Use of Electronic Noses for Diagnosis of Digestive and Respiratory Diseases through the Breath
Abstract
:1. Introduction
2. The Olfactory Organ and Electronic Nose
3. Biomarkers and Diseases
3.1. Endogenous Biomarkers
3.2. Exogenous Biomarkers
4. Traditional Methods of Diagnosis
5. Recent Developments in Electronic Noses for the Diagnosis of Respiratory Diseases
6. Future and Challenges
7. Conclusions
Funding
Conflicts of Interest
Abbreviations
ANN | Artificial neural network |
AS-MLC | Metal oxide semiconductor sensor for detection of carbon monoxide, manufactured by Applied Sensor Technologies |
AS-MLK | Metal oxide semiconductor sensor, manufactured by Applied Sensor Technologies |
AS-MLN | Metal oxide semiconductor sensor for detection of nitrogen monoxide sensor, manufactured by Applied Sensor Technologies |
AS-MLV | Metal oxide semiconductor sensor for detection and reduction of gases such as VOCs and CO, manufactured by Applied Sensor Technologies |
BAL | Bronchoalveolar lavage |
BP | Backpropagation |
CDA | Canonical discriminant analysis |
CO | Carbon monoxide |
CRBM | Convolutional restricted Boltzmann machine (a type of probabilistic neural network) |
CVA | Cross-validated accuracy |
CVV | Cross-validation value |
DFA | Discriminant function analysis |
FNN | Feedforward neural network |
GC | Gas chromatography |
H2O2 | Hydrogen peroxide |
LAP | Light-addressable potentiometric |
LTB4 | Leukotriene B4 |
MD | Mahalanobis distance |
MDA | Malondialdehyde |
MS | Mass spectrometry |
NMR | Nuclear magnetic resonance |
NO | Nitric oxide |
PCA | Principal component analysis |
PLS-DA | Partial least squares–discriminant analysis |
QCL | Quantum cascade laser |
ROC | Receiver operating characteristic |
SVM | Support vector machine |
References
- Professional Practice Committee: Standards of Medical Care in Diabetes-2018. Diabetes Care 2018, 41, S3. [CrossRef] [PubMed]
- Breath Biopsy: The Complete Guide. Volatile Ogranic Compounds (VOCs) as Biomarkers for Disesases. Available online: https://www.owlstonemedical.com/breath-biopsy-complete-guide/ (accessed on 20 September 2018).
- World Health Organization (WHO). Life Expectancy Increased by 5 Years Since 2000, but Health Inequalities Persist. Available online: http://www.who.int/news-room/19-05-2016-life-expectancy-increased-by-5-years-since-2000-but-health-inequalities-persist (accessed on 21 October 2018).
- World Health Organization Word report on ageing and health. Anim. Genet. 2015, 39, 561–563.
- Wilkens, W.F.; Hartman, J.D. An Electronic Analog the Olfactory Processes. J. Food Sci. 1964, 29, 372–378. [Google Scholar] [CrossRef]
- Persaud, K.; Dodd, G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 1982, 299, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Gardner, J.W.; Bartlett, P.N. A brief history of electronic noses. Sens. Actuators 1994, 18–19, 210–211. [Google Scholar] [CrossRef]
- Wilson, A.D. Diverse applications of electronic-nose technologies in agriculture and forestry. Sensors 2013, 13, 2295–2348. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi-Varnamkhasti, M.; Apetrei, C.; Lozano, J.; Anyogu, A. Potential use of electronic noses, electronic tongues and biosensors as multisensor systems for spoilage examination in foods. Trends Food Sci. Technol. 2018, 80, 71–92. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, J.; Wu, L.; Mei, Y.; Jaffrezic-Renault, N.; Guo, Z. An overview of an artificial nose system. Talanta 2018, 184, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.P.; Lozano, J.; Aleixandre, M. Brewing Technology Chapter 9: Electronic Noses Applications in Beer Technology; Kanauchi, M., Ed.; InTechOpen: Lodon, UK, 2017. [Google Scholar] [CrossRef]
- Pearce, T.C.; Schiffman, S.S.; Nagle, H.T.; Gardner, J.W. Handbook of Machine Olfaction; John Wiley & Sons: Hoboken, NJ, USA, 2014; ISBN 047186109X. [Google Scholar]
- Lozano, M.; Horrillo, M.; Aleixandre, M.C.; Santos, J.P.; Fernández, M.; Sayago, I.; Gutiérrez, J.L.; Fontecha, J. Olfative Sensor Systems for the Wine-Producing Industry. Food 2007, 1, 23–29. [Google Scholar]
- Correa Hernando, E.C.; Barreiro Elorza, P.; Ruiz-Altisent, M.; Chamorro Valencia, M.C. Nariz electrónica ¿herramienta para la calidad en la industria agroalimentaria? «II Congreso Nacional de Calidad Alimentaria». Available online: http://www.agro-alimentarias.coop/ficheros/doc/01297 (accessed on 25 October 2018).
