Next Article in Journal
Separation and Detection of Escherichia coli and Saccharomyces cerevisiae Using a Microfluidic Device Integrated with an Optical Fibre
Next Article in Special Issue
Electrochemical Immunosensors for Antibiotic Detection
Previous Article in Journal / Special Issue
Electrochemical Biosensors as Potential Diagnostic Devices for Autoimmune Diseases
Article Menu
Issue 1 (March) cover image

Export Article

Open AccessArticle

An Exfoliated Graphite-Based Electrochemical Immunosensor on a Dendrimer/Carbon Nanodot Platform for the Detection of Carcinoembryonic Antigen Cancer Biomarker

1
Department of Applied Chemistry, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa
2
Centre for Nanomaterials Science Research, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa
*
Author to whom correspondence should be addressed.
Biosensors 2019, 9(1), 39; https://doi.org/10.3390/bios9010039
Received: 4 January 2019 / Revised: 1 March 2019 / Accepted: 3 March 2019 / Published: 8 March 2019
(This article belongs to the Special Issue Electrochemical Immunosensor)
  |  
PDF [5827 KB, uploaded 8 March 2019]
  |  

Abstract

An electrochemical immunosensor for the quantification of carcinoembryonic antigen (CEA) using a nanocomposite of polypropylene imine dendrimer (PPI) and carbon nanodots (CNDTs) on an exfoliated graphite electrode (EG) is reported. The carbon nanodots were prepared by pyrolysis of oats. The nanocomposites (PPI and CNDTs) were characterized using X-ray powder diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), high-resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM). The proposed immunosensor was prepared on an exfoliated graphite electrode sequentially by drop coating CNDTs, the electrodeposition of G2-PPI (generation 2 poly (propylene imine) dendrimer), the immobilization of anti-CEA on the modified electrode for 80 min at 35 °C, and dropping of bovine serum albumin (BSA) to minimize non-specific binding sites. Cyclic voltammetry was used to characterize each stage of the fabrication of the immunosensor. The proposed immunosensor detected CEA within a concentration range of 0.005 to 300 ng/mL with a detection limit of 0.00145 ng/mL by using differential pulse voltammetry (DPV). The immunosensor displayed good stability and was also selective in the presence of some interference species such as ascorbic acid, glucose, alpha-fetoprotein, prostate-specific antigen and human immunoglobulin. Furthermore, the fabricated immunosensor was applied in the quantification of CEA in a human serum sample, indicating its potential for real sample analysis. View Full-Text
Keywords: carcinoembryonic antigen; immunosensor; cancer; polypropylene imine; exfoliated graphite electrode carcinoembryonic antigen; immunosensor; cancer; polypropylene imine; exfoliated graphite electrode
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Idris, A.O.; Mabuba, N.; Arotiba, O.A. An Exfoliated Graphite-Based Electrochemical Immunosensor on a Dendrimer/Carbon Nanodot Platform for the Detection of Carcinoembryonic Antigen Cancer Biomarker. Biosensors 2019, 9, 39.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Biosensors EISSN 2079-6374 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top