [Google Scholar] [CrossRef]
- Lozinsky, V.I. Polymeric Cryogels as a New Family of Macroporous and Supermacroporous Materials for Biotechnological Purposes. Russ. Chem. Bull. 2008, 57, 1015–1032. [Google Scholar] [CrossRef]
- Lozinsky, V.I. A Brief History of Polymeric Cryogels. In Polymeric Cryogels; Okay, O., Ed.; Springer: Berlin, Germany, 2014; pp. 1–48. [Google Scholar]
- Kumar, A. Supermacroporous Cryogels; CRC Press: Boca Raton, FL, USA, 2016; pp. 1–496. [Google Scholar]
- Efremenko, E.N.; Tatarinova, N.Y. The Effect of Long-Term Preservation of Bacterial Cells Immobilized in Poly(Vinyl Alcohol) Cryogel on their Viability and Biosynthesis of Target Metabolites. Microbiology 2007, 76, 336–341. [Google Scholar] [CrossRef]
- Senko, O.; Gladchenko, M.; Maslova, O.; Efremenko, E. Long-Term Storage and Use of Artificially Immobilized Anaerobic Sludge as a Powerful Biocatalyst for Conversion of Various Wastes Including Those Containing Xenobiotics to Biogas. Catalysts 2019, 9, 326. [Google Scholar] [CrossRef]
- Efremenko, E.N.; Nikolskaya, A.B.; Lyagin, I.V.; Senko, O.V.; Makhlis, T.A.; Stepanov, N.A.; Maslova, O.V.; Mamedova, F.; Varfolomeev, S.D. Production of Biofuels from Pretreated Microalgae Biomass by Anaerobic Fermentation with Immobilized Clostridium acetobutylicum cells. Bioresour. Technol. 2012, 114, 342–348. [Google Scholar] [CrossRef]
- Maslova, O.; Stepanov, N.; Senko, O.; Efremenko, E. Production of Various Organic Acids from Different Renewable Sources by Immobilized Cells in the Regimes of Separate Hydrolysis and Fermentation (SHF) and Simultaneous Saccharification and Fermentation (SFF). Bioresour. Technol. 2019, 272, 1–9. [Google Scholar] [CrossRef]
- Maslova, O.V.; Sen’ko, O.V.; Stepanov, N.A.; Efremenko, E.N. Lactic Acid Production Using Free Cells of Bacteria and Filamentous Fungi and Cells Immobilized in Polyvinyl Alcohol Cryogel: A Comparative Analysis of the Characteristics of Biocatalysts and Processes. Catal. Ind. 2016, 8, 280–285. [Google Scholar] [CrossRef]
- Stepanov, N.; Efremenko, E. “Deceived” Concentrated Immobilized Cells as Biocatalyst for Intensive Bacterial Cellulose Production from Various Sources. Catalysts 2018, 8, 33. [Google Scholar] [CrossRef]
- Lozinsky, V.I.; Zubov, A.L.; Titova, E.F. Poly(Vinyl Alcohol) Cryogels Employed as Matrices for Cell Immobilization. 2. Entrapped Cells Resemble Porous Fillers in Their Effects on the Properties of PVA-Cryogel Carrier. Enzym. Microb. Technol. 1997, 20, 182–190. [Google Scholar] [CrossRef]
- Yates, I.E.; Porter, J.K. Bacterial Bioluminescence as a Bioassay for Mycotoxins. Appl. Environ. Microbiol. 1982, 44, 1072–1075. [Google Scholar]
- Krifaton, C.; Kriszt, B.; Szoboszlay, S.; Cserháti, M.; Szűcs, Á.; Kukolya, J. Analysis of Aflatoxin-B1-Degrading Microbes by Use of a Combined Toxicity-Profiling Method. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2011, 726, 1–7. [Google Scholar] [CrossRef]
- Santacroce, M.P.; Narracci, M.; Acquaviva, M.I.; Zacchino, V.; Lo Noce, R.; Centoducati, G.; Cavallo, R.A. Effects Induced in Vitro by Aflatoxin B1 on Vibrio Fischeri and Primary Cultures of Sparus Aurata Hepatocytes. Chem. Ecol. 2011, 27, 67–76. [Google Scholar] [CrossRef]
- Jian, Q.; Gong, L.; Li, T.; Wang, Y.; Wu, Y.; Chen, F.; Qu, H.; Duan, X.; Jiang, Y. Rapid Assessment of the Toxicity of Fungal Compounds Using Luminescent Vibrio Qinghaiensis Sp. q67. Toxins 2017, 9, 335. [Google Scholar] [CrossRef]
- Li, J.; Jiang, G.; Yang, B.; Dong, X.; Feng, L.; Lin, S.; Chen, F.; Ashraf, M.; Jiang, Y. A Luminescent Bacterium Assay of Fusaric Acid Produced by Fusarium Proliferatum from Banana. Anal. Bioanal. Chem. 2012, 402, 1347–1354. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, M.; Fang, J.; Zhang, L.; Zou, X.; Wang, X. Improved Detection of Ochratoxin A by Marine Bioluminescent Bacteria V. harveyi BA. Czech J. Food Sci. 2013, 31, 88–93. [Google Scholar] [CrossRef]
- Katsev, A.M.; Goĭster, O.S.; Starodub, N.F. Effect of Mycotoxin T-2 on Bioluminescence Intensity of Bacteria. Ukr. Biokhim. Zh. 1999, 75, 99–103. [Google Scholar]