- Adlard, E.R.; Poole, C.F. Gas Chromatography: Historical Development; Elsevier Inc.: Amsterdam, The Netherlands, 2018; ISBN 9780124095472. [Google Scholar]
- Kolomnikov, I.G.; Efremov, A.M.; Tikhomirova, T.I.; Sorokina, N.M.; Zolotov, Y.A. Early stages in the history of gas chromatography. J. Chromatogry A 2018, 1537, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Vas, G.; Vékey, K. Solid-phase microextraction: A powerful sample preparation tool prior to mass spectrometric analysis. J. Mass Spectrom. 2004, 39, 233–254. [Google Scholar] [CrossRef] [PubMed]
- Amann, A.; Costello, B.D.L.; Miekisch, W.; Schubert, J.; Buszewski, B.; Pleil, J.; Ratcliffe, N.; Risby, T. The human volatilome: Volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J. Breath Res. 2014, 8. [Google Scholar] [CrossRef] [PubMed]
- Kostikas, K.; Bakakos, P.; Loukides, S. General Methods in Biomarker Research and their Applications; Preedy, V.R., Patel, V.B., Eds.; Springer: Dordrecht, The Ntherlands, 2014; pp. 1–25. [Google Scholar] [CrossRef]
- Céspedes Miranda, E.; Castillo Herrera, J. La peroxidación lipídica en el diagnostico del estrés oxidativo del paciente hipertenso. ¿Realidad o mito? Rev. Cubana Investig. Bioméd. 2008, 27. Available online: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03002008000200003 (accessed on 25 October 2018).
- Shorter, J.H.; Nelson, D.D.; McManus, J.B.; Zahniser, M.S.; Sama, S.R.; Milton, D.K. Clinical study of multiple breath biomarkers of asthma and COPD (NO, CO2, CO and N2O) by infrared laser spectroscopy. J. Breath Res. 2011, 5, 037108. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.; Cataneo, R.N.; Cummin, A.R.C.; Gagliardi, A.J.; Gleeson, K.; Greenberg, J.; Maxfield, R.A.; Rom, W.N. Detection of Lung Cancer With Volatile Markers in the Breath. Chest 2003, 123, 2115–2123. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, A.; Pennazza, G.; Santonico, M.; Martinelli, E.; Roscioni, C.; Galluccio, G.; Paolesse, R.; Di Natale, C. An investigation on electronic nose diagnosis of lung cancer. Lung Cancer 2010, 68, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Asthma: MedlinePlus Medical Encyclopedia. Available online: https://medlineplus.gov/ency/article/000141.htm (accessed on 20 October 2018).
- COPD: MedlinePlus Medical Encyclopedia. Available online: https://medlineplus.gov/copd.html (accessed on 20 October 2018).
- Lärstad, M.A.E.; Torén, K.; Bake, B.; Olin, A.C. Determination of ethane, pentane and isoprene in exhaled air—Effects of breath-holding, flow rate and purified air. Acta Physiol. 2007, 189, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Paredi, P.; Kharitonov, S.A.; Barnes, P.J. Elevation of Exhaled Ethane Concentration in Asthma. Am. J. Respir. Crit. Care Med. 2000, 162, 1450–1454. [Google Scholar] [CrossRef] [PubMed]
- Acute Respiratory Distress Syndrome: MedlinePlus Medical Encyclopedia. Available online: https://medlineplus.gov/ency/article/000103.htm (accessed on 24 October 2018).
- Cystic Fibrosis: MedlinePlus Medical Encyclopedia. Available online: https://medlineplus.gov/cysticfibrosis.html (accessed on 21 October 2018).
- Antuni, J.D.; Kharitonov, S.A.; Hughes, D.; Hodson, M.E.; Barnes, P.J. Increase in exhaled carbon monoxide during exacerbations of cystic fibrosis. Thorax 2000, 55, 138–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lung Cancer: MedlinePlus Medical Encyclopedia. Available online: https://medlineplus.gov/lungcancer.html (accessed on 21 October 2018).
- Bajtarevic, A.; Ager, C.; Pienz, M.; Klieber, M.; Schwarz, K.; Ligor, M.; Ligor, T.; Filipiak, W.; Denz, H.; Fiegl, M.; et al. Noninvasive detection of lung cancer by analysis of exhaled breath. BMC Cancer 2009, 9, 348. [Google Scholar] [CrossRef] [PubMed]
- Olopade, C.O.; Zakkar, M.; Swedler, W.I.; Rubinstein, I. Exhaled pentane levels in acute asthma. Chest 1997, 111, 862–865. [Google Scholar] [CrossRef] [PubMed]
- Dweik, R.A.; Boggs, P.B.; Erzurum, S.C.; Irvin, C.G.; Leigh, M.W.; Lundberg, J.O.; Olin, A.-C.; Plummer, A.L.; Taylor, D.R.; et al. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am. J. Respir. Crit. Care Med. 2011, 184, 602–615. [Google Scholar] [CrossRef] [PubMed]
- Paredi, P.; Kharitonov, S.A.; Leak, D.; Ward, S.; Cramer, D.; Barnes, P.J. Exhaled Ethane, a Marker of Lipid Peroxidation, Is Elevated in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2000, 162, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Barker, M.; Hengst, M.; Schmid, J.; Buers, H.-J.; Mittermaier, B.; Klemp, D.; Koppmann, R. Volatile organic compounds in the exhaled breath of young patients with cystic fibrosis. Eur. Respir. J. 2006, 27, 929–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, S.; Pal, S.; Mitra, M. Significance of Exhaled Breath Test in Clinical Diagnosis: A Special Focus on the Detection of Diabetes Mellitus. J. Med. Biol. Eng. 2016, 36, 605–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Španěl, P.; Dryahina, K.; Rejšková, A.; Chippendale, T.W.E.; Smith, D. Breath acetone concentration; Biological variability and the influence of diet. Physiol. Meas. 2011, 32. [Google Scholar] [CrossRef] [PubMed]
- Kearney, D.J.; Hubbard, T.; Putnam, D. Breath ammonia measurement in Helicobacter pylori infection. Dig. Dis. Sci. 2002, 47, 2523–2530. [Google Scholar] [CrossRef] [PubMed]
- Metz, G.; Jenkins, D.J.; Peters, T.J.; Newman, A.; Blendis, L.M. Breath hydrogen as a diagnostic method for hypolactasia. Lancet 1975, 1, 1155–1157. [Google Scholar] [CrossRef]
- Alkhouri, N.; Singh, T.; Alsabbagh, E.; Guirguis, J.; Chami, T.; Hanouneh, I.; Grove, D.; Lopez, R.; Dweik, R. Isoprene in the Exhaled Breath is a Novel Biomarker for Advanced Fibrosis in Patients with Chronic Liver Disease: A Pilot Study. Clin. Transl. Gastroenterol. 2015, 6, e112. [Google Scholar] [CrossRef] [PubMed]
- Diabetes: MedlinePlus Medical Encyclopedia. Available online: https://medlineplus.gov/diabetes.html (accessed on 30 October 2018).
- Bataller, R.; Brenner, D.A. Liver fibrosis. J. Clin. Investig. 2005, 115, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Lember, M. Hypolactasia: A common enzyme deficiency leading to lactose malabsorption and intolerance. Pol. Arch. Med. Wewn. 2012, 122 (Suppl. 1), 60–64. [Google Scholar]
- Pneumonia: MedlinePlus Medical Encyclopedia. Available online: https://medlineplus.gov/pneumonia.html (accessed on 31 October 2018).