- Prof., E.N.; Efremenko, M. (Eds.) Immobilized Cells: Biocatalysts and Processes: Monograph; RIOR: Russia, 2018; pp. 1–500. [Google Scholar] [CrossRef]
- Efremenko, E.; Votchitseva, Y.; Plieva, F.; Galaev, I.; Mattiasson, B. Purification of His6-Organophosphate Hydrolase Using Monolithic Supermacroporous Polyacrylamide Cryogels Developed for Immobilized Metal Affinity Chromatography. Appl. Microbiol. Biotechnol. 2006, 70, 558–563. [Google Scholar] [CrossRef]
- Votchitseva, Y.A.; Efremenko, E.N.; Aliev, T.K.; Varfolomeyev, S.D. Properties of Hexahistidine-Tagged Organophosphate Hydrolase. Biochemistry (Moscow) 2006, 71, 167–172. [Google Scholar] [CrossRef]
- Sirotkina, M.S.; Efremenko, E.N. Rhodococcus Lactonase with Organophosphate Hydrolase (OPH) Activity and His6-Tagged OPH with Lactonase Activity: Evolutionary Proximity of the Enzymes and New Possibilities in Their Application. Appl. Microb. Biotech. 2014, 98, 2647–2656. [Google Scholar] [CrossRef]
- Efremenko, E.N.; Lyagin, I.V.; Aslanly, A.G.; Makhlis, T.A. The Method of Biodegradation of Micotoxins. RU Patent 2634914, 8 November 2017. [Google Scholar]
- Maslova, O.V.; Senko, O.V.; Efremenko, E.N. The Influence of Enzymatic Removal of Chlorpyrifos from Feed Grain Mixes on Biochemical Parameters of Rat Blood. Biochem. (Mosc.) Ser. B 2018, 12, 181–185. [Google Scholar] [CrossRef]
- Senko, O.; Maslova, O.; Efremenko, E. Optimization of the Use of His6-OPH-Based Enzymatic Biocatalysts for the Destruction of Chlorpyrifos in Soil. Int. J. Environ. Res. Public Health 2017, 14, 1438. [Google Scholar] [CrossRef]
Mycotoxin | Cells [Reference] | Limits of Detection (mg/L) |
---|---|---|
Aflatoxin B1 | Aliivibrio fischeri [16] | 1–17.1 |
P. phosphoreum [15] | 3.6–25 | |
V. fischeri (Microtox) [17] | 0.005–2.98 | |
Citrinin | P. phosphoreum [15] | 7.00–20.0 |
V. qinghaiensis sp. [18] | 5–12 | |
Deoxynivalenol | V. qinghaiensis sp. [18] | 5–30 |
Fumonisin B1 | V. qinghaiensis sp. [18] | 5–15 |
Fusaric acid | V. qinghaiensis sp. [19] | 5–40 |
Ochratoxin A | V. harveyi [20] | 0.0001–0.001 |
P. phosphoreum [15] | 12.5–17.0 | |
V. qinghaiensis sp. [18] | 5–11 | |
Patulin | P. phosphoreum [15] | |
V. qinghaiensis sp. [18] | 5–13 | |
Penicillic acid | P. phosphoreum [15] | 3.14–10.7 |
PR-toxin | P. phosphoreum [15] | 0.9–4.2 |
Rubratoxin B | P. phosphoreum [15] | 19.69–33 |
T-2 | P. phosphorum Sq3 [21] | 12 |
V. fischeri F1 [21] | 12 | |
Zearalenone | V. qinghaiensis sp. [18] | 5–10 |
P. phosphoreum [15] | 9.35–13.5 |
Mycotoxin | Discrete Analysis (30 min) | Flow-Through Analysis (10 min) | ||
---|---|---|---|---|
1 The Equation; R2 | Working Range, mg/L | The Equation; R2 | Working Range, mg/L | |
Ochratoxin A | y = −26.87x + 62.02, | 0.14–56 | y = −28.80x + 34.10, | 0.017–4.6 |
R2 = 0.99 | R2 = 0.99 | |||
Deoxynivalenol | y = −29.10x + 59.14, | 0.13–33 | y = −26.50x + 31.50, | 0.010–4.2 |
R2 = 0.98 | R2 = 0.99 | |||
Sterigmatocystin | y = −31.61x + 51.27, | 0.09–14 | y = −27.50x + 29.00, | 0.009–3.2 |
R2 = 0.98 | R2 = 0.98 | |||
Zearalenone | y = −28.63x + 79.49, | 0.64–177 | y = −24.93x + 45.50, | 0.026–16.7 |
R2 = 0.98 | R2 = 0.99 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senko, O.; Stepanov, N.; Maslova, O.; Akhundov, R.; Ismailov, A.; Efremenko, E. Immobilized Luminescent Bacteria for the Detection of Mycotoxins under Discrete and Flow-Through Conditions. Biosensors 2019, 9, 63. https://doi.org/10.3390/bios9020063
Senko O, Stepanov N, Maslova O, Akhundov R, Ismailov A, Efremenko E. Immobilized Luminescent Bacteria for the Detection of Mycotoxins under Discrete and Flow-Through Conditions. Biosensors. 2019; 9(2):63. https://doi.org/10.3390/bios9020063
Chicago/Turabian StyleSenko, Olga, Nikolay Stepanov, Olga Maslova, Rashid Akhundov, Anvar Ismailov, and Elena Efremenko. 2019. "Immobilized Luminescent Bacteria for the Detection of Mycotoxins under Discrete and Flow-Through Conditions" Biosensors 9, no. 2: 63. https://doi.org/10.3390/bios9020063
APA StyleSenko, O., Stepanov, N., Maslova, O., Akhundov, R., Ismailov, A., & Efremenko, E. (2019). Immobilized Luminescent Bacteria for the Detection of Mycotoxins under Discrete and Flow-Through Conditions. Biosensors, 9(2), 63. https://doi.org/10.3390/bios9020063