- Nahid, P.; Dorman, S.E.; Alipanah, N.; Barry, P.M.; Brozek, J.L.; Cattamanchi, A.; Chaisson, L.H.; Chaisson, R.E.; Daley, C.L.; Grzemska, M.; et al. Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: Treatment of Drug-Susceptible Tuberculosis. Clin. Infect. Dis. 2016, 63, e147–e195. [Google Scholar] [CrossRef] [PubMed]
- Mathew, T.L.; Pownraj, P.; Abdulla, S.; Pullithadathil, B. Technologies for Clinical Diagnosis Using Expired Human Breath Analysis. Diagnostics 2015, 5, 27–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibson, L.E.; Cooke, R.E. A test for concentration of electrolytes in sweat in cystic fibrosis of the pancreas utilizing pilocarpine by iontophoresis. Pediatrics 1959, 23, 545–549. [Google Scholar] [PubMed]
- Dragonieri, S.; Schot, R.; Mertens, B.J.A.; Le Cessie, S.; Gauw, S.A.; Spanevello, A.; Resta, O.; Willard, N.P.; Vink, T.J.; Rabe, K.F.; et al. An electronic nose in the discrimination of patients with asthma and controls. J. Allergy Clin. Immunol. 2007, 120, 856–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dragonieri, S.; Quaranta, V.N.; Carratu, P.; Ranieri, T.; Resta, O. Exhaled breath profiling by electronic nose enabled discrimination of allergic rhinitis and extrinsic asthma. Biomarkers 2018, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Brinkman, P.; van de Pol, M.A.; Gerritsen, M.G.; Bos, L.D.; Dekker, T.; Smids, B.S.; Sinha, A.; Majoor, C.J.; Sneeboer, M.M.; Knobel, H.H.; et al. Exhaled breath profiles in the monitoring of loss of control and clinical recovery in asthma. Clin. Exp. Allergy 2017, 12, 3218–3221. [Google Scholar] [CrossRef] [PubMed]
- Dymerski, T.; Gebicki, J.; Wiśniewska, P.; Śliwińska, M.; Wardencki, W.; Namieśnik, J. Application of the electronic nose technique to differentiation between model mixtures with COPD markers. Sensors 2013, 13, 5008–5027. [Google Scholar] [CrossRef] [PubMed]
- Zetola, N.M.; Modongo, C.; Matsiri, O.; Tamuhla, T.; Mbongwe, B.; Matlhagela, K.; Sepako, E.; Catini, A.; Sirugo, G.; Martinelli, E.; et al. Diagnosis of pulmonary tuberculosis and assessment of treatment response through analyses of volatile compound patterns in exhaled breath samples. J. Infect. 2017, 74, 367–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruins, M.; Rahim, Z.; Bos, A.; Van De Sande, W.W.J.; Endtz, H.P.; Van Belkum, A. Diagnosis of active tuberculosis by e-nose analysis of exhaled air. Tuberculosis 2013, 93, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Fend, R.; Kolk, A.H.J.; Bessant, C.; Buijtels, P.; Klatser, P.R.; Woodman, A.C. Prospects for clinical application of electronic-nose technology to early detection of Mycobacterium tuberculosis in culture and sputum. J. Clin. Microbiol. 2006, 44, 2039–2045. [Google Scholar] [CrossRef] [PubMed]
- Saasa, V.; Malwela, T.; Beukes, M.; Mokgotho, M.; Liu, C.-P.; Mwakikunga, B. Sensing Technologies for Detection of Acetone in Human Breath for Diabetes Diagnosis and Monitoring. Diagnostics 2018, 8. [Google Scholar] [CrossRef] [PubMed]
- Schnabel, R.M.; Boumans, M.L.L.; Smolinska, A.; Stobberingh, E.E.; Kaufmann, R.; Roekaerts, P.M.H.J.; Bergmans, D.C.J.J. Electronic nose analysis of exhaled breath to diagnose ventilator-associated pneumonia. Respir. Med. 2015, 109, 1454–1459. [Google Scholar] [CrossRef] [PubMed]
- Montuschi, P.; Santonico, M.; Mondino, C.; Pennazza, G.; Maritini, G.; Martinelli, E.; Capuano, R.; Ciabattoni, G.; Paolesse, R.; Di Natale, C.; et al. Diagnostic performance of an electronic nose, fractional exhaled nitric oxide, and lung function testing in asthma. Chest 2010, 137, 790–796. [Google Scholar] [CrossRef] [PubMed]
- Santonico, M.; Zompanti, A.; Vernile, C.; Pennazza, G.; Brinkman, P.; Wagener, A.H.; Sterk, P.J.; D’Amico, A.; Montuschi, P. An investigation on e-nose platform relevance to respiratory diseases. In Proceedings of the IEEE Sensors, Valencia, Spain, 2–5 November 2014; pp. 688–690. [Google Scholar] [CrossRef]
- Cavaleiro Rufo, J.; Paciência, I.; Mendes, F.C.; Farraia, M.; Rodolfo, A.; Silva, D.; de Oliveira Fernandes, E.; Delgado, L.; Moreira, A. Exhaled breath condensate volatilome allows sensitive diagnosis of persistent asthma. Allergy 2018. [Google Scholar] [CrossRef] [PubMed]
- Capuano, R.; Santonico, M.; Martinelli, E.; Pennazza, G.; Paolesse, R.; Bergamini, A.; Cazzola, M.; Ciaprini, C.; Di Natale, C.; D’Amico, A. COPD diagnosis by a gas sensor array. Procedia Eng. 2010, 5, 484–487. [Google Scholar] [CrossRef]
- Hattesohl, A.D.M.; Jörres, R.A.; Dressel, H.; Schmid, S.; Vogelmeier, C.; Greulich, T.; Noeske, S.; Bals, R.; Koczulla, A.R. Discrimination between COPD patients with and without alpha 1-antitrypsin deficiency using an electronic nose. Respirology 2011, 16, 1258–1264. [Google Scholar] [CrossRef] [PubMed]
- Bofan, M.; Mores, N.; Baron, M.; Dabrowska, M.; Valente, S.; Schmid, M.; Trové, A.; Conforto, S.; Zini, G.; Cattani, P.; et al. Within-day and between-day repeatability of measurements with an electronic nose in patients with COPD. J. Breath Res. 2013, 7, 017103. [Google Scholar] [CrossRef] [PubMed]
- Bos, L.D.J.; Schultz, M.J.; Sterk, P.J. Exhaled breath profiling for diagnosing acute respiratory distress syndrome. BMC Pulm. Med. 2014, 14, 72. [Google Scholar] [CrossRef] [PubMed]
- Dragonieri, S.; Brinkman, P.; Mouw, E.; Zwinderman, A.H.; Carratú, P.; Resta, O.; Sterk, P.J.; Jonkers, R.E. An electronic nose discriminates exhaled breath of patients with untreated pulmonary sarcoidosis from controls. Respir. Med. 2013, 107, 1073–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paff, T.; van der Schee, M.P.; Daniels, J.M.A.; Pals, G.; Postmus, P.E.; Sterk, P.J.; Haarman, E.G. Exhaled molecular profiles in the assessment of cystic fibrosis and primary ciliary dyskinesia. J. Cyst. Fibros. 2013, 12, 454–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Natale, C.; Macagnano, A.; Martinelli, E.; Paolesse, R.; D’Arcangelo, G.; Roscioni, C.; Finazzi-Agrò, A.; D’Amico, A. Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors. Biosens. Bioelectron. 2003, 18, 1209–1218. [Google Scholar] [CrossRef]
- Machado, R.F.; Laskowski, D.; Deffenderfer, O.; Burch, T.; Zheng, S.; Mazzone, P.J.; Mekhail, T.; Jennings, C.; Stoller, J.K.; Pyle, J.; et al. Detection of Lung Cancer by Sensor Array Analyses of Exhaled Breath. Am. J. Respir. Crit. Care Med. 2005, 171, 1286–1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dragonieri, S.; Annema, J.T.; Schot, R.; van der Schee, M.P.C.; Spanevello, A.; Carratú, P.; Resta, O.; Rabe, K.F.; Sterk, P.J. An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD. Lung Cancer 2009, 64, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Dragonieri, S.; Van Der Schee, M.P.; Massaro, T.; Schiavulli, N.; Brinkman, P.; Pinca, A.; Carratú, P.; Spanevello, A.; Resta, O.; Musti, M.; et al. An electronic nose distinguishes exhaled breath of patients with Malignant Pleural Mesothelioma from controls. Lung Cancer 2012, 75, 326–331. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society Estadísticas importantes sobre el cáncer de pulmón. Available online: https://www.cancer.org/es/cancer/cancer-de-pulmon-no-microcitico/acerca/estadisticas-clave.html (accessed on 4 September 2018).
- Hockstein, N.G.; Thaler, E.R.; Lin, Y.; Lee, D.D.; Hanson, C.W. Correlation of pneumonia score with electronic nose signature: A prospective study. Ann. Otol. Rhinol. Laryngol. 2005, 114, 504–508. [Google Scholar] [CrossRef] [PubMed]
- Chiu, S.; Member, S.; Wang, J.; Chang, K.; Chang, T.; Wang, C.; Chang, C.; Tang, C.; Chen, C.; Shih, C.; et al. A Fully Integrated Nose-on-a-Chip for Rapid Diagnosis of Ventilator- Associated Pneumonia. IEEE Trans. Biomed. Circuits Syst. 2015, 8, 2015. [Google Scholar] [CrossRef]
- Pavlou, A.K.; Magan, N.; Jones, J.M.; Brown, J.; Klatser, P.; Turner, A.P.F. Detection of Mycobacterium tuberculosis (TB) in vitro and in situ using an electronic nose in combination with a neural network system. Biosens. Bioelectron. 2004, 20, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Coronel Teixeira, R.; Rodríguez, M.; Jiménez de Romero, N.; Bruins, M.; Gómez, R.; Yntema, J.B.; Chaparro Abente, G.; Gerritsen, J.W.; Wiegerinck, W.; Pérez Bejerano, D.; et al. The potential of a portable, point-of-care electronic nose to diagnose tuberculosis. J. Infect. 2017, 75, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, E.I.; Mohamed, M.A.; Moustafa, M.H.; Abdel-Mageed, S.M.; Moro, A.M.; Baess, A.I.; El-Kholy, S.M. Qualitative analysis of biological tuberculosis samples by an electronic nose-based artificial neural network. Int. J. Tuberc. Lung Dis. 2017, 21, 810–817. [Google Scholar] [CrossRef] [PubMed]
Process | Description | Biomarker | References |
---|---|---|---|
Marker of oxidative stress | Inflammation process in lung cells; eosinophils, neutrophils, and macrophages produce reactive oxygen species | H2O2 | [19,22,23] |
Increase of free radicals, which react to cell membrane phospholipid, generating 8-isoprostane | 8-isoprostane | [19,20] | |
Oxidation of cell membrane phospholipids produces a chain reaction, the targets of which are polyunsaturated fatty acids, resulting in the formation of unstable lipid hydroperoxides and secondary carbonyl compounds, such as aldehydic products | Malondialdehyde | [19] | |
CO, a marker of oxidative stress, is produced by the stress protein hemoglobin oxygenase | CO | [21] | |
Inflammation of airways | Immune response against infection produces an inflammation process in cells, which generate more NO than in a healthy person | Alveolar NO | [19] |
Cytokines * and chemokines are involved in many aspects of the disease process in chronic obstructive pulmonary disease (COPD), including recruitment of neutrophils, macrophages, T cells, and B cells | Cytokines * and chemokines | [19] | |
Leukotrienes are muscle constrictors, such as in lung muscle | Leukotriene B4 and prostaglandins | [19] | |
CO is a marker of inflammation | CO | [21] |
Disease | Study | Biomarker | Concentration | References | |
---|---|---|---|---|---|
Asthma | Lärstad (2007) | Ethane | NS | [26] | |
NO | 19 ± 2 ppb (healthy subject); 30 ± 6.1 ppb (asthma patient) | ||||
Pentane | NS | ||||
Isoprene | 113 ppb | ||||
Olopade (1997) | Pentane | Acute asthma: 8.4 ± 2.9 nmol/L | [33] | ||
Pentane | Stable asthma: 3.6 ± 0.4 nmol/L | ||||
Paredi (2000) | Ethane | Ethane: asthma not treated with steroids: 2.06 ± 0.30 ppb; asthma treated with steroids: 0.79 ± 0.1 ppb); healthy volunteers: 0.88 ± 0.09 ppb | [27] | ||
NO: asthma not treated with steroids: 14.7 ± 1.7 ppb; asthma treated with steroids: 8.6 ± 0.5 ppb | |||||
Dweik (2011) | NO | Low asthma patients: <25 ppb in adults; >20 ppb in children Intermediate asthma patients: 25–50 ppb in adults; 20–35 ppb in children High asthma patients: >50 ppb in adults; >35 ppb in children Persistently high asthma patients: >50 ppb in adults; 35 ppb in children | [34] | ||
COPD | Paredi (2000) | Ethane | 2.77 ± 0.25 | [35] | |
Cystic fibrosis | Barker (2006) | Pentane | 0.36 (0.24–0.48) ppb | [36] | |
Dimethyl Sulfide | 3.89 (2.24–5.54) ppb | ||||
Antuni (2000) | NO | Healthy volunteers: 7.3 (0.24) ppb; stable cystic fibrosis patients: 5.7 (00.29) ppb; unstable cystic fibrosis patients: 6.1 (0.72) ppb | [30] | ||
CO | Healthy volunteers: 2.0 (0.1) ppm; stable cystic fibrosis patients: 2.7 (0.22) ppm; unstable cystic fibrosis patients: 4.8 (0.3) ppb | ||||
Lung cancer | Bajtarevic (2009) | Isoprene | Median concentration: healthy volunteers: 105.2 ppb; cancer patients: 81.5 ppb | [32] | |
Acetone | Median concentration: healthy volunteers: 627.5 ppb; cancer patients: 458.7 ppb | ||||
Methanol | Median concentration: healthy volunteers: 142.0 ppb; cancer patients: 118.5 ppb | ||||
Benzene | Median concentration: healthy volunteers: 627.5 ppb; cancer patients: 458.7 ppb | ||||
Diabetes mellitus | Das (2016) | Acetone | Type 1 | 0.044–2.744 ppm (healthy volunteers); 2.2–21 ppm (diabetes patients) | [37] |
Type 2 | 0.044–2.744 ppm (healthy volunteers); 1.76–9.4 ppm (diabetes patients) | ||||
Spanel (2011) | Acetone | Type 2 | <800 ppb (healthy volunteers); >1760 ppb (diabetes patients) | [38] | |
Helicobacter pylori | Kearney (2002) | Dioxide carbon and ammonia. | NS | [39] | |
Hypolactasia | Metz (1975) | Hydrogen | Control: 0–3 ppmv; patients: 48–168 ppmv | [40] | |
Liver fibrosis | Alkhouri (2015) | Acetone | Lower fibrosis group: 117.8 ppb; advanced fibrosis group: 224.2 ppb | [41] | |
Benzene | Lower fibrosis group: 1.9 ppb; advanced fibrosis group: 8 ppb | ||||
Carbon Disulfide | Lower fibrosis group: 1.6 ppb; advanced fibrosis group: 3.2 ppb | ||||
Isoprene | Lower fibrosis group: 13.5 ppb; advanced fibrosis group: 40.4 ppb | ||||
Pentane | Lower fibrosis group: 12.3 ppb; advanced fibrosis group: 19.5 ppb | ||||
Ethane | Lower fibrosis group: 63.0 ppb; advanced fibrosis group: 75.6 ppb |
Compound | Concentration |
---|---|
Water vapor | 5–6.3% |
Nitrogen | 78.04% |
Oxygen | 16% |
Carbon dioxide | 4–5% |
Hydrogen | 5% |
Argon | NS |
CO | 0–6 ppm |
Ammonia | 0.5–2 ppm |
Acetone, methanol, ethanol | 0.9%; <1 ppm |
Hydrogen sulfide | 0–1.3 ppm |
NO | 10–50 ppb |
Carbonyl sulfide | 0–10 ppb |
Ethane | 0–10 ppb |
Pentane | 0–10 ppb |
Methane | 2–10 ppm |
Application | Author | Population Characteristics | Sensor Technology | Number of Sensors | Data Processing Algorithm | Diagnosis | Other Techniques | References |
---|---|---|---|---|---|---|---|---|
Asthma | Dragonieri (2007) | 40 adult subjects, nonsmokers, aged 18–75, without any other acute or chronic disease besides asthma (mixed group)
| Polymer nanocomposite sensor | 32 | PCA | Spirometry, FeNO | GC-MS | [49] |
Montuschi (2010) | 52 adult subjects, nonsmokers (mixed group)
| QCM gas sensors coated by molecular metalloporphyrin film | 8 | PCA and FNN | FeNO | GC-MS | [58] | |
Santonico (2014) | 58 subjects | Carbon black polymer (Cyranose C320)/QCM covered with metalloporphyrin film (Tor Vergata Electronic Nose)/metal oxide semiconductor | 32/NS/NS | ROC | FeNO | FAIMS (Owlstone) | [59] | |
Brinkman (2017) | 28 subjects
| Carbon black polymer (Cyranose C320)/QCM covered with metalloporphyrin film (Tor Vergata Electronic Nose)/metal oxide semiconductor | 32/NS/NS | PCA | FeNO and spirometry | FAIMS (Owlstone) and GC-MS | [51] | |
Cavaleiro (2018) | 60 subjects, aged 6 –18 years (mixed group) | Polymer nanocomposite sensor (Cyranose 320) | 32 | Clustering | FeNO and spirometry | GC-MS | [60] | |
Chronic obstructive pulmonary disease | Paredi (2000) | 36 subjects (mixed group)
| NS | NS | NS | NS | NS | [35] |
Capuano (2010) | 20 subjects (mixed group)
| QMC gas sensor with metalloporphyrin films | 7 | PLS-DA | NS | NS | [61] | |
Hattesohl (2011) | 33 subjects (mixed group)
| Polymer nanocomposite sensor (Cyranose 320) | 32 | LDA, MD, CVVs, canonical plot, | Spirometry | GC-MS | [62] | |
Dymerski (2013) | In vitro experiments | SAW/BAW sensors (TGS 880, TGS 825, TGS 826, TGS 822, TGS 2610, TGS 2602 by Figaro) | 6 | PCA | NS | NS | [52] | |
Bofan (2013) | 24 adult subjects, ex-smokers, 68 ± 1.7 years, with smoking history of 39.5 (24.2 –63.3) years without other acute or chronic disease besides COPD or nonatopic COPD and without inhaled or oral corticosteroids (mixed group) | Polymer nanocomposite and inorganic conductor sensor (carbon black) (Cyranose 320) | 32 | Pattern recognition algorithm | Spirometry and FeNO | GC-MS, NMR spectroscopy, and LC-MS | [63] | |
Acute respiratory distress syndrome | Bos (2014) | 180 subjects (mixed group)
| Polymer nanocomposite sensor | 32 | ROC | CXR | GC-MS | [64] |
Pulmonary sarcoidosis | Dragonieri (2013) | 31 subjects (mixed group)
| Polymer nanocomposite sensor (Cyranose 320) | 32 | PCA, CDA ROC curves | CXR, CT, biopsy | GC-MS, TOF-MS, IMS | [65] |
Cystic fibrosis | Paff (2013) | 48 subjects (mixed group)
| Polymer nanocomposite sensor (Cyranose 320) | 32 | PCA, ROC curves, and CDA | Spirometry and sputum culture | GC-MS | [66] |
Primary ciliary dyskinesia | Paff (2013) | 48 subjects (mixed group)
| Polymer nanocomposite sensor (Cyranose 320) | 32 | PCA, ROC curves, and CDA | Spirometry and sputum culture | GC-MS | [66] |
Lung cancer | Di Natale (2003) | 50 subjects (mixed group)
| QCM gas sensors coated with metalloporphyrin molecular film | 8 | PLS-DA | NS | GC-MS | [67] |
Machado (2005) | 59 subjects (mixed group)
| Polymer nanocomposite sensor (Cyranose 320) | 32 | PCA, SVM, and CDA | CXR and biopsy | GC–MS | [68] | |
Dragonieri (2009) | 30 subjects (mixed group)
| Polymer nanocomposite sensor (Cyranose 320) | 32 | CDA, CVV, PCA | CT | GC–MS | [69] | |
Dragonieri (2012) | 39 subjects (mixed group)
| Polymer nanocomposite sensor (Cyranose 320) | 32 | CVA, PCA, and ROC | NS | GC–MS | [70] | |
D’Amico (2010) | 98 adult subjects, 50–70 years (mixed group)
| QCM gas sensors | 8 | PLS-DA | Endoscopy | GC-MS | [23,71] | |
Pneumonia | Hockstein (2005) | 25 subjects (mixed group)
| Polymer nanocomposite sensor (Cyranose 320) | 32 | SMV and PCA | CT | GC–MS | [72] |
Chiu (2015) | In vitro experiment | Polymer–carbon composite with polymers on chemical sensor array | 8 | CRBM | CXR, blood draw, and sputum culture | GC–MS | [73] | |
Schnabel (2015) | 125 subjects (mixed group)
| MOS sensors (DiagNose) | NS | PCA and ROC curves | CT | GC–MS | [57] | |
Pulmonary tuberculosis | Pavlou (2004) | In vitro experiment | Gas-sensor array (Bloodhound BH114) | 14 | PCA, optimization of BP-FNN, multivariate techniques, | CXR | NS | [74] |
Fend (2006) | 330 patients (mixed group)
| CP sensor | 14 | PCA, DFA, and ANN | CXR and sputum culture | GC-MS | [55] | |
Bruins (2013) | 30 patients (mixed group).
| MOS sensor: AS-MLC, AS-MLN, AS-MLK, AS-MLV | 12 (4 types of sensors in triplicate) | ANN | CXR and microbiological culture | GC-MS | [54] | |
Coronel (2017) | 110 subjects (mixed group)
| MOS sensors (Aeonose) | NS | ROC curve | CXR | GC-MS | [75] | |
Zelota (2017) | 71 subjects (mixed group)
| QCM gas sensors coated by metalloporphyrin molecular film | 8 | PCA | CXR | GC-MS | [53] | |
Mohamed (2017) | 500 patients (mixed group)
| MOS sensor | 10 | PCA and ANN | Physical examination and routine laboratory analyses, including CXR | GC-MS | [76] | |
Diabetes mellitus | Saasa (2018) | NS | QCL, LAP, and chemoresistive sensors | NS | NS | NS | GC-MS, LC-MS, HPLC, PTR-MS, and SIFT-MS | [56] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez, C.; Santos, J.P.; Lozano, J. Use of Electronic Noses for Diagnosis of Digestive and Respiratory Diseases through the Breath. Biosensors 2019, 9, 35. https://doi.org/10.3390/bios9010035
Sánchez C, Santos JP, Lozano J. Use of Electronic Noses for Diagnosis of Digestive and Respiratory Diseases through the Breath. Biosensors. 2019; 9(1):35. https://doi.org/10.3390/bios9010035
Chicago/Turabian StyleSánchez, Carlos, J. Pedro Santos, and Jesús Lozano. 2019. "Use of Electronic Noses for Diagnosis of Digestive and Respiratory Diseases through the Breath" Biosensors 9, no. 1: 35. https://doi.org/10.3390/bios9010035
APA StyleSánchez, C., Santos, J. P., & Lozano, J. (2019). Use of Electronic Noses for Diagnosis of Digestive and Respiratory Diseases through the Breath. Biosensors, 9(1), 35. https://doi.org/10.3390/bios9010